aboutsummaryrefslogtreecommitdiff
path: root/base/runtime/core_builtin.odin
diff options
context:
space:
mode:
Diffstat (limited to 'base/runtime/core_builtin.odin')
-rw-r--r--base/runtime/core_builtin.odin915
1 files changed, 915 insertions, 0 deletions
diff --git a/base/runtime/core_builtin.odin b/base/runtime/core_builtin.odin
new file mode 100644
index 000000000..3f4ebbc74
--- /dev/null
+++ b/base/runtime/core_builtin.odin
@@ -0,0 +1,915 @@
+package runtime
+
+import "core:intrinsics"
+
+@builtin
+Maybe :: union($T: typeid) {T}
+
+
+@(builtin, require_results)
+container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T
+ where intrinsics.type_has_field(T, field_name),
+ intrinsics.type_field_type(T, field_name) == Field_Type {
+ offset :: offset_of_by_string(T, field_name)
+ return (^T)(uintptr(ptr) - offset) if ptr != nil else nil
+}
+
+
+when !NO_DEFAULT_TEMP_ALLOCATOR {
+ @thread_local global_default_temp_allocator_data: Default_Temp_Allocator
+}
+
+@(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR)
+init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) {
+ when !NO_DEFAULT_TEMP_ALLOCATOR {
+ default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator)
+ }
+}
+
+
+// `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`.
+// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
+// of len(src) and len(dst).
+//
+// Prefer the procedure group `copy`.
+@builtin
+copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int {
+ n := max(0, min(len(dst), len(src)))
+ if n > 0 {
+ intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E))
+ }
+ return n
+}
+// `copy_from_string` is a built-in procedure that copies elements from a source slice `src` to a destination string `dst`.
+// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
+// of len(src) and len(dst).
+//
+// Prefer the procedure group `copy`.
+@builtin
+copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int {
+ n := max(0, min(len(dst), len(src)))
+ if n > 0 {
+ intrinsics.mem_copy(raw_data(dst), raw_data(src), n)
+ }
+ return n
+}
+// `copy` is a built-in procedure that copies elements from a source slice `src` to a destination slice/string `dst`.
+// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum
+// of len(src) and len(dst).
+@builtin
+copy :: proc{copy_slice, copy_from_string}
+
+
+
+// `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value
+// with the old value, and reducing the length of the dynamic array by 1.
+//
+// Note: This is an O(1) operation.
+// Note: If you the elements to remain in their order, use `ordered_remove`.
+// Note: If the index is out of bounds, this procedure will panic.
+@builtin
+unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
+ bounds_check_error_loc(loc, index, len(array))
+ n := len(array)-1
+ if index != n {
+ array[index] = array[n]
+ }
+ (^Raw_Dynamic_Array)(array).len -= 1
+}
+// `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements.
+//
+// Note: This is an O(N) operation.
+// Note: If you the elements do not have to remain in their order, prefer `unordered_remove`.
+// Note: If the index is out of bounds, this procedure will panic.
+@builtin
+ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check {
+ bounds_check_error_loc(loc, index, len(array))
+ if index+1 < len(array) {
+ copy(array[index:], array[index+1:])
+ }
+ (^Raw_Dynamic_Array)(array).len -= 1
+}
+
+// `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements.
+//
+// Note: This is an O(N) operation.
+// Note: If the range is out of bounds, this procedure will panic.
+@builtin
+remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check {
+ slice_expr_error_lo_hi_loc(loc, lo, hi, len(array))
+ n := max(hi-lo, 0)
+ if n > 0 {
+ if hi != len(array) {
+ copy(array[lo:], array[hi:])
+ }
+ (^Raw_Dynamic_Array)(array).len -= n
+ }
+}
+
+
+// `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
+//
+// Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic.
+@builtin
+pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
+ assert(len(array) > 0, loc=loc)
+ res = array[len(array)-1]
+ (^Raw_Dynamic_Array)(array).len -= 1
+ return res
+}
+
+
+// `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1.
+// If the operation is not possible, it will return false.
+@builtin
+pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
+ if len(array) == 0 {
+ return
+ }
+ res, ok = array[len(array)-1], true
+ (^Raw_Dynamic_Array)(array).len -= 1
+ return
+}
+
+// `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1.
+//
+// Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic.
+@builtin
+pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check {
+ assert(len(array) > 0, loc=loc)
+ res = array[0]
+ if len(array) > 1 {
+ copy(array[0:], array[1:])
+ }
+ (^Raw_Dynamic_Array)(array).len -= 1
+ return res
+}
+
+// `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1.
+// If the operation is not possible, it will return false.
+@builtin
+pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check {
+ if len(array) == 0 {
+ return
+ }
+ res, ok = array[0], true
+ if len(array) > 1 {
+ copy(array[0:], array[1:])
+ }
+ (^Raw_Dynamic_Array)(array).len -= 1
+ return
+}
+
+
+// `clear` will set the length of a passed dynamic array or map to `0`
+@builtin
+clear :: proc{clear_dynamic_array, clear_map}
+
+// `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
+@builtin
+reserve :: proc{reserve_dynamic_array, reserve_map}
+
+@builtin
+non_zero_reserve :: proc{non_zero_reserve_dynamic_array}
+
+// `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`).
+@builtin
+resize :: proc{resize_dynamic_array}
+
+@builtin
+non_zero_resize :: proc{non_zero_resize_dynamic_array}
+
+// Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity.
+@builtin
+shrink :: proc{shrink_dynamic_array, shrink_map}
+
+// `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation.
+@builtin
+free :: proc{mem_free}
+
+// `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation.
+@builtin
+free_all :: proc{mem_free_all}
+
+
+
+// `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer the procedure group `delete`.
+@builtin
+delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ return mem_free_with_size(raw_data(str), len(str), allocator, loc)
+}
+// `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer the procedure group `delete`.
+@builtin
+delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ return mem_free((^byte)(str), allocator, loc)
+}
+// `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer the procedure group `delete`.
+@builtin
+delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error {
+ return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc)
+}
+// `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer the procedure group `delete`.
+@builtin
+delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc)
+}
+// `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer the procedure group `delete`.
+@builtin
+delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error {
+ return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc)
+}
+
+
+// `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation.
+//
+// Note: Prefer `delete` over the specific `delete_*` procedures where possible.
+@builtin
+delete :: proc{
+ delete_string,
+ delete_cstring,
+ delete_dynamic_array,
+ delete_slice,
+ delete_map,
+ delete_soa_slice,
+ delete_soa_dynamic_array,
+}
+
+
+// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value
+// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator
+@(builtin, require_results)
+new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error {
+ return new_aligned(T, align_of(T), allocator, loc)
+}
+@(require_results)
+new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) {
+ data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return
+ t = (^T)(raw_data(data))
+ return
+}
+
+@(builtin, require_results)
+new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error {
+ t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return
+ t = (^T)(raw_data(t_data))
+ if t != nil {
+ t^ = data
+ }
+ return
+}
+
+DEFAULT_RESERVE_CAPACITY :: 16
+
+@(require_results)
+make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
+ make_slice_error_loc(loc, len)
+ data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc)
+ if data == nil && size_of(E) != 0 {
+ return nil, err
+ }
+ s := Raw_Slice{raw_data(data), len}
+ return transmute(T)s, err
+}
+
+// `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
+ return make_aligned(T, len, align_of(E), allocator, loc)
+}
+// `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
+ return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc)
+}
+// `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error {
+ return make_dynamic_array_len_cap(T, len, len, allocator, loc)
+}
+// `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error {
+ make_dynamic_array_error_loc(loc, len, cap)
+ data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return
+ s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator}
+ if data == nil && size_of(E) != 0 {
+ s.len, s.cap = 0, 0
+ }
+ array = transmute(T)s
+ return
+}
+// `make_map` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error {
+ make_map_expr_error_loc(loc, capacity)
+ context.allocator = allocator
+
+ err = reserve_map(&m, capacity, loc)
+ return
+}
+// `make_multi_pointer` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value.
+// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it.
+//
+// This is "similar" to doing `raw_data(make([]E, len, allocator))`.
+//
+// Note: Prefer using the procedure group `make`.
+@(builtin, require_results)
+make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error {
+ make_slice_error_loc(loc, len)
+ data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return
+ if data == nil && size_of(E) != 0 {
+ return
+ }
+ mp = cast(T)raw_data(data)
+ return
+}
+
+
+// `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only).
+//
+// Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the
+// type of its argument, not a pointer to it.
+// Make uses the specified allocator, default is context.allocator.
+@builtin
+make :: proc{
+ make_slice,
+ make_dynamic_array,
+ make_dynamic_array_len,
+ make_dynamic_array_len_cap,
+ make_map,
+ make_multi_pointer,
+}
+
+
+
+// `clear_map` will set the length of a passed map to `0`
+//
+// Note: Prefer the procedure group `clear`
+@builtin
+clear_map :: proc "contextless" (m: ^$T/map[$K]$V) {
+ if m == nil {
+ return
+ }
+ map_clear_dynamic((^Raw_Map)(m), map_info(T))
+}
+
+// `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`).
+//
+// Note: Prefer the procedure group `reserve`
+@builtin
+reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) -> Allocator_Error {
+ return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil
+}
+
+// Shrinks the capacity of a map down to the current length.
+//
+// Note: Prefer the procedure group `shrink`
+@builtin
+shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
+ if m != nil {
+ return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc)
+ }
+ return
+}
+
+// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map.
+// If m is nil, or there is no such element, this procedure is a no-op
+@builtin
+delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) {
+ if m != nil {
+ key := key
+ old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key))
+ if ok {
+ deleted_key = (^K)(old_k)^
+ deleted_value = (^V)(old_v)^
+ }
+ }
+ return
+}
+
+_append_elem :: #force_inline proc(array: ^$T/[dynamic]$E, arg: E, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ if array == nil {
+ return 0, nil
+ }
+ when size_of(E) == 0 {
+ array := (^Raw_Dynamic_Array)(array)
+ array.len += 1
+ return 1, nil
+ } else {
+ if cap(array) < len(array)+1 {
+ cap := 2 * cap(array) + max(8, 1)
+
+ // do not 'or_return' here as it could be a partial success
+ if should_zero {
+ err = reserve(array, cap, loc)
+ } else {
+ err = non_zero_reserve(array, cap, loc)
+ }
+ }
+ if cap(array)-len(array) > 0 {
+ a := (^Raw_Dynamic_Array)(array)
+ when size_of(E) != 0 {
+ data := ([^]E)(a.data)
+ assert(data != nil, loc=loc)
+ data[a.len] = arg
+ }
+ a.len += 1
+ return 1, err
+ }
+ return 0, err
+ }
+}
+
+@builtin
+append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elem(array, arg, true, loc=loc)
+}
+
+@builtin
+non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elem(array, arg, false, loc=loc)
+}
+
+_append_elems :: #force_inline proc(array: ^$T/[dynamic]$E, should_zero: bool, loc := #caller_location, args: ..E) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ if array == nil {
+ return 0, nil
+ }
+
+ arg_len := len(args)
+ if arg_len <= 0 {
+ return 0, nil
+ }
+
+ when size_of(E) == 0 {
+ array := (^Raw_Dynamic_Array)(array)
+ array.len += arg_len
+ return arg_len, nil
+ } else {
+ if cap(array) < len(array)+arg_len {
+ cap := 2 * cap(array) + max(8, arg_len)
+
+ // do not 'or_return' here as it could be a partial success
+ if should_zero {
+ err = reserve(array, cap, loc)
+ } else {
+ err = non_zero_reserve(array, cap, loc)
+ }
+ }
+ arg_len = min(cap(array)-len(array), arg_len)
+ if arg_len > 0 {
+ a := (^Raw_Dynamic_Array)(array)
+ when size_of(E) != 0 {
+ data := ([^]E)(a.data)
+ assert(data != nil, loc=loc)
+ intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len)
+ }
+ a.len += arg_len
+ }
+ return arg_len, err
+ }
+}
+
+@builtin
+append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elems(array, true, loc, ..args)
+}
+
+@builtin
+non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elems(array, false, loc, ..args)
+}
+
+// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type
+_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ args := transmute([]E)arg
+ if should_zero {
+ return append_elems(array, ..args, loc=loc)
+ } else {
+ return non_zero_append_elems(array, ..args, loc=loc)
+ }
+}
+
+@builtin
+append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elem_string(array, arg, true, loc)
+}
+@builtin
+non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ return _append_elem_string(array, arg, false, loc)
+}
+
+
+// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type
+@builtin
+append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ n_arg: int
+ for arg in args {
+ n_arg, err = append(array, ..transmute([]E)(arg), loc=loc)
+ n += n_arg
+ if err != nil {
+ return
+ }
+ }
+ return
+}
+
+// The append built-in procedure appends elements to the end of a dynamic array
+@builtin append :: proc{append_elem, append_elems, append_elem_string}
+@builtin non_zero_append :: proc{non_zero_append_elem, non_zero_append_elems, non_zero_append_elem_string}
+
+
+@builtin
+append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error {
+ if array == nil {
+ return 0, nil
+ }
+ prev_len := len(array)
+ resize(array, len(array)+1, loc) or_return
+ return len(array)-prev_len, nil
+}
+
+
+@builtin
+inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ if array == nil {
+ return
+ }
+ n := max(len(array), index)
+ m :: 1
+ new_size := n + m
+
+ resize(array, new_size, loc) or_return
+ when size_of(E) != 0 {
+ copy(array[index + m:], array[index:])
+ array[index] = arg
+ }
+ ok = true
+ return
+}
+
+@builtin
+inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ if array == nil {
+ return
+ }
+ if len(args) == 0 {
+ ok = true
+ return
+ }
+
+ n := max(len(array), index)
+ m := len(args)
+ new_size := n + m
+
+ resize(array, new_size, loc) or_return
+ when size_of(E) != 0 {
+ copy(array[index + m:], array[index:])
+ copy(array[index:], args)
+ }
+ ok = true
+ return
+}
+
+@builtin
+inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ if array == nil {
+ return
+ }
+ if len(arg) == 0 {
+ ok = true
+ return
+ }
+
+ n := max(len(array), index)
+ m := len(arg)
+ new_size := n + m
+
+ resize(array, new_size, loc) or_return
+ copy(array[index+m:], array[index:])
+ copy(array[index:], arg)
+ ok = true
+ return
+}
+
+@builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string}
+
+
+
+@builtin
+assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ if index < len(array) {
+ array[index] = arg
+ ok = true
+ } else {
+ resize(array, index+1, loc) or_return
+ array[index] = arg
+ ok = true
+ }
+ return
+}
+
+
+@builtin
+assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ new_size := index + len(args)
+ if len(args) == 0 {
+ ok = true
+ } else if new_size < len(array) {
+ copy(array[index:], args)
+ ok = true
+ } else {
+ resize(array, new_size, loc) or_return
+ copy(array[index:], args)
+ ok = true
+ }
+ return
+}
+
+
+@builtin
+assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error {
+ new_size := index + len(arg)
+ if len(arg) == 0 {
+ ok = true
+ } else if new_size < len(array) {
+ copy(array[index:], arg)
+ ok = true
+ } else {
+ resize(array, new_size, loc) or_return
+ copy(array[index:], arg)
+ ok = true
+ }
+ return
+}
+
+@builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string}
+
+
+
+
+// `clear_dynamic_array` will set the length of a passed dynamic array to `0`
+//
+// Note: Prefer the procedure group `clear`.
+@builtin
+clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) {
+ if array != nil {
+ (^Raw_Dynamic_Array)(array).len = 0
+ }
+}
+
+// `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`).
+//
+// Note: Prefer the procedure group `reserve`.
+_reserve_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
+ if array == nil {
+ return nil
+ }
+ a := (^Raw_Dynamic_Array)(array)
+
+ if capacity <= a.cap {
+ return nil
+ }
+
+ if a.allocator.procedure == nil {
+ a.allocator = context.allocator
+ }
+ assert(a.allocator.procedure != nil)
+
+ old_size := a.cap * size_of(E)
+ new_size := capacity * size_of(E)
+ allocator := a.allocator
+
+ new_data: []byte
+ if should_zero {
+ new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
+ } else {
+ new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
+ }
+ if new_data == nil && new_size > 0 {
+ return .Out_Of_Memory
+ }
+
+ a.data = raw_data(new_data)
+ a.cap = capacity
+ return nil
+}
+
+@builtin
+reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
+ return _reserve_dynamic_array(array, capacity, true, loc)
+}
+
+@builtin
+non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error {
+ return _reserve_dynamic_array(array, capacity, false, loc)
+}
+
+// `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`).
+//
+// Note: Prefer the procedure group `resize`
+_resize_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error {
+ if array == nil {
+ return nil
+ }
+ a := (^Raw_Dynamic_Array)(array)
+
+ if length <= a.cap {
+ a.len = max(length, 0)
+ return nil
+ }
+
+ if a.allocator.procedure == nil {
+ a.allocator = context.allocator
+ }
+ assert(a.allocator.procedure != nil)
+
+ old_size := a.cap * size_of(E)
+ new_size := length * size_of(E)
+ allocator := a.allocator
+
+ new_data : []byte
+ if should_zero {
+ new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
+ } else {
+ new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return
+ }
+ if new_data == nil && new_size > 0 {
+ return .Out_Of_Memory
+ }
+
+ a.data = raw_data(new_data)
+ a.len = length
+ a.cap = length
+ return nil
+}
+
+@builtin
+resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
+ return _resize_dynamic_array(array, length, true, loc=loc)
+}
+
+@builtin
+non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error {
+ return _resize_dynamic_array(array, length, false, loc=loc)
+}
+
+/*
+ Shrinks the capacity of a dynamic array down to the current length, or the given capacity.
+
+ If `new_cap` is negative, then `len(array)` is used.
+
+ Returns false if `cap(array) < new_cap`, or the allocator report failure.
+
+ If `len(array) < new_cap`, then `len(array)` will be left unchanged.
+
+ Note: Prefer the procedure group `shrink`
+*/
+shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
+ if array == nil {
+ return
+ }
+ a := (^Raw_Dynamic_Array)(array)
+
+ new_cap := new_cap if new_cap >= 0 else a.len
+
+ if new_cap > a.cap {
+ return
+ }
+
+ if a.allocator.procedure == nil {
+ a.allocator = context.allocator
+ }
+ assert(a.allocator.procedure != nil)
+
+ old_size := a.cap * size_of(E)
+ new_size := new_cap * size_of(E)
+
+ new_data := mem_resize(a.data, old_size, new_size, align_of(E), a.allocator, loc) or_return
+
+ a.data = raw_data(new_data)
+ a.len = min(new_cap, a.len)
+ a.cap = new_cap
+ return true, nil
+}
+
+@builtin
+map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) {
+ key, value := key, value
+ return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc))
+}
+
+
+@builtin
+incl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) {
+ s^ |= {elem}
+}
+@builtin
+incl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) {
+ for elem in elems {
+ s^ |= {elem}
+ }
+}
+@builtin
+incl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) {
+ s^ |= other
+}
+@builtin
+excl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) {
+ s^ &~= {elem}
+}
+@builtin
+excl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) {
+ for elem in elems {
+ s^ &~= {elem}
+ }
+}
+@builtin
+excl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) {
+ s^ &~= other
+}
+
+@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set}
+@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set}
+
+
+@builtin
+card :: proc(s: $S/bit_set[$E; $U]) -> int {
+ when size_of(S) == 1 {
+ return int(intrinsics.count_ones(transmute(u8)s))
+ } else when size_of(S) == 2 {
+ return int(intrinsics.count_ones(transmute(u16)s))
+ } else when size_of(S) == 4 {
+ return int(intrinsics.count_ones(transmute(u32)s))
+ } else when size_of(S) == 8 {
+ return int(intrinsics.count_ones(transmute(u64)s))
+ } else when size_of(S) == 16 {
+ return int(intrinsics.count_ones(transmute(u128)s))
+ } else {
+ #panic("Unhandled card bit_set size")
+ }
+}
+
+
+
+@builtin
+@(disabled=ODIN_DISABLE_ASSERT)
+assert :: proc(condition: bool, message := "", loc := #caller_location) {
+ if !condition {
+ // NOTE(bill): This is wrapped in a procedure call
+ // to improve performance to make the CPU not
+ // execute speculatively, making it about an order of
+ // magnitude faster
+ @(cold)
+ internal :: proc(message: string, loc: Source_Code_Location) {
+ p := context.assertion_failure_proc
+ if p == nil {
+ p = default_assertion_failure_proc
+ }
+ p("runtime assertion", message, loc)
+ }
+ internal(message, loc)
+ }
+}
+
+@builtin
+panic :: proc(message: string, loc := #caller_location) -> ! {
+ p := context.assertion_failure_proc
+ if p == nil {
+ p = default_assertion_failure_proc
+ }
+ p("panic", message, loc)
+}
+
+@builtin
+unimplemented :: proc(message := "", loc := #caller_location) -> ! {
+ p := context.assertion_failure_proc
+ if p == nil {
+ p = default_assertion_failure_proc
+ }
+ p("not yet implemented", message, loc)
+}