diff options
Diffstat (limited to 'base/runtime/internal.odin')
| -rw-r--r-- | base/runtime/internal.odin | 1036 |
1 files changed, 1036 insertions, 0 deletions
diff --git a/base/runtime/internal.odin b/base/runtime/internal.odin new file mode 100644 index 000000000..21342ef17 --- /dev/null +++ b/base/runtime/internal.odin @@ -0,0 +1,1036 @@ +package runtime + +import "base:intrinsics" + +@(private="file") +IS_WASM :: ODIN_ARCH == .wasm32 || ODIN_ARCH == .wasm64p32 + +@(private) +RUNTIME_LINKAGE :: "strong" when ( + (ODIN_USE_SEPARATE_MODULES || + ODIN_BUILD_MODE == .Dynamic || + !ODIN_NO_CRT) && + !IS_WASM) else "internal" +RUNTIME_REQUIRE :: !ODIN_TILDE + +@(private) +__float16 :: f16 when __ODIN_LLVM_F16_SUPPORTED else u16 + + +@(private) +byte_slice :: #force_inline proc "contextless" (data: rawptr, len: int) -> []byte #no_bounds_check { + return ([^]byte)(data)[:max(len, 0)] +} + +is_power_of_two_int :: #force_inline proc(x: int) -> bool { + if x <= 0 { + return false + } + return (x & (x-1)) == 0 +} + +align_forward_int :: #force_inline proc(ptr, align: int) -> int { + assert(is_power_of_two_int(align)) + + p := ptr + modulo := p & (align-1) + if modulo != 0 { + p += align - modulo + } + return p +} + +is_power_of_two_uintptr :: #force_inline proc(x: uintptr) -> bool { + if x <= 0 { + return false + } + return (x & (x-1)) == 0 +} + +align_forward_uintptr :: #force_inline proc(ptr, align: uintptr) -> uintptr { + assert(is_power_of_two_uintptr(align)) + + p := ptr + modulo := p & (align-1) + if modulo != 0 { + p += align - modulo + } + return p +} + +mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr { + if data == nil { + return nil + } + if len <= 0 { + return data + } + intrinsics.mem_zero(data, len) + return data +} + +mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { + if src != nil && dst != src && len > 0 { + // NOTE(bill): This _must_ be implemented like C's memmove + intrinsics.mem_copy(dst, src, len) + } + return dst +} + +mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr { + if src != nil && dst != src && len > 0 { + // NOTE(bill): This _must_ be implemented like C's memcpy + intrinsics.mem_copy_non_overlapping(dst, src, len) + } + return dst +} + +DEFAULT_ALIGNMENT :: 2*align_of(rawptr) + +mem_alloc_bytes :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) { + if size == 0 { + return nil, nil + } + if allocator.procedure == nil { + return nil, nil + } + return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc) +} + +mem_alloc :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) { + if size == 0 || allocator.procedure == nil { + return nil, nil + } + return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc) +} + +mem_alloc_non_zeroed :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) { + if size == 0 || allocator.procedure == nil { + return nil, nil + } + return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, size, alignment, nil, 0, loc) +} + +mem_free :: #force_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + if ptr == nil || allocator.procedure == nil { + return nil + } + _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc) + return err +} + +mem_free_with_size :: #force_inline proc(ptr: rawptr, byte_count: int, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + if ptr == nil || allocator.procedure == nil { + return nil + } + _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, byte_count, loc) + return err +} + +mem_free_bytes :: #force_inline proc(bytes: []byte, allocator := context.allocator, loc := #caller_location) -> Allocator_Error { + if bytes == nil || allocator.procedure == nil { + return nil + } + _, err := allocator.procedure(allocator.data, .Free, 0, 0, raw_data(bytes), len(bytes), loc) + return err +} + + +mem_free_all :: #force_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) { + if allocator.procedure != nil { + _, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc) + } + return +} + +_mem_resize :: #force_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, should_zero: bool, loc := #caller_location) -> (data: []byte, err: Allocator_Error) { + if allocator.procedure == nil { + return nil, nil + } + if new_size == 0 { + if ptr != nil { + _, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc) + return + } + return + } else if ptr == nil { + if should_zero { + return allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc) + } else { + return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc) + } + } else if old_size == new_size && uintptr(ptr) % uintptr(alignment) == 0 { + data = ([^]byte)(ptr)[:old_size] + return + } + + if should_zero { + data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc) + } else { + data, err = allocator.procedure(allocator.data, .Resize_Non_Zeroed, new_size, alignment, ptr, old_size, loc) + } + if err == .Mode_Not_Implemented { + if should_zero { + data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc) + } else { + data, err = allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc) + } + if err != nil { + return + } + copy(data, ([^]byte)(ptr)[:old_size]) + _, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc) + } + return +} + +mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) { + return _mem_resize(ptr, old_size, new_size, alignment, allocator, true, loc) +} +non_zero_mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) { + return _mem_resize(ptr, old_size, new_size, alignment, allocator, false, loc) +} + +memory_equal :: proc "contextless" (x, y: rawptr, n: int) -> bool { + switch { + case n == 0: return true + case x == y: return true + } + a, b := ([^]byte)(x), ([^]byte)(y) + length := uint(n) + + for i := uint(0); i < length; i += 1 { + if a[i] != b[i] { + return false + } + } + return true + +/* + + when size_of(uint) == 8 { + if word_length := length >> 3; word_length != 0 { + for _ in 0..<word_length { + if intrinsics.unaligned_load((^u64)(a)) != intrinsics.unaligned_load((^u64)(b)) { + return false + } + a = a[size_of(u64):] + b = b[size_of(u64):] + } + } + + if length & 4 != 0 { + if intrinsics.unaligned_load((^u32)(a)) != intrinsics.unaligned_load((^u32)(b)) { + return false + } + a = a[size_of(u32):] + b = b[size_of(u32):] + } + + if length & 2 != 0 { + if intrinsics.unaligned_load((^u16)(a)) != intrinsics.unaligned_load((^u16)(b)) { + return false + } + a = a[size_of(u16):] + b = b[size_of(u16):] + } + + if length & 1 != 0 && a[0] != b[0] { + return false + } + return true + } else { + if word_length := length >> 2; word_length != 0 { + for _ in 0..<word_length { + if intrinsics.unaligned_load((^u32)(a)) != intrinsics.unaligned_load((^u32)(b)) { + return false + } + a = a[size_of(u32):] + b = b[size_of(u32):] + } + } + + length &= 3 + + if length != 0 { + for i in 0..<length { + if a[i] != b[i] { + return false + } + } + } + + return true + } +*/ + +} +memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check { + switch { + case a == b: return 0 + case a == nil: return -1 + case b == nil: return +1 + } + + x := uintptr(a) + y := uintptr(b) + n := uintptr(n) + + SU :: size_of(uintptr) + fast := n/SU + 1 + offset := (fast-1)*SU + curr_block := uintptr(0) + if n < SU { + fast = 0 + } + + for /**/; curr_block < fast; curr_block += 1 { + va := (^uintptr)(x + curr_block * size_of(uintptr))^ + vb := (^uintptr)(y + curr_block * size_of(uintptr))^ + if va ~ vb != 0 { + for pos := curr_block*SU; pos < n; pos += 1 { + a := (^byte)(x+pos)^ + b := (^byte)(y+pos)^ + if a ~ b != 0 { + return -1 if (int(a) - int(b)) < 0 else +1 + } + } + } + } + + for /**/; offset < n; offset += 1 { + a := (^byte)(x+offset)^ + b := (^byte)(y+offset)^ + if a ~ b != 0 { + return -1 if (int(a) - int(b)) < 0 else +1 + } + } + + return 0 +} + +memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check { + x := uintptr(a) + n := uintptr(n) + + SU :: size_of(uintptr) + fast := n/SU + 1 + offset := (fast-1)*SU + curr_block := uintptr(0) + if n < SU { + fast = 0 + } + + for /**/; curr_block < fast; curr_block += 1 { + va := (^uintptr)(x + curr_block * size_of(uintptr))^ + if va ~ 0 != 0 { + for pos := curr_block*SU; pos < n; pos += 1 { + a := (^byte)(x+pos)^ + if a ~ 0 != 0 { + return -1 if int(a) < 0 else +1 + } + } + } + } + + for /**/; offset < n; offset += 1 { + a := (^byte)(x+offset)^ + if a ~ 0 != 0 { + return -1 if int(a) < 0 else +1 + } + } + + return 0 +} + +string_eq :: proc "contextless" (lhs, rhs: string) -> bool { + x := transmute(Raw_String)lhs + y := transmute(Raw_String)rhs + if x.len != y.len { + return false + } + return #force_inline memory_equal(x.data, y.data, x.len) +} + +string_cmp :: proc "contextless" (a, b: string) -> int { + x := transmute(Raw_String)a + y := transmute(Raw_String)b + + ret := memory_compare(x.data, y.data, min(x.len, y.len)) + if ret == 0 && x.len != y.len { + return -1 if x.len < y.len else +1 + } + return ret +} + +string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b) } +string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0 } +string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0 } +string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0 } +string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0 } + +cstring_len :: proc "contextless" (s: cstring) -> int { + p0 := uintptr((^byte)(s)) + p := p0 + for p != 0 && (^byte)(p)^ != 0 { + p += 1 + } + return int(p - p0) +} + +cstring_to_string :: proc "contextless" (s: cstring) -> string { + if s == nil { + return "" + } + ptr := (^byte)(s) + n := cstring_len(s) + return transmute(string)Raw_String{ptr, n} +} + + +cstring_eq :: proc "contextless" (lhs, rhs: cstring) -> bool { + x := ([^]byte)(lhs) + y := ([^]byte)(rhs) + if x == y { + return true + } + if (x == nil) ~ (y == nil) { + return false + } + xn := cstring_len(lhs) + yn := cstring_len(rhs) + if xn != yn { + return false + } + return #force_inline memory_equal(x, y, xn) +} + +cstring_cmp :: proc "contextless" (lhs, rhs: cstring) -> int { + x := ([^]byte)(lhs) + y := ([^]byte)(rhs) + if x == y { + return 0 + } + if (x == nil) ~ (y == nil) { + return -1 if x == nil else +1 + } + xn := cstring_len(lhs) + yn := cstring_len(rhs) + ret := memory_compare(x, y, min(xn, yn)) + if ret == 0 && xn != yn { + return -1 if xn < yn else +1 + } + return ret +} + +cstring_ne :: #force_inline proc "contextless" (a, b: cstring) -> bool { return !cstring_eq(a, b) } +cstring_lt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) < 0 } +cstring_gt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) > 0 } +cstring_le :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) <= 0 } +cstring_ge :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) >= 0 } + + +complex32_eq :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) == real(b) && imag(a) == imag(b) } +complex32_ne :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) != real(b) || imag(a) != imag(b) } + +complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b) } +complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b) } + +complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b) } +complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b) } + + +quaternion64_eq :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) } +quaternion64_ne :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) } + +quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) } +quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) } + +quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) } +quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) } + + +string_decode_rune :: #force_inline proc "contextless" (s: string) -> (rune, int) { + // NOTE(bill): Duplicated here to remove dependency on package unicode/utf8 + + @static accept_sizes := [256]u8{ + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f + + 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f + 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f + 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf + 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf + 0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf + 0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef + 0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff + } + Accept_Range :: struct {lo, hi: u8} + + @static accept_ranges := [5]Accept_Range{ + {0x80, 0xbf}, + {0xa0, 0xbf}, + {0x80, 0x9f}, + {0x90, 0xbf}, + {0x80, 0x8f}, + } + + MASKX :: 0b0011_1111 + MASK2 :: 0b0001_1111 + MASK3 :: 0b0000_1111 + MASK4 :: 0b0000_0111 + + LOCB :: 0b1000_0000 + HICB :: 0b1011_1111 + + + RUNE_ERROR :: '\ufffd' + + n := len(s) + if n < 1 { + return RUNE_ERROR, 0 + } + s0 := s[0] + x := accept_sizes[s0] + if x >= 0xF0 { + mask := rune(x) << 31 >> 31 // NOTE(bill): Create 0x0000 or 0xffff. + return rune(s[0])&~mask | RUNE_ERROR&mask, 1 + } + sz := x & 7 + accept := accept_ranges[x>>4] + if n < int(sz) { + return RUNE_ERROR, 1 + } + b1 := s[1] + if b1 < accept.lo || accept.hi < b1 { + return RUNE_ERROR, 1 + } + if sz == 2 { + return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2 + } + b2 := s[2] + if b2 < LOCB || HICB < b2 { + return RUNE_ERROR, 1 + } + if sz == 3 { + return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3 + } + b3 := s[3] + if b3 < LOCB || HICB < b3 { + return RUNE_ERROR, 1 + } + return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4 +} + +string_decode_last_rune :: proc "contextless" (s: string) -> (rune, int) { + RUNE_ERROR :: '\ufffd' + RUNE_SELF :: 0x80 + UTF_MAX :: 4 + + r: rune + size: int + start, end, limit: int + + end = len(s) + if end == 0 { + return RUNE_ERROR, 0 + } + start = end-1 + r = rune(s[start]) + if r < RUNE_SELF { + return r, 1 + } + + limit = max(end - UTF_MAX, 0) + + for start-=1; start >= limit; start-=1 { + if (s[start] & 0xc0) != RUNE_SELF { + break + } + } + + start = max(start, 0) + r, size = string_decode_rune(s[start:end]) + if start+size != end { + return RUNE_ERROR, 1 + } + return r, size +} + +abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 { + p, q := abs(real(x)), abs(imag(x)) + if p < q { + p, q = q, p + } + if p == 0 { + return 0 + } + q = q / p + return p * f16(intrinsics.sqrt(f32(1 + q*q))) +} +abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 { + p, q := abs(real(x)), abs(imag(x)) + if p < q { + p, q = q, p + } + if p == 0 { + return 0 + } + q = q / p + return p * intrinsics.sqrt(1 + q*q) +} +abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 { + p, q := abs(real(x)), abs(imag(x)) + if p < q { + p, q = q, p + } + if p == 0 { + return 0 + } + q = q / p + return p * intrinsics.sqrt(1 + q*q) +} +abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 { + r, i, j, k := real(x), imag(x), jmag(x), kmag(x) + return f16(intrinsics.sqrt(f32(r*r + i*i + j*j + k*k))) +} +abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 { + r, i, j, k := real(x), imag(x), jmag(x), kmag(x) + return intrinsics.sqrt(r*r + i*i + j*j + k*k) +} +abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 { + r, i, j, k := real(x), imag(x), jmag(x), kmag(x) + return intrinsics.sqrt(r*r + i*i + j*j + k*k) +} + + +quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 { + e, f: f16 + + if abs(real(m)) >= abs(imag(m)) { + ratio := imag(m) / real(m) + denom := real(m) + ratio*imag(m) + e = (real(n) + imag(n)*ratio) / denom + f = (imag(n) - real(n)*ratio) / denom + } else { + ratio := real(m) / imag(m) + denom := imag(m) + ratio*real(m) + e = (real(n)*ratio + imag(n)) / denom + f = (imag(n)*ratio - real(n)) / denom + } + + return complex(e, f) +} + + +quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 { + e, f: f32 + + if abs(real(m)) >= abs(imag(m)) { + ratio := imag(m) / real(m) + denom := real(m) + ratio*imag(m) + e = (real(n) + imag(n)*ratio) / denom + f = (imag(n) - real(n)*ratio) / denom + } else { + ratio := real(m) / imag(m) + denom := imag(m) + ratio*real(m) + e = (real(n)*ratio + imag(n)) / denom + f = (imag(n)*ratio - real(n)) / denom + } + + return complex(e, f) +} + +quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 { + e, f: f64 + + if abs(real(m)) >= abs(imag(m)) { + ratio := imag(m) / real(m) + denom := real(m) + ratio*imag(m) + e = (real(n) + imag(n)*ratio) / denom + f = (imag(n) - real(n)*ratio) / denom + } else { + ratio := real(m) / imag(m) + denom := imag(m) + ratio*real(m) + e = (real(n)*ratio + imag(n)) / denom + f = (imag(n)*ratio - real(n)) / denom + } + + return complex(e, f) +} + +mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3 + t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2 + t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1 + t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3 + t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2 + t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1 + t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3 + t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2 + t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1 + t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3) + + t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2 + t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2 + t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2 + t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3) + + t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2 + t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2 + t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2 + t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 { + q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q) + r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r) + + invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3) + + t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2 + t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2 + t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2 + t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2 + + return quaternion(w=t0, x=t1, y=t2, z=t3) +} + +@(link_name="__truncsfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +truncsfhf2 :: proc "c" (value: f32) -> __float16 { + v: struct #raw_union { i: u32, f: f32 } + i, s, e, m: i32 + + v.f = value + i = i32(v.i) + + s = (i >> 16) & 0x00008000 + e = ((i >> 23) & 0x000000ff) - (127 - 15) + m = i & 0x007fffff + + + if e <= 0 { + if e < -10 { + return transmute(__float16)u16(s) + } + m = (m | 0x00800000) >> u32(1 - e) + + if m & 0x00001000 != 0 { + m += 0x00002000 + } + + return transmute(__float16)u16(s | (m >> 13)) + } else if e == 0xff - (127 - 15) { + if m == 0 { + return transmute(__float16)u16(s | 0x7c00) /* NOTE(bill): infinity */ + } else { + /* NOTE(bill): NAN */ + m >>= 13 + return transmute(__float16)u16(s | 0x7c00 | m | i32(m == 0)) + } + } else { + if m & 0x00001000 != 0 { + m += 0x00002000 + if (m & 0x00800000) != 0 { + m = 0 + e += 1 + } + } + + if e > 30 { + f := i64(1e12) + for j := 0; j < 10; j += 1 { + /* NOTE(bill): Cause overflow */ + g := intrinsics.volatile_load(&f) + g *= g + intrinsics.volatile_store(&f, g) + } + + return transmute(__float16)u16(s | 0x7c00) + } + + return transmute(__float16)u16(s | (e << 10) | (m >> 13)) + } +} + + +@(link_name="__truncdfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +truncdfhf2 :: proc "c" (value: f64) -> __float16 { + return truncsfhf2(f32(value)) +} + +@(link_name="__gnu_h2f_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +gnu_h2f_ieee :: proc "c" (value_: __float16) -> f32 { + fp32 :: struct #raw_union { u: u32, f: f32 } + + value := transmute(u16)value_ + v: fp32 + magic, inf_or_nan: fp32 + magic.u = u32((254 - 15) << 23) + inf_or_nan.u = u32((127 + 16) << 23) + + v.u = u32(value & 0x7fff) << 13 + v.f *= magic.f + if v.f >= inf_or_nan.f { + v.u |= 255 << 23 + } + v.u |= u32(value & 0x8000) << 16 + return v.f +} + + +@(link_name="__gnu_f2h_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +gnu_f2h_ieee :: proc "c" (value: f32) -> __float16 { + return truncsfhf2(value) +} + +@(link_name="__extendhfsf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +extendhfsf2 :: proc "c" (value: __float16) -> f32 { + return gnu_h2f_ieee(value) +} + + + +@(link_name="__floattidf", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +floattidf :: proc "c" (a: i128) -> f64 { +when IS_WASM { + return 0 +} else { + DBL_MANT_DIG :: 53 + if a == 0 { + return 0.0 + } + a := a + N :: size_of(i128) * 8 + s := a >> (N-1) + a = (a ~ s) - s + sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits + e := i32(sd - 1) // exponent + if sd > DBL_MANT_DIG { + switch sd { + case DBL_MANT_DIG + 1: + a <<= 1 + case DBL_MANT_DIG + 2: + // okay + case: + a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) | + i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0) + } + + a |= i128((a & 4) != 0) + a += 1 + a >>= 2 + + if a & (i128(1) << DBL_MANT_DIG) != 0 { + a >>= 1 + e += 1 + } + } else { + a <<= u128(DBL_MANT_DIG - sd) & 127 + } + fb: [2]u32 + fb[1] = (u32(s) & 0x80000000) | // sign + (u32(e + 1023) << 20) | // exponent + u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high + fb[0] = u32(a) // mantissa-low + return transmute(f64)fb +} +} + + +@(link_name="__floattidf_unsigned", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +floattidf_unsigned :: proc "c" (a: u128) -> f64 { +when IS_WASM { + return 0 +} else { + DBL_MANT_DIG :: 53 + if a == 0 { + return 0.0 + } + a := a + N :: size_of(u128) * 8 + sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits + e := i32(sd - 1) // exponent + if sd > DBL_MANT_DIG { + switch sd { + case DBL_MANT_DIG + 1: + a <<= 1 + case DBL_MANT_DIG + 2: + // okay + case: + a = u128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) | + u128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0) + } + + a |= u128((a & 4) != 0) + a += 1 + a >>= 2 + + if a & (1 << DBL_MANT_DIG) != 0 { + a >>= 1 + e += 1 + } + } else { + a <<= u128(DBL_MANT_DIG - sd) + } + fb: [2]u32 + fb[1] = (0) | // sign + u32((e + 1023) << 20) | // exponent + u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high + fb[0] = u32(a) // mantissa-low + return transmute(f64)fb +} +} + + + +@(link_name="__fixunsdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +fixunsdfti :: #force_no_inline proc "c" (a: f64) -> u128 { + // TODO(bill): implement `fixunsdfti` correctly + x := u64(a) + return u128(x) +} + +@(link_name="__fixunsdfdi", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +fixunsdfdi :: #force_no_inline proc "c" (a: f64) -> i128 { + // TODO(bill): implement `fixunsdfdi` correctly + x := i64(a) + return i128(x) +} + + + + +@(link_name="__umodti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +umodti3 :: proc "c" (a, b: u128) -> u128 { + r: u128 = --- + _ = udivmod128(a, b, &r) + return r +} + + +@(link_name="__udivmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +udivmodti4 :: proc "c" (a, b: u128, rem: ^u128) -> u128 { + return udivmod128(a, b, rem) +} + +@(link_name="__udivti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +udivti3 :: proc "c" (a, b: u128) -> u128 { + return udivmodti4(a, b, nil) +} + + +@(link_name="__modti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +modti3 :: proc "c" (a, b: i128) -> i128 { + s_a := a >> (128 - 1) + s_b := b >> (128 - 1) + an := (a ~ s_a) - s_a + bn := (b ~ s_b) - s_b + + r: u128 = --- + _ = udivmod128(transmute(u128)an, transmute(u128)bn, &r) + return (transmute(i128)r ~ s_a) - s_a +} + + +@(link_name="__divmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +divmodti4 :: proc "c" (a, b: i128, rem: ^i128) -> i128 { + u := udivmod128(transmute(u128)a, transmute(u128)b, cast(^u128)rem) + return transmute(i128)u +} + +@(link_name="__divti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +divti3 :: proc "c" (a, b: i128) -> i128 { + u := udivmodti4(transmute(u128)a, transmute(u128)b, nil) + return transmute(i128)u +} + + +@(link_name="__fixdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE) +fixdfti :: proc(a: u64) -> i128 { + significandBits :: 52 + typeWidth :: (size_of(u64)*8) + exponentBits :: (typeWidth - significandBits - 1) + maxExponent :: ((1 << exponentBits) - 1) + exponentBias :: (maxExponent >> 1) + + implicitBit :: (u64(1) << significandBits) + significandMask :: (implicitBit - 1) + signBit :: (u64(1) << (significandBits + exponentBits)) + absMask :: (signBit - 1) + exponentMask :: (absMask ~ significandMask) + + // Break a into sign, exponent, significand + aRep := a + aAbs := aRep & absMask + sign := i128(-1 if aRep & signBit != 0 else 1) + exponent := u64((aAbs >> significandBits) - exponentBias) + significand := u64((aAbs & significandMask) | implicitBit) + + // If exponent is negative, the result is zero. + if exponent < 0 { + return 0 + } + + // If the value is too large for the integer type, saturate. + if exponent >= size_of(i128) * 8 { + return max(i128) if sign == 1 else min(i128) + } + + // If 0 <= exponent < significandBits, right shift to get the result. + // Otherwise, shift left. + if exponent < significandBits { + return sign * i128(significand >> (significandBits - exponent)) + } else { + return sign * (i128(significand) << (exponent - significandBits)) + } + +} |