diff options
Diffstat (limited to 'base/runtime/core_builtin.odin')
| -rw-r--r-- | base/runtime/core_builtin.odin | 915 |
1 files changed, 915 insertions, 0 deletions
diff --git a/base/runtime/core_builtin.odin b/base/runtime/core_builtin.odin new file mode 100644 index 000000000..3f4ebbc74 --- /dev/null +++ b/base/runtime/core_builtin.odin @@ -0,0 +1,915 @@ +package runtime + +import "core:intrinsics" + +@builtin +Maybe :: union($T: typeid) {T} + + +@(builtin, require_results) +container_of :: #force_inline proc "contextless" (ptr: $P/^$Field_Type, $T: typeid, $field_name: string) -> ^T + where intrinsics.type_has_field(T, field_name), + intrinsics.type_field_type(T, field_name) == Field_Type { + offset :: offset_of_by_string(T, field_name) + return (^T)(uintptr(ptr) - offset) if ptr != nil else nil +} + + +when !NO_DEFAULT_TEMP_ALLOCATOR { + @thread_local global_default_temp_allocator_data: Default_Temp_Allocator +} + +@(builtin, disabled=NO_DEFAULT_TEMP_ALLOCATOR) +init_global_temporary_allocator :: proc(size: int, backup_allocator := context.allocator) { + when !NO_DEFAULT_TEMP_ALLOCATOR { + default_temp_allocator_init(&global_default_temp_allocator_data, size, backup_allocator) + } +} + + +// `copy_slice` is a built-in procedure that copies elements from a source slice `src` to a destination slice `dst`. +// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum +// of len(src) and len(dst). +// +// Prefer the procedure group `copy`. +@builtin +copy_slice :: proc "contextless" (dst, src: $T/[]$E) -> int { + n := max(0, min(len(dst), len(src))) + if n > 0 { + intrinsics.mem_copy(raw_data(dst), raw_data(src), n*size_of(E)) + } + return n +} +// `copy_from_string` is a built-in procedure that copies elements from a source slice `src` to a destination string `dst`. +// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum +// of len(src) and len(dst). +// +// Prefer the procedure group `copy`. +@builtin +copy_from_string :: proc "contextless" (dst: $T/[]$E/u8, src: $S/string) -> int { + n := max(0, min(len(dst), len(src))) + if n > 0 { + intrinsics.mem_copy(raw_data(dst), raw_data(src), n) + } + return n +} +// `copy` is a built-in procedure that copies elements from a source slice `src` to a destination slice/string `dst`. +// The source and destination may overlap. Copy returns the number of elements copied, which will be the minimum +// of len(src) and len(dst). +@builtin +copy :: proc{copy_slice, copy_from_string} + + + +// `unordered_remove` removed the element at the specified `index`. It does so by replacing the current end value +// with the old value, and reducing the length of the dynamic array by 1. +// +// Note: This is an O(1) operation. +// Note: If you the elements to remain in their order, use `ordered_remove`. +// Note: If the index is out of bounds, this procedure will panic. +@builtin +unordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { + bounds_check_error_loc(loc, index, len(array)) + n := len(array)-1 + if index != n { + array[index] = array[n] + } + (^Raw_Dynamic_Array)(array).len -= 1 +} +// `ordered_remove` removed the element at the specified `index` whilst keeping the order of the other elements. +// +// Note: This is an O(N) operation. +// Note: If you the elements do not have to remain in their order, prefer `unordered_remove`. +// Note: If the index is out of bounds, this procedure will panic. +@builtin +ordered_remove :: proc(array: ^$D/[dynamic]$T, index: int, loc := #caller_location) #no_bounds_check { + bounds_check_error_loc(loc, index, len(array)) + if index+1 < len(array) { + copy(array[index:], array[index+1:]) + } + (^Raw_Dynamic_Array)(array).len -= 1 +} + +// `remove_range` removes a range of elements specified by the range `lo` and `hi`, whilst keeping the order of the other elements. +// +// Note: This is an O(N) operation. +// Note: If the range is out of bounds, this procedure will panic. +@builtin +remove_range :: proc(array: ^$D/[dynamic]$T, lo, hi: int, loc := #caller_location) #no_bounds_check { + slice_expr_error_lo_hi_loc(loc, lo, hi, len(array)) + n := max(hi-lo, 0) + if n > 0 { + if hi != len(array) { + copy(array[lo:], array[hi:]) + } + (^Raw_Dynamic_Array)(array).len -= n + } +} + + +// `pop` will remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. +// +// Note: If the dynamic array has no elements (`len(array) == 0`), this procedure will panic. +@builtin +pop :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { + assert(len(array) > 0, loc=loc) + res = array[len(array)-1] + (^Raw_Dynamic_Array)(array).len -= 1 + return res +} + + +// `pop_safe` trys to remove and return the end value of dynamic array `array` and reduces the length of `array` by 1. +// If the operation is not possible, it will return false. +@builtin +pop_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { + if len(array) == 0 { + return + } + res, ok = array[len(array)-1], true + (^Raw_Dynamic_Array)(array).len -= 1 + return +} + +// `pop_front` will remove and return the first value of dynamic array `array` and reduces the length of `array` by 1. +// +// Note: If the dynamic array as no elements (`len(array) == 0`), this procedure will panic. +@builtin +pop_front :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (res: E) #no_bounds_check { + assert(len(array) > 0, loc=loc) + res = array[0] + if len(array) > 1 { + copy(array[0:], array[1:]) + } + (^Raw_Dynamic_Array)(array).len -= 1 + return res +} + +// `pop_front_safe` trys to return and remove the first value of dynamic array `array` and reduces the length of `array` by 1. +// If the operation is not possible, it will return false. +@builtin +pop_front_safe :: proc(array: ^$T/[dynamic]$E) -> (res: E, ok: bool) #no_bounds_check { + if len(array) == 0 { + return + } + res, ok = array[0], true + if len(array) > 1 { + copy(array[0:], array[1:]) + } + (^Raw_Dynamic_Array)(array).len -= 1 + return +} + + +// `clear` will set the length of a passed dynamic array or map to `0` +@builtin +clear :: proc{clear_dynamic_array, clear_map} + +// `reserve` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). +@builtin +reserve :: proc{reserve_dynamic_array, reserve_map} + +@builtin +non_zero_reserve :: proc{non_zero_reserve_dynamic_array} + +// `resize` will try to resize memory of a passed dynamic array to the requested element count (setting the `len`, and possibly `cap`). +@builtin +resize :: proc{resize_dynamic_array} + +@builtin +non_zero_resize :: proc{non_zero_resize_dynamic_array} + +// Shrinks the capacity of a dynamic array or map down to the current length, or the given capacity. +@builtin +shrink :: proc{shrink_dynamic_array, shrink_map} + +// `free` will try to free the passed pointer, with the given `allocator` if the allocator supports this operation. +@builtin +free :: proc{mem_free} + +// `free_all` will try to free/reset all of the memory of the given `allocator` if the allocator supports this operation. +@builtin +free_all :: proc{mem_free_all} + + + +// `delete_string` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer the procedure group `delete`. +@builtin +delete_string :: proc(str: string, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + return mem_free_with_size(raw_data(str), len(str), allocator, loc) +} +// `delete_cstring` will try to free the underlying data of the passed string, with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer the procedure group `delete`. +@builtin +delete_cstring :: proc(str: cstring, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + return mem_free((^byte)(str), allocator, loc) +} +// `delete_dynamic_array` will try to free the underlying data of the passed dynamic array, with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer the procedure group `delete`. +@builtin +delete_dynamic_array :: proc(array: $T/[dynamic]$E, loc := #caller_location) -> Allocator_Error { + return mem_free_with_size(raw_data(array), cap(array)*size_of(E), array.allocator, loc) +} +// `delete_slice` will try to free the underlying data of the passed sliced, with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer the procedure group `delete`. +@builtin +delete_slice :: proc(array: $T/[]$E, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + return mem_free_with_size(raw_data(array), len(array)*size_of(E), allocator, loc) +} +// `delete_map` will try to free the underlying data of the passed map, with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer the procedure group `delete`. +@builtin +delete_map :: proc(m: $T/map[$K]$V, loc := #caller_location) -> Allocator_Error { + return map_free_dynamic(transmute(Raw_Map)m, map_info(T), loc) +} + + +// `delete` will try to free the underlying data of the passed built-in data structure (string, cstring, dynamic array, slice, or map), with the given `allocator` if the allocator supports this operation. +// +// Note: Prefer `delete` over the specific `delete_*` procedures where possible. +@builtin +delete :: proc{ + delete_string, + delete_cstring, + delete_dynamic_array, + delete_slice, + delete_map, + delete_soa_slice, + delete_soa_dynamic_array, +} + + +// The new built-in procedure allocates memory. The first argument is a type, not a value, and the value +// return is a pointer to a newly allocated value of that type using the specified allocator, default is context.allocator +@(builtin, require_results) +new :: proc($T: typeid, allocator := context.allocator, loc := #caller_location) -> (^T, Allocator_Error) #optional_allocator_error { + return new_aligned(T, align_of(T), allocator, loc) +} +@(require_results) +new_aligned :: proc($T: typeid, alignment: int, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) { + data := mem_alloc_bytes(size_of(T), alignment, allocator, loc) or_return + t = (^T)(raw_data(data)) + return +} + +@(builtin, require_results) +new_clone :: proc(data: $T, allocator := context.allocator, loc := #caller_location) -> (t: ^T, err: Allocator_Error) #optional_allocator_error { + t_data := mem_alloc_bytes(size_of(T), align_of(T), allocator, loc) or_return + t = (^T)(raw_data(t_data)) + if t != nil { + t^ = data + } + return +} + +DEFAULT_RESERVE_CAPACITY :: 16 + +@(require_results) +make_aligned :: proc($T: typeid/[]$E, #any_int len: int, alignment: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { + make_slice_error_loc(loc, len) + data, err := mem_alloc_bytes(size_of(E)*len, alignment, allocator, loc) + if data == nil && size_of(E) != 0 { + return nil, err + } + s := Raw_Slice{raw_data(data), len} + return transmute(T)s, err +} + +// `make_slice` allocates and initializes a slice. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_slice :: proc($T: typeid/[]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { + return make_aligned(T, len, align_of(E), allocator, loc) +} +// `make_dynamic_array` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_dynamic_array :: proc($T: typeid/[dynamic]$E, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { + return make_dynamic_array_len_cap(T, 0, DEFAULT_RESERVE_CAPACITY, allocator, loc) +} +// `make_dynamic_array_len` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_dynamic_array_len :: proc($T: typeid/[dynamic]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (T, Allocator_Error) #optional_allocator_error { + return make_dynamic_array_len_cap(T, len, len, allocator, loc) +} +// `make_dynamic_array_len_cap` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_dynamic_array_len_cap :: proc($T: typeid/[dynamic]$E, #any_int len: int, #any_int cap: int, allocator := context.allocator, loc := #caller_location) -> (array: T, err: Allocator_Error) #optional_allocator_error { + make_dynamic_array_error_loc(loc, len, cap) + data := mem_alloc_bytes(size_of(E)*cap, align_of(E), allocator, loc) or_return + s := Raw_Dynamic_Array{raw_data(data), len, cap, allocator} + if data == nil && size_of(E) != 0 { + s.len, s.cap = 0, 0 + } + array = transmute(T)s + return +} +// `make_map` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_map :: proc($T: typeid/map[$K]$E, #any_int capacity: int = 1<<MAP_MIN_LOG2_CAPACITY, allocator := context.allocator, loc := #caller_location) -> (m: T, err: Allocator_Error) #optional_allocator_error { + make_map_expr_error_loc(loc, capacity) + context.allocator = allocator + + err = reserve_map(&m, capacity, loc) + return +} +// `make_multi_pointer` allocates and initializes a dynamic array. Like `new`, the first argument is a type, not a value. +// Unlike `new`, `make`'s return value is the same as the type of its argument, not a pointer to it. +// +// This is "similar" to doing `raw_data(make([]E, len, allocator))`. +// +// Note: Prefer using the procedure group `make`. +@(builtin, require_results) +make_multi_pointer :: proc($T: typeid/[^]$E, #any_int len: int, allocator := context.allocator, loc := #caller_location) -> (mp: T, err: Allocator_Error) #optional_allocator_error { + make_slice_error_loc(loc, len) + data := mem_alloc_bytes(size_of(E)*len, align_of(E), allocator, loc) or_return + if data == nil && size_of(E) != 0 { + return + } + mp = cast(T)raw_data(data) + return +} + + +// `make` built-in procedure allocates and initializes a value of type slice, dynamic array, map, or multi-pointer (only). +// +// Similar to `new`, the first argument is a type, not a value. Unlike new, make's return type is the same as the +// type of its argument, not a pointer to it. +// Make uses the specified allocator, default is context.allocator. +@builtin +make :: proc{ + make_slice, + make_dynamic_array, + make_dynamic_array_len, + make_dynamic_array_len_cap, + make_map, + make_multi_pointer, +} + + + +// `clear_map` will set the length of a passed map to `0` +// +// Note: Prefer the procedure group `clear` +@builtin +clear_map :: proc "contextless" (m: ^$T/map[$K]$V) { + if m == nil { + return + } + map_clear_dynamic((^Raw_Map)(m), map_info(T)) +} + +// `reserve_map` will try to reserve memory of a passed map to the requested element count (setting the `cap`). +// +// Note: Prefer the procedure group `reserve` +@builtin +reserve_map :: proc(m: ^$T/map[$K]$V, capacity: int, loc := #caller_location) -> Allocator_Error { + return __dynamic_map_reserve((^Raw_Map)(m), map_info(T), uint(capacity), loc) if m != nil else nil +} + +// Shrinks the capacity of a map down to the current length. +// +// Note: Prefer the procedure group `shrink` +@builtin +shrink_map :: proc(m: ^$T/map[$K]$V, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { + if m != nil { + return map_shrink_dynamic((^Raw_Map)(m), map_info(T), loc) + } + return +} + +// The delete_key built-in procedure deletes the element with the specified key (m[key]) from the map. +// If m is nil, or there is no such element, this procedure is a no-op +@builtin +delete_key :: proc(m: ^$T/map[$K]$V, key: K) -> (deleted_key: K, deleted_value: V) { + if m != nil { + key := key + old_k, old_v, ok := map_erase_dynamic((^Raw_Map)(m), map_info(T), uintptr(&key)) + if ok { + deleted_key = (^K)(old_k)^ + deleted_value = (^V)(old_v)^ + } + } + return +} + +_append_elem :: #force_inline proc(array: ^$T/[dynamic]$E, arg: E, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + if array == nil { + return 0, nil + } + when size_of(E) == 0 { + array := (^Raw_Dynamic_Array)(array) + array.len += 1 + return 1, nil + } else { + if cap(array) < len(array)+1 { + cap := 2 * cap(array) + max(8, 1) + + // do not 'or_return' here as it could be a partial success + if should_zero { + err = reserve(array, cap, loc) + } else { + err = non_zero_reserve(array, cap, loc) + } + } + if cap(array)-len(array) > 0 { + a := (^Raw_Dynamic_Array)(array) + when size_of(E) != 0 { + data := ([^]E)(a.data) + assert(data != nil, loc=loc) + data[a.len] = arg + } + a.len += 1 + return 1, err + } + return 0, err + } +} + +@builtin +append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elem(array, arg, true, loc=loc) +} + +@builtin +non_zero_append_elem :: proc(array: ^$T/[dynamic]$E, arg: E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elem(array, arg, false, loc=loc) +} + +_append_elems :: #force_inline proc(array: ^$T/[dynamic]$E, should_zero: bool, loc := #caller_location, args: ..E) -> (n: int, err: Allocator_Error) #optional_allocator_error { + if array == nil { + return 0, nil + } + + arg_len := len(args) + if arg_len <= 0 { + return 0, nil + } + + when size_of(E) == 0 { + array := (^Raw_Dynamic_Array)(array) + array.len += arg_len + return arg_len, nil + } else { + if cap(array) < len(array)+arg_len { + cap := 2 * cap(array) + max(8, arg_len) + + // do not 'or_return' here as it could be a partial success + if should_zero { + err = reserve(array, cap, loc) + } else { + err = non_zero_reserve(array, cap, loc) + } + } + arg_len = min(cap(array)-len(array), arg_len) + if arg_len > 0 { + a := (^Raw_Dynamic_Array)(array) + when size_of(E) != 0 { + data := ([^]E)(a.data) + assert(data != nil, loc=loc) + intrinsics.mem_copy(&data[a.len], raw_data(args), size_of(E) * arg_len) + } + a.len += arg_len + } + return arg_len, err + } +} + +@builtin +append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elems(array, true, loc, ..args) +} + +@builtin +non_zero_append_elems :: proc(array: ^$T/[dynamic]$E, args: ..E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elems(array, false, loc, ..args) +} + +// The append_string built-in procedure appends a string to the end of a [dynamic]u8 like type +_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, should_zero: bool, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + args := transmute([]E)arg + if should_zero { + return append_elems(array, ..args, loc=loc) + } else { + return non_zero_append_elems(array, ..args, loc=loc) + } +} + +@builtin +append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elem_string(array, arg, true, loc) +} +@builtin +non_zero_append_elem_string :: proc(array: ^$T/[dynamic]$E/u8, arg: $A/string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + return _append_elem_string(array, arg, false, loc) +} + + +// The append_string built-in procedure appends multiple strings to the end of a [dynamic]u8 like type +@builtin +append_string :: proc(array: ^$T/[dynamic]$E/u8, args: ..string, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + n_arg: int + for arg in args { + n_arg, err = append(array, ..transmute([]E)(arg), loc=loc) + n += n_arg + if err != nil { + return + } + } + return +} + +// The append built-in procedure appends elements to the end of a dynamic array +@builtin append :: proc{append_elem, append_elems, append_elem_string} +@builtin non_zero_append :: proc{non_zero_append_elem, non_zero_append_elems, non_zero_append_elem_string} + + +@builtin +append_nothing :: proc(array: ^$T/[dynamic]$E, loc := #caller_location) -> (n: int, err: Allocator_Error) #optional_allocator_error { + if array == nil { + return 0, nil + } + prev_len := len(array) + resize(array, len(array)+1, loc) or_return + return len(array)-prev_len, nil +} + + +@builtin +inject_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + if array == nil { + return + } + n := max(len(array), index) + m :: 1 + new_size := n + m + + resize(array, new_size, loc) or_return + when size_of(E) != 0 { + copy(array[index + m:], array[index:]) + array[index] = arg + } + ok = true + return +} + +@builtin +inject_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + if array == nil { + return + } + if len(args) == 0 { + ok = true + return + } + + n := max(len(array), index) + m := len(args) + new_size := n + m + + resize(array, new_size, loc) or_return + when size_of(E) != 0 { + copy(array[index + m:], array[index:]) + copy(array[index:], args) + } + ok = true + return +} + +@builtin +inject_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + if array == nil { + return + } + if len(arg) == 0 { + ok = true + return + } + + n := max(len(array), index) + m := len(arg) + new_size := n + m + + resize(array, new_size, loc) or_return + copy(array[index+m:], array[index:]) + copy(array[index:], arg) + ok = true + return +} + +@builtin inject_at :: proc{inject_at_elem, inject_at_elems, inject_at_elem_string} + + + +@builtin +assign_at_elem :: proc(array: ^$T/[dynamic]$E, index: int, arg: E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + if index < len(array) { + array[index] = arg + ok = true + } else { + resize(array, index+1, loc) or_return + array[index] = arg + ok = true + } + return +} + + +@builtin +assign_at_elems :: proc(array: ^$T/[dynamic]$E, index: int, args: ..E, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + new_size := index + len(args) + if len(args) == 0 { + ok = true + } else if new_size < len(array) { + copy(array[index:], args) + ok = true + } else { + resize(array, new_size, loc) or_return + copy(array[index:], args) + ok = true + } + return +} + + +@builtin +assign_at_elem_string :: proc(array: ^$T/[dynamic]$E/u8, index: int, arg: string, loc := #caller_location) -> (ok: bool, err: Allocator_Error) #no_bounds_check #optional_allocator_error { + new_size := index + len(arg) + if len(arg) == 0 { + ok = true + } else if new_size < len(array) { + copy(array[index:], arg) + ok = true + } else { + resize(array, new_size, loc) or_return + copy(array[index:], arg) + ok = true + } + return +} + +@builtin assign_at :: proc{assign_at_elem, assign_at_elems, assign_at_elem_string} + + + + +// `clear_dynamic_array` will set the length of a passed dynamic array to `0` +// +// Note: Prefer the procedure group `clear`. +@builtin +clear_dynamic_array :: proc "contextless" (array: ^$T/[dynamic]$E) { + if array != nil { + (^Raw_Dynamic_Array)(array).len = 0 + } +} + +// `reserve_dynamic_array` will try to reserve memory of a passed dynamic array or map to the requested element count (setting the `cap`). +// +// Note: Prefer the procedure group `reserve`. +_reserve_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, capacity: int, should_zero: bool, loc := #caller_location) -> Allocator_Error { + if array == nil { + return nil + } + a := (^Raw_Dynamic_Array)(array) + + if capacity <= a.cap { + return nil + } + + if a.allocator.procedure == nil { + a.allocator = context.allocator + } + assert(a.allocator.procedure != nil) + + old_size := a.cap * size_of(E) + new_size := capacity * size_of(E) + allocator := a.allocator + + new_data: []byte + if should_zero { + new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return + } else { + new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return + } + if new_data == nil && new_size > 0 { + return .Out_Of_Memory + } + + a.data = raw_data(new_data) + a.cap = capacity + return nil +} + +@builtin +reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error { + return _reserve_dynamic_array(array, capacity, true, loc) +} + +@builtin +non_zero_reserve_dynamic_array :: proc(array: ^$T/[dynamic]$E, capacity: int, loc := #caller_location) -> Allocator_Error { + return _reserve_dynamic_array(array, capacity, false, loc) +} + +// `resize_dynamic_array` will try to resize memory of a passed dynamic array or map to the requested element count (setting the `len`, and possibly `cap`). +// +// Note: Prefer the procedure group `resize` +_resize_dynamic_array :: #force_inline proc(array: ^$T/[dynamic]$E, length: int, should_zero: bool, loc := #caller_location) -> Allocator_Error { + if array == nil { + return nil + } + a := (^Raw_Dynamic_Array)(array) + + if length <= a.cap { + a.len = max(length, 0) + return nil + } + + if a.allocator.procedure == nil { + a.allocator = context.allocator + } + assert(a.allocator.procedure != nil) + + old_size := a.cap * size_of(E) + new_size := length * size_of(E) + allocator := a.allocator + + new_data : []byte + if should_zero { + new_data = mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return + } else { + new_data = non_zero_mem_resize(a.data, old_size, new_size, align_of(E), allocator, loc) or_return + } + if new_data == nil && new_size > 0 { + return .Out_Of_Memory + } + + a.data = raw_data(new_data) + a.len = length + a.cap = length + return nil +} + +@builtin +resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error { + return _resize_dynamic_array(array, length, true, loc=loc) +} + +@builtin +non_zero_resize_dynamic_array :: proc(array: ^$T/[dynamic]$E, length: int, loc := #caller_location) -> Allocator_Error { + return _resize_dynamic_array(array, length, false, loc=loc) +} + +/* + Shrinks the capacity of a dynamic array down to the current length, or the given capacity. + + If `new_cap` is negative, then `len(array)` is used. + + Returns false if `cap(array) < new_cap`, or the allocator report failure. + + If `len(array) < new_cap`, then `len(array)` will be left unchanged. + + Note: Prefer the procedure group `shrink` +*/ +shrink_dynamic_array :: proc(array: ^$T/[dynamic]$E, new_cap := -1, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) { + if array == nil { + return + } + a := (^Raw_Dynamic_Array)(array) + + new_cap := new_cap if new_cap >= 0 else a.len + + if new_cap > a.cap { + return + } + + if a.allocator.procedure == nil { + a.allocator = context.allocator + } + assert(a.allocator.procedure != nil) + + old_size := a.cap * size_of(E) + new_size := new_cap * size_of(E) + + new_data := mem_resize(a.data, old_size, new_size, align_of(E), a.allocator, loc) or_return + + a.data = raw_data(new_data) + a.len = min(new_cap, a.len) + a.cap = new_cap + return true, nil +} + +@builtin +map_insert :: proc(m: ^$T/map[$K]$V, key: K, value: V, loc := #caller_location) -> (ptr: ^V) { + key, value := key, value + return (^V)(__dynamic_map_set_without_hash((^Raw_Map)(m), map_info(T), rawptr(&key), rawptr(&value), loc)) +} + + +@builtin +incl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { + s^ |= {elem} +} +@builtin +incl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { + for elem in elems { + s^ |= {elem} + } +} +@builtin +incl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { + s^ |= other +} +@builtin +excl_elem :: proc(s: ^$S/bit_set[$E; $U], elem: E) { + s^ &~= {elem} +} +@builtin +excl_elems :: proc(s: ^$S/bit_set[$E; $U], elems: ..E) { + for elem in elems { + s^ &~= {elem} + } +} +@builtin +excl_bit_set :: proc(s: ^$S/bit_set[$E; $U], other: S) { + s^ &~= other +} + +@builtin incl :: proc{incl_elem, incl_elems, incl_bit_set} +@builtin excl :: proc{excl_elem, excl_elems, excl_bit_set} + + +@builtin +card :: proc(s: $S/bit_set[$E; $U]) -> int { + when size_of(S) == 1 { + return int(intrinsics.count_ones(transmute(u8)s)) + } else when size_of(S) == 2 { + return int(intrinsics.count_ones(transmute(u16)s)) + } else when size_of(S) == 4 { + return int(intrinsics.count_ones(transmute(u32)s)) + } else when size_of(S) == 8 { + return int(intrinsics.count_ones(transmute(u64)s)) + } else when size_of(S) == 16 { + return int(intrinsics.count_ones(transmute(u128)s)) + } else { + #panic("Unhandled card bit_set size") + } +} + + + +@builtin +@(disabled=ODIN_DISABLE_ASSERT) +assert :: proc(condition: bool, message := "", loc := #caller_location) { + if !condition { + // NOTE(bill): This is wrapped in a procedure call + // to improve performance to make the CPU not + // execute speculatively, making it about an order of + // magnitude faster + @(cold) + internal :: proc(message: string, loc: Source_Code_Location) { + p := context.assertion_failure_proc + if p == nil { + p = default_assertion_failure_proc + } + p("runtime assertion", message, loc) + } + internal(message, loc) + } +} + +@builtin +panic :: proc(message: string, loc := #caller_location) -> ! { + p := context.assertion_failure_proc + if p == nil { + p = default_assertion_failure_proc + } + p("panic", message, loc) +} + +@builtin +unimplemented :: proc(message := "", loc := #caller_location) -> ! { + p := context.assertion_failure_proc + if p == nil { + p = default_assertion_failure_proc + } + p("not yet implemented", message, loc) +} |