aboutsummaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2018-05-27 10:49:14 +0100
committergingerBill <bill@gingerbill.org>2018-05-27 10:49:14 +0100
commit7ee9051a56ca0c04e6b60f53b9dfe47c75596496 (patch)
tree619c13b7d86105fcfda13d315c0c315e7005630a /examples
parenteb11edabe092541144cd3ba18b09bd11fcf7a958 (diff)
IR now builds with the new package system
Diffstat (limited to 'examples')
-rw-r--r--examples/demo/demo.odin755
1 files changed, 755 insertions, 0 deletions
diff --git a/examples/demo/demo.odin b/examples/demo/demo.odin
new file mode 100644
index 000000000..ee96560d3
--- /dev/null
+++ b/examples/demo/demo.odin
@@ -0,0 +1,755 @@
+package main
+
+#assert(_BUFFER_SIZE > 0);
+
+import "core:fmt"
+import "core:strconv"
+import "core:mem"
+import "core:bits"
+import "core:hash"
+import "core:math"
+import "core:math/rand"
+import "core:os"
+import "core:raw"
+import "core:sort"
+import "core:strings"
+import "core:types"
+import "core:unicode/utf16"
+import "core:unicode/utf8"
+
+import "core:atomics"
+import "core:thread"
+import "core:sys/win32"
+
+@(link_name="general_stuff")
+general_stuff :: proc() {
+ fmt.println("# general_stuff");
+ { // `do` for inline statements rather than block
+ foo :: proc() do fmt.println("Foo!");
+ if false do foo();
+ for false do foo();
+ when false do foo();
+
+ if false do foo();
+ else do foo();
+ }
+
+ { // Removal of `++` and `--` (again)
+ x: int;
+ x += 1;
+ x -= 1;
+ }
+ { // Casting syntaxes
+ i := i32(137);
+ ptr := &i;
+
+ _ = (^f32)(ptr);
+ // ^f32(ptr) == ^(f32(ptr))
+ _ = cast(^f32)ptr;
+
+ _ = (^f32)(ptr)^;
+ _ = (cast(^f32)ptr)^;
+
+ // Questions: Should there be two ways to do it?
+ }
+
+ /*
+ * Remove *_val_of built-in procedures
+ * size_of, align_of, offset_of
+ * type_of, type_info_of
+ */
+
+ { // `expand_to_tuple` built-in procedure
+ Foo :: struct {
+ x: int,
+ b: bool,
+ }
+ f := Foo{137, true};
+ x, b := expand_to_tuple(f);
+ fmt.println(f);
+ fmt.println(x, b);
+ fmt.println(expand_to_tuple(f));
+ }
+
+ {
+ // .. half-closed range
+ // ... open range
+
+ for in 0..2 {} // 0, 1
+ for in 0...2 {} // 0, 1, 2
+ }
+
+ { // Multiple sized booleans
+
+ x0: bool; // default
+ x1: b8 = true;
+ x2: b16 = false;
+ x3: b32 = true;
+ x4: b64 = false;
+
+ fmt.printf("x1: %T = %v;\n", x1, x1);
+ fmt.printf("x2: %T = %v;\n", x2, x2);
+ fmt.printf("x3: %T = %v;\n", x3, x3);
+ fmt.printf("x4: %T = %v;\n", x4, x4);
+
+ // Having specific sized booleans is very useful when dealing with foreign code
+ // and to enforce specific alignment for a boolean, especially within a struct
+ }
+
+ { // `distinct` types
+ // Originally, all type declarations would create a distinct type unless #type_alias was present.
+ // Now the behaviour has been reversed. All type declarations create a type alias unless `distinct` is present.
+ // If the type expression is `struct`, `union`, `enum`, `proc`, or `bit_field`, the types will always been distinct.
+
+ Int32 :: i32;
+ #assert(Int32 == i32);
+
+ My_Int32 :: distinct i32;
+ #assert(My_Int32 != i32);
+
+ My_Struct :: struct{x: int};
+ #assert(My_Struct != struct{x: int});
+ }
+}
+
+
+union_type :: proc() {
+ fmt.println("\n# union_type");
+ {
+ val: union{int, bool};
+ val = 137;
+ if i, ok := val.(int); ok {
+ fmt.println(i);
+ }
+ val = true;
+ fmt.println(val);
+
+ val = nil;
+
+ switch v in val {
+ case int: fmt.println("int", v);
+ case bool: fmt.println("bool", v);
+ case: fmt.println("nil");
+ }
+ }
+ {
+ // There is a duality between `any` and `union`
+ // An `any` has a pointer to the data and allows for any type (open)
+ // A `union` has as binary blob to store the data and allows only certain types (closed)
+ // The following code is with `any` but has the same syntax
+ val: any;
+ val = 137;
+ if i, ok := val.(int); ok {
+ fmt.println(i);
+ }
+ val = true;
+ fmt.println(val);
+
+ val = nil;
+
+ switch v in val {
+ case int: fmt.println("int", v);
+ case bool: fmt.println("bool", v);
+ case: fmt.println("nil");
+ }
+ }
+
+ Vector3 :: struct {x, y, z: f32};
+ Quaternion :: struct {x, y, z, w: f32};
+
+ // More realistic examples
+ {
+ // NOTE(bill): For the above basic examples, you may not have any
+ // particular use for it. However, my main use for them is not for these
+ // simple cases. My main use is for hierarchical types. Many prefer
+ // subtyping, embedding the base data into the derived types. Below is
+ // an example of this for a basic game Entity.
+
+ Entity :: struct {
+ id: u64,
+ name: string,
+ position: Vector3,
+ orientation: Quaternion,
+
+ derived: any,
+ }
+
+ Frog :: struct {
+ using entity: Entity,
+ jump_height: f32,
+ }
+
+ Monster :: struct {
+ using entity: Entity,
+ is_robot: bool,
+ is_zombie: bool,
+ }
+
+ // See `parametric_polymorphism` procedure for details
+ new_entity :: proc(T: type) -> ^Entity {
+ t := new(T);
+ t.derived = t^;
+ return t;
+ }
+
+ entity := new_entity(Monster);
+
+ switch e in entity.derived {
+ case Frog:
+ fmt.println("Ribbit");
+ case Monster:
+ if e.is_robot do fmt.println("Robotic");
+ if e.is_zombie do fmt.println("Grrrr!");
+ }
+ }
+
+ {
+ // NOTE(bill): A union can be used to achieve something similar. Instead
+ // of embedding the base data into the derived types, the derived data
+ // in embedded into the base type. Below is the same example of the
+ // basic game Entity but using an union.
+
+ Entity :: struct {
+ id: u64,
+ name: string,
+ position: Vector3,
+ orientation: Quaternion,
+
+ derived: union {Frog, Monster},
+ }
+
+ Frog :: struct {
+ using entity: ^Entity,
+ jump_height: f32,
+ }
+
+ Monster :: struct {
+ using entity: ^Entity,
+ is_robot: bool,
+ is_zombie: bool,
+ }
+
+ // See `parametric_polymorphism` procedure for details
+ new_entity :: proc(T: type) -> ^Entity {
+ t := new(Entity);
+ t.derived = T{entity = t};
+ return t;
+ }
+
+ entity := new_entity(Monster);
+
+ switch e in entity.derived {
+ case Frog:
+ fmt.println("Ribbit");
+ case Monster:
+ if e.is_robot do fmt.println("Robotic");
+ if e.is_zombie do fmt.println("Grrrr!");
+ }
+
+ // NOTE(bill): As you can see, the usage code has not changed, only its
+ // memory layout. Both approaches have their own advantages but they can
+ // be used together to achieve different results. The subtyping approach
+ // can allow for a greater control of the memory layout and memory
+ // allocation, e.g. storing the derivatives together. However, this is
+ // also its disadvantage. You must either preallocate arrays for each
+ // derivative separation (which can be easily missed) or preallocate a
+ // bunch of "raw" memory; determining the maximum size of the derived
+ // types would require the aid of metaprogramming. Unions solve this
+ // particular problem as the data is stored with the base data.
+ // Therefore, it is possible to preallocate, e.g. [100]Entity.
+
+ // It should be noted that the union approach can have the same memory
+ // layout as the any and with the same type restrictions by using a
+ // pointer type for the derivatives.
+
+ /*
+ Entity :: struct {
+ ...
+ derived: union{^Frog, ^Monster},
+ }
+
+ Frog :: struct {
+ using entity: Entity,
+ ...
+ }
+ Monster :: struct {
+ using entity: Entity,
+ ...
+
+ }
+ new_entity :: proc(T: type) -> ^Entity {
+ t := new(T);
+ t.derived = t;
+ return t;
+ }
+ */
+ }
+}
+
+parametric_polymorphism :: proc() {
+ fmt.println("# parametric_polymorphism");
+
+ print_value :: proc(value: $T) {
+ fmt.printf("print_value: %T %v\n", value, value);
+ }
+
+ v1: int = 1;
+ v2: f32 = 2.1;
+ v3: f64 = 3.14;
+ v4: string = "message";
+
+ print_value(v1);
+ print_value(v2);
+ print_value(v3);
+ print_value(v4);
+
+ fmt.println();
+
+ add :: proc(p, q: $T) -> T {
+ x: T = p + q;
+ return x;
+ }
+
+ a := add(3, 4);
+ fmt.printf("a: %T = %v\n", a, a);
+
+ b := add(3.2, 4.3);
+ fmt.printf("b: %T = %v\n", b, b);
+
+ // This is how `new` is implemented
+ alloc_type :: proc(T: type) -> ^T {
+ t := cast(^T)alloc(size_of(T), align_of(T));
+ t^ = T{}; // Use default initialization value
+ return t;
+ }
+
+ copy_slice :: proc(dst, src: []$T) -> int {
+ n := min(len(dst), len(src));
+ if n > 0 {
+ mem.copy(&dst[0], &src[0], n*size_of(T));
+ }
+ return n;
+ }
+
+ double_params :: proc(a: $A, b: $B) -> A {
+ return a + A(b);
+ }
+
+ fmt.println(double_params(12, 1.345));
+
+
+
+ { // Polymorphic Types and Type Specialization
+ Table_Slot :: struct(Key, Value: type) {
+ occupied: bool,
+ hash: u32,
+ key: Key,
+ value: Value,
+ }
+ TABLE_SIZE_MIN :: 32;
+ Table :: struct(Key, Value: type) {
+ count: int,
+ allocator: Allocator,
+ slots: []Table_Slot(Key, Value),
+ }
+
+ // Only allow types that are specializations of a (polymorphic) slice
+ make_slice :: proc(T: type/[]$E, len: int) -> T {
+ return make(T, len);
+ }
+
+
+ // Only allow types that are specializations of `Table`
+ allocate :: proc(table: ^$T/Table, capacity: int) {
+ c := context;
+ if table.allocator.procedure != nil do c.allocator = table.allocator;
+
+ context <- c {
+ table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
+ }
+ }
+
+ expand :: proc(table: ^$T/Table) {
+ c := context;
+ if table.allocator.procedure != nil do c.allocator = table.allocator;
+
+ context <- c {
+ old_slots := table.slots;
+
+ cap := max(2*len(table.slots), TABLE_SIZE_MIN);
+ allocate(table, cap);
+
+ for s in old_slots do if s.occupied {
+ put(table, s.key, s.value);
+ }
+
+ free(old_slots);
+ }
+ }
+
+ // Polymorphic determination of a polymorphic struct
+ // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
+ put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
+ hash := get_hash(key); // Ad-hoc method which would fail in a different scope
+ index := find_index(table, key, hash);
+ if index < 0 {
+ if f64(table.count) >= 0.75*f64(len(table.slots)) {
+ expand(table);
+ }
+ assert(table.count <= len(table.slots));
+
+ hash := get_hash(key);
+ index = int(hash % u32(len(table.slots)));
+
+ for table.slots[index].occupied {
+ if index += 1; index >= len(table.slots) {
+ index = 0;
+ }
+ }
+
+ table.count += 1;
+ }
+
+ slot := &table.slots[index];
+ slot.occupied = true;
+ slot.hash = hash;
+ slot.key = key;
+ slot.value = value;
+ }
+
+
+ // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
+ find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
+ hash := get_hash(key);
+ index := find_index(table, key, hash);
+ if index < 0 {
+ return Value{}, false;
+ }
+ return table.slots[index].value, true;
+ }
+
+ find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
+ if len(table.slots) <= 0 do return -1;
+
+ index := int(hash % u32(len(table.slots)));
+ for table.slots[index].occupied {
+ if table.slots[index].hash == hash {
+ if table.slots[index].key == key {
+ return index;
+ }
+ }
+
+ if index += 1; index >= len(table.slots) {
+ index = 0;
+ }
+ }
+
+ return -1;
+ }
+
+ get_hash :: proc(s: string) -> u32 { // fnv32a
+ h: u32 = 0x811c9dc5;
+ for i in 0..len(s) {
+ h = (h ~ u32(s[i])) * 0x01000193;
+ }
+ return h;
+ }
+
+
+ table: Table(string, int);
+
+ for i in 0..36 do put(&table, "Hellope", i);
+ for i in 0..42 do put(&table, "World!", i);
+
+ found, _ := find(&table, "Hellope");
+ fmt.printf("`found` is %v\n", found);
+
+ found, _ = find(&table, "World!");
+ fmt.printf("`found` is %v\n", found);
+
+ // I would not personally design a hash table like this in production
+ // but this is a nice basic example
+ // A better approach would either use a `u64` or equivalent for the key
+ // and let the user specify the hashing function or make the user store
+ // the hashing procedure with the table
+ }
+}
+
+
+
+
+prefix_table := [?]string{
+ "White",
+ "Red",
+ "Green",
+ "Blue",
+ "Octarine",
+ "Black",
+};
+
+threading_example :: proc() {
+ when ODIN_OS == "windows" {
+ fmt.println("# threading_example");
+
+ unordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
+ __bounds_check_error_loc(loc, index, len(array));
+ array[index] = array[len(array)-1];
+ pop(array);
+ }
+ ordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
+ __bounds_check_error_loc(loc, index, len(array));
+ copy(array[index..], array[index+1..]);
+ pop(array);
+ }
+
+ worker_proc :: proc(t: ^thread.Thread) -> int {
+ for iteration in 1...5 {
+ fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
+ fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
+ // win32.sleep(1);
+ }
+ return 0;
+ }
+
+ threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
+ defer free(threads);
+
+ for in prefix_table {
+ if t := thread.create(worker_proc); t != nil {
+ t.init_context = context;
+ t.use_init_context = true;
+ t.user_index = len(threads);
+ append(&threads, t);
+ thread.start(t);
+ }
+ }
+
+ for len(threads) > 0 {
+ for i := 0; i < len(threads); /**/ {
+ if t := threads[i]; thread.is_done(t) {
+ fmt.printf("Thread %d is done\n", t.user_index);
+ thread.destroy(t);
+
+ ordered_remove(&threads, i);
+ } else {
+ i += 1;
+ }
+ }
+ }
+ }
+}
+
+array_programming :: proc() {
+ fmt.println("# array_programming");
+ {
+ a := [3]f32{1, 2, 3};
+ b := [3]f32{5, 6, 7};
+ c := a * b;
+ d := a + b;
+ e := 1 + (c - d) / 2;
+ fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
+ }
+
+ {
+ a := [3]f32{1, 2, 3};
+ b := swizzle(a, 2, 1, 0);
+ assert(b == [3]f32{3, 2, 1});
+
+ c := swizzle(a, 0, 0);
+ assert(c == [2]f32{1, 1});
+ assert(c == 1);
+ }
+
+ {
+ Vector3 :: distinct [3]f32;
+ a := Vector3{1, 2, 3};
+ b := Vector3{5, 6, 7};
+ c := (a * b)/2 + 1;
+ d := c.x + c.y + c.z;
+ fmt.printf("%.1f\n", d); // 22.0
+
+ cross :: proc(a, b: Vector3) -> Vector3 {
+ i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
+ j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
+ return i - j;
+ }
+
+ blah :: proc(a: Vector3) -> f32 {
+ return a.x + a.y + a.z;
+ }
+
+ x := cross(a, b);
+ fmt.println(x);
+ fmt.println(blah(x));
+ }
+}
+
+
+using println in import "core:fmt"
+
+using_in :: proc() {
+ fmt.println("# using in");
+ using print in fmt;
+
+ println("Hellope1");
+ print("Hellope2\n");
+
+ Foo :: struct {
+ x, y: int,
+ b: bool,
+ }
+ f: Foo;
+ f.x, f.y = 123, 321;
+ println(f);
+ using x, y in f;
+ x, y = 456, 654;
+ println(f);
+}
+
+named_proc_return_parameters :: proc() {
+ fmt.println("# named proc return parameters");
+
+ foo0 :: proc() -> int {
+ return 123;
+ }
+ foo1 :: proc() -> (a: int) {
+ a = 123;
+ return;
+ }
+ foo2 :: proc() -> (a, b: int) {
+ // Named return values act like variables within the scope
+ a = 321;
+ b = 567;
+ return b, a;
+ }
+ fmt.println("foo0 =", foo0()); // 123
+ fmt.println("foo1 =", foo1()); // 123
+ fmt.println("foo2 =", foo2()); // 567 321
+}
+
+
+enum_export :: proc() {
+ fmt.println("# enum #export");
+
+ Foo :: enum #export {A, B, C};
+
+ f0 := A;
+ f1 := B;
+ f2 := C;
+ fmt.println(f0, f1, f2);
+}
+
+explicit_procedure_overloading :: proc() {
+ fmt.println("# explicit procedure overloading");
+
+ add_ints :: proc(a, b: int) -> int {
+ x := a + b;
+ fmt.println("add_ints", x);
+ return x;
+ }
+ add_floats :: proc(a, b: f32) -> f32 {
+ x := a + b;
+ fmt.println("add_floats", x);
+ return x;
+ }
+ add_numbers :: proc(a: int, b: f32, c: u8) -> int {
+ x := int(a) + int(b) + int(c);
+ fmt.println("add_numbers", x);
+ return x;
+ }
+
+ add :: proc[add_ints, add_floats, add_numbers];
+
+ add(int(1), int(2));
+ add(f32(1), f32(2));
+ add(int(1), f32(2), u8(3));
+
+ add(1, 2); // untyped ints coerce to int tighter than f32
+ add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
+ add(1, 2, 3); // three parameters
+
+ // Ambiguous answers
+ // add(1.0, 2);
+ // add(1, 2.0);
+}
+
+complete_switch :: proc() {
+ fmt.println("# complete_switch");
+ { // enum
+ Foo :: enum #export {
+ A,
+ B,
+ C,
+ D,
+ }
+
+ b := Foo.B;
+ f := Foo.A;
+ #complete switch f {
+ case A: fmt.println("A");
+ case B: fmt.println("B");
+ case C: fmt.println("C");
+ case D: fmt.println("D");
+ case: fmt.println("?");
+ }
+ }
+ { // union
+ Foo :: union {int, bool};
+ f: Foo = 123;
+ #complete switch in f {
+ case int: fmt.println("int");
+ case bool: fmt.println("bool");
+ case:
+ }
+ }
+}
+
+
+cstring_example :: proc() {
+ W :: "Hellope";
+ X :: cstring(W);
+ Y :: string(X);
+
+ w := W;
+ x: cstring = X;
+ y: string = Y;
+ z := string(x);
+ fmt.println(x, y, z);
+ fmt.println(len(x), len(y), len(z));
+ fmt.println(len(W), len(X), len(Y));
+ // IMPORTANT NOTE for cstring variables
+ // len(cstring) is O(N)
+ // cast(cstring)string is O(N)
+}
+
+deprecated_attribute :: proc() {
+ @(deprecated="Use foo_v2 instead")
+ foo_v1 :: proc(x: int) {
+ fmt.println("foo_v1");
+ }
+ foo_v2 :: proc(x: int) {
+ fmt.println("foo_v2");
+ }
+
+ // NOTE: Uncomment to see the warning messages
+ // foo_v1(1);
+}
+
+
+main :: proc() {
+ fmt.println("HERE\n");
+ when true {
+ general_stuff();
+ union_type();
+ parametric_polymorphism();
+ threading_example();
+ array_programming();
+ using_in();
+ named_proc_return_parameters();
+ enum_export();
+ explicit_procedure_overloading();
+ complete_switch();
+ cstring_example();
+ deprecated_attribute();
+ }
+}