aboutsummaryrefslogtreecommitdiff
path: root/base/runtime/internal.odin
diff options
context:
space:
mode:
Diffstat (limited to 'base/runtime/internal.odin')
-rw-r--r--base/runtime/internal.odin1036
1 files changed, 1036 insertions, 0 deletions
diff --git a/base/runtime/internal.odin b/base/runtime/internal.odin
new file mode 100644
index 000000000..21342ef17
--- /dev/null
+++ b/base/runtime/internal.odin
@@ -0,0 +1,1036 @@
+package runtime
+
+import "base:intrinsics"
+
+@(private="file")
+IS_WASM :: ODIN_ARCH == .wasm32 || ODIN_ARCH == .wasm64p32
+
+@(private)
+RUNTIME_LINKAGE :: "strong" when (
+ (ODIN_USE_SEPARATE_MODULES ||
+ ODIN_BUILD_MODE == .Dynamic ||
+ !ODIN_NO_CRT) &&
+ !IS_WASM) else "internal"
+RUNTIME_REQUIRE :: !ODIN_TILDE
+
+@(private)
+__float16 :: f16 when __ODIN_LLVM_F16_SUPPORTED else u16
+
+
+@(private)
+byte_slice :: #force_inline proc "contextless" (data: rawptr, len: int) -> []byte #no_bounds_check {
+ return ([^]byte)(data)[:max(len, 0)]
+}
+
+is_power_of_two_int :: #force_inline proc(x: int) -> bool {
+ if x <= 0 {
+ return false
+ }
+ return (x & (x-1)) == 0
+}
+
+align_forward_int :: #force_inline proc(ptr, align: int) -> int {
+ assert(is_power_of_two_int(align))
+
+ p := ptr
+ modulo := p & (align-1)
+ if modulo != 0 {
+ p += align - modulo
+ }
+ return p
+}
+
+is_power_of_two_uintptr :: #force_inline proc(x: uintptr) -> bool {
+ if x <= 0 {
+ return false
+ }
+ return (x & (x-1)) == 0
+}
+
+align_forward_uintptr :: #force_inline proc(ptr, align: uintptr) -> uintptr {
+ assert(is_power_of_two_uintptr(align))
+
+ p := ptr
+ modulo := p & (align-1)
+ if modulo != 0 {
+ p += align - modulo
+ }
+ return p
+}
+
+mem_zero :: proc "contextless" (data: rawptr, len: int) -> rawptr {
+ if data == nil {
+ return nil
+ }
+ if len <= 0 {
+ return data
+ }
+ intrinsics.mem_zero(data, len)
+ return data
+}
+
+mem_copy :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
+ if src != nil && dst != src && len > 0 {
+ // NOTE(bill): This _must_ be implemented like C's memmove
+ intrinsics.mem_copy(dst, src, len)
+ }
+ return dst
+}
+
+mem_copy_non_overlapping :: proc "contextless" (dst, src: rawptr, len: int) -> rawptr {
+ if src != nil && dst != src && len > 0 {
+ // NOTE(bill): This _must_ be implemented like C's memcpy
+ intrinsics.mem_copy_non_overlapping(dst, src, len)
+ }
+ return dst
+}
+
+DEFAULT_ALIGNMENT :: 2*align_of(rawptr)
+
+mem_alloc_bytes :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
+ if size == 0 {
+ return nil, nil
+ }
+ if allocator.procedure == nil {
+ return nil, nil
+ }
+ return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc)
+}
+
+mem_alloc :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
+ if size == 0 || allocator.procedure == nil {
+ return nil, nil
+ }
+ return allocator.procedure(allocator.data, .Alloc, size, alignment, nil, 0, loc)
+}
+
+mem_alloc_non_zeroed :: #force_inline proc(size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> ([]byte, Allocator_Error) {
+ if size == 0 || allocator.procedure == nil {
+ return nil, nil
+ }
+ return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, size, alignment, nil, 0, loc)
+}
+
+mem_free :: #force_inline proc(ptr: rawptr, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ if ptr == nil || allocator.procedure == nil {
+ return nil
+ }
+ _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, 0, loc)
+ return err
+}
+
+mem_free_with_size :: #force_inline proc(ptr: rawptr, byte_count: int, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ if ptr == nil || allocator.procedure == nil {
+ return nil
+ }
+ _, err := allocator.procedure(allocator.data, .Free, 0, 0, ptr, byte_count, loc)
+ return err
+}
+
+mem_free_bytes :: #force_inline proc(bytes: []byte, allocator := context.allocator, loc := #caller_location) -> Allocator_Error {
+ if bytes == nil || allocator.procedure == nil {
+ return nil
+ }
+ _, err := allocator.procedure(allocator.data, .Free, 0, 0, raw_data(bytes), len(bytes), loc)
+ return err
+}
+
+
+mem_free_all :: #force_inline proc(allocator := context.allocator, loc := #caller_location) -> (err: Allocator_Error) {
+ if allocator.procedure != nil {
+ _, err = allocator.procedure(allocator.data, .Free_All, 0, 0, nil, 0, loc)
+ }
+ return
+}
+
+_mem_resize :: #force_inline proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, should_zero: bool, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
+ if allocator.procedure == nil {
+ return nil, nil
+ }
+ if new_size == 0 {
+ if ptr != nil {
+ _, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc)
+ return
+ }
+ return
+ } else if ptr == nil {
+ if should_zero {
+ return allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc)
+ } else {
+ return allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc)
+ }
+ } else if old_size == new_size && uintptr(ptr) % uintptr(alignment) == 0 {
+ data = ([^]byte)(ptr)[:old_size]
+ return
+ }
+
+ if should_zero {
+ data, err = allocator.procedure(allocator.data, .Resize, new_size, alignment, ptr, old_size, loc)
+ } else {
+ data, err = allocator.procedure(allocator.data, .Resize_Non_Zeroed, new_size, alignment, ptr, old_size, loc)
+ }
+ if err == .Mode_Not_Implemented {
+ if should_zero {
+ data, err = allocator.procedure(allocator.data, .Alloc, new_size, alignment, nil, 0, loc)
+ } else {
+ data, err = allocator.procedure(allocator.data, .Alloc_Non_Zeroed, new_size, alignment, nil, 0, loc)
+ }
+ if err != nil {
+ return
+ }
+ copy(data, ([^]byte)(ptr)[:old_size])
+ _, err = allocator.procedure(allocator.data, .Free, 0, 0, ptr, old_size, loc)
+ }
+ return
+}
+
+mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
+ return _mem_resize(ptr, old_size, new_size, alignment, allocator, true, loc)
+}
+non_zero_mem_resize :: proc(ptr: rawptr, old_size, new_size: int, alignment: int = DEFAULT_ALIGNMENT, allocator := context.allocator, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
+ return _mem_resize(ptr, old_size, new_size, alignment, allocator, false, loc)
+}
+
+memory_equal :: proc "contextless" (x, y: rawptr, n: int) -> bool {
+ switch {
+ case n == 0: return true
+ case x == y: return true
+ }
+ a, b := ([^]byte)(x), ([^]byte)(y)
+ length := uint(n)
+
+ for i := uint(0); i < length; i += 1 {
+ if a[i] != b[i] {
+ return false
+ }
+ }
+ return true
+
+/*
+
+ when size_of(uint) == 8 {
+ if word_length := length >> 3; word_length != 0 {
+ for _ in 0..<word_length {
+ if intrinsics.unaligned_load((^u64)(a)) != intrinsics.unaligned_load((^u64)(b)) {
+ return false
+ }
+ a = a[size_of(u64):]
+ b = b[size_of(u64):]
+ }
+ }
+
+ if length & 4 != 0 {
+ if intrinsics.unaligned_load((^u32)(a)) != intrinsics.unaligned_load((^u32)(b)) {
+ return false
+ }
+ a = a[size_of(u32):]
+ b = b[size_of(u32):]
+ }
+
+ if length & 2 != 0 {
+ if intrinsics.unaligned_load((^u16)(a)) != intrinsics.unaligned_load((^u16)(b)) {
+ return false
+ }
+ a = a[size_of(u16):]
+ b = b[size_of(u16):]
+ }
+
+ if length & 1 != 0 && a[0] != b[0] {
+ return false
+ }
+ return true
+ } else {
+ if word_length := length >> 2; word_length != 0 {
+ for _ in 0..<word_length {
+ if intrinsics.unaligned_load((^u32)(a)) != intrinsics.unaligned_load((^u32)(b)) {
+ return false
+ }
+ a = a[size_of(u32):]
+ b = b[size_of(u32):]
+ }
+ }
+
+ length &= 3
+
+ if length != 0 {
+ for i in 0..<length {
+ if a[i] != b[i] {
+ return false
+ }
+ }
+ }
+
+ return true
+ }
+*/
+
+}
+memory_compare :: proc "contextless" (a, b: rawptr, n: int) -> int #no_bounds_check {
+ switch {
+ case a == b: return 0
+ case a == nil: return -1
+ case b == nil: return +1
+ }
+
+ x := uintptr(a)
+ y := uintptr(b)
+ n := uintptr(n)
+
+ SU :: size_of(uintptr)
+ fast := n/SU + 1
+ offset := (fast-1)*SU
+ curr_block := uintptr(0)
+ if n < SU {
+ fast = 0
+ }
+
+ for /**/; curr_block < fast; curr_block += 1 {
+ va := (^uintptr)(x + curr_block * size_of(uintptr))^
+ vb := (^uintptr)(y + curr_block * size_of(uintptr))^
+ if va ~ vb != 0 {
+ for pos := curr_block*SU; pos < n; pos += 1 {
+ a := (^byte)(x+pos)^
+ b := (^byte)(y+pos)^
+ if a ~ b != 0 {
+ return -1 if (int(a) - int(b)) < 0 else +1
+ }
+ }
+ }
+ }
+
+ for /**/; offset < n; offset += 1 {
+ a := (^byte)(x+offset)^
+ b := (^byte)(y+offset)^
+ if a ~ b != 0 {
+ return -1 if (int(a) - int(b)) < 0 else +1
+ }
+ }
+
+ return 0
+}
+
+memory_compare_zero :: proc "contextless" (a: rawptr, n: int) -> int #no_bounds_check {
+ x := uintptr(a)
+ n := uintptr(n)
+
+ SU :: size_of(uintptr)
+ fast := n/SU + 1
+ offset := (fast-1)*SU
+ curr_block := uintptr(0)
+ if n < SU {
+ fast = 0
+ }
+
+ for /**/; curr_block < fast; curr_block += 1 {
+ va := (^uintptr)(x + curr_block * size_of(uintptr))^
+ if va ~ 0 != 0 {
+ for pos := curr_block*SU; pos < n; pos += 1 {
+ a := (^byte)(x+pos)^
+ if a ~ 0 != 0 {
+ return -1 if int(a) < 0 else +1
+ }
+ }
+ }
+ }
+
+ for /**/; offset < n; offset += 1 {
+ a := (^byte)(x+offset)^
+ if a ~ 0 != 0 {
+ return -1 if int(a) < 0 else +1
+ }
+ }
+
+ return 0
+}
+
+string_eq :: proc "contextless" (lhs, rhs: string) -> bool {
+ x := transmute(Raw_String)lhs
+ y := transmute(Raw_String)rhs
+ if x.len != y.len {
+ return false
+ }
+ return #force_inline memory_equal(x.data, y.data, x.len)
+}
+
+string_cmp :: proc "contextless" (a, b: string) -> int {
+ x := transmute(Raw_String)a
+ y := transmute(Raw_String)b
+
+ ret := memory_compare(x.data, y.data, min(x.len, y.len))
+ if ret == 0 && x.len != y.len {
+ return -1 if x.len < y.len else +1
+ }
+ return ret
+}
+
+string_ne :: #force_inline proc "contextless" (a, b: string) -> bool { return !string_eq(a, b) }
+string_lt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) < 0 }
+string_gt :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) > 0 }
+string_le :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) <= 0 }
+string_ge :: #force_inline proc "contextless" (a, b: string) -> bool { return string_cmp(a, b) >= 0 }
+
+cstring_len :: proc "contextless" (s: cstring) -> int {
+ p0 := uintptr((^byte)(s))
+ p := p0
+ for p != 0 && (^byte)(p)^ != 0 {
+ p += 1
+ }
+ return int(p - p0)
+}
+
+cstring_to_string :: proc "contextless" (s: cstring) -> string {
+ if s == nil {
+ return ""
+ }
+ ptr := (^byte)(s)
+ n := cstring_len(s)
+ return transmute(string)Raw_String{ptr, n}
+}
+
+
+cstring_eq :: proc "contextless" (lhs, rhs: cstring) -> bool {
+ x := ([^]byte)(lhs)
+ y := ([^]byte)(rhs)
+ if x == y {
+ return true
+ }
+ if (x == nil) ~ (y == nil) {
+ return false
+ }
+ xn := cstring_len(lhs)
+ yn := cstring_len(rhs)
+ if xn != yn {
+ return false
+ }
+ return #force_inline memory_equal(x, y, xn)
+}
+
+cstring_cmp :: proc "contextless" (lhs, rhs: cstring) -> int {
+ x := ([^]byte)(lhs)
+ y := ([^]byte)(rhs)
+ if x == y {
+ return 0
+ }
+ if (x == nil) ~ (y == nil) {
+ return -1 if x == nil else +1
+ }
+ xn := cstring_len(lhs)
+ yn := cstring_len(rhs)
+ ret := memory_compare(x, y, min(xn, yn))
+ if ret == 0 && xn != yn {
+ return -1 if xn < yn else +1
+ }
+ return ret
+}
+
+cstring_ne :: #force_inline proc "contextless" (a, b: cstring) -> bool { return !cstring_eq(a, b) }
+cstring_lt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) < 0 }
+cstring_gt :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) > 0 }
+cstring_le :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) <= 0 }
+cstring_ge :: #force_inline proc "contextless" (a, b: cstring) -> bool { return cstring_cmp(a, b) >= 0 }
+
+
+complex32_eq :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
+complex32_ne :: #force_inline proc "contextless" (a, b: complex32) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
+
+complex64_eq :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
+complex64_ne :: #force_inline proc "contextless" (a, b: complex64) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
+
+complex128_eq :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) == real(b) && imag(a) == imag(b) }
+complex128_ne :: #force_inline proc "contextless" (a, b: complex128) -> bool { return real(a) != real(b) || imag(a) != imag(b) }
+
+
+quaternion64_eq :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
+quaternion64_ne :: #force_inline proc "contextless" (a, b: quaternion64) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
+
+quaternion128_eq :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
+quaternion128_ne :: #force_inline proc "contextless" (a, b: quaternion128) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
+
+quaternion256_eq :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) == real(b) && imag(a) == imag(b) && jmag(a) == jmag(b) && kmag(a) == kmag(b) }
+quaternion256_ne :: #force_inline proc "contextless" (a, b: quaternion256) -> bool { return real(a) != real(b) || imag(a) != imag(b) || jmag(a) != jmag(b) || kmag(a) != kmag(b) }
+
+
+string_decode_rune :: #force_inline proc "contextless" (s: string) -> (rune, int) {
+ // NOTE(bill): Duplicated here to remove dependency on package unicode/utf8
+
+ @static accept_sizes := [256]u8{
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x00-0x0f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x10-0x1f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x20-0x2f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x30-0x3f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x40-0x4f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x50-0x5f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x60-0x6f
+ 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, // 0x70-0x7f
+
+ 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x80-0x8f
+ 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0x90-0x9f
+ 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xa0-0xaf
+ 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xb0-0xbf
+ 0xf1, 0xf1, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xc0-0xcf
+ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, // 0xd0-0xdf
+ 0x13, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x23, 0x03, 0x03, // 0xe0-0xef
+ 0x34, 0x04, 0x04, 0x04, 0x44, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, 0xf1, // 0xf0-0xff
+ }
+ Accept_Range :: struct {lo, hi: u8}
+
+ @static accept_ranges := [5]Accept_Range{
+ {0x80, 0xbf},
+ {0xa0, 0xbf},
+ {0x80, 0x9f},
+ {0x90, 0xbf},
+ {0x80, 0x8f},
+ }
+
+ MASKX :: 0b0011_1111
+ MASK2 :: 0b0001_1111
+ MASK3 :: 0b0000_1111
+ MASK4 :: 0b0000_0111
+
+ LOCB :: 0b1000_0000
+ HICB :: 0b1011_1111
+
+
+ RUNE_ERROR :: '\ufffd'
+
+ n := len(s)
+ if n < 1 {
+ return RUNE_ERROR, 0
+ }
+ s0 := s[0]
+ x := accept_sizes[s0]
+ if x >= 0xF0 {
+ mask := rune(x) << 31 >> 31 // NOTE(bill): Create 0x0000 or 0xffff.
+ return rune(s[0])&~mask | RUNE_ERROR&mask, 1
+ }
+ sz := x & 7
+ accept := accept_ranges[x>>4]
+ if n < int(sz) {
+ return RUNE_ERROR, 1
+ }
+ b1 := s[1]
+ if b1 < accept.lo || accept.hi < b1 {
+ return RUNE_ERROR, 1
+ }
+ if sz == 2 {
+ return rune(s0&MASK2)<<6 | rune(b1&MASKX), 2
+ }
+ b2 := s[2]
+ if b2 < LOCB || HICB < b2 {
+ return RUNE_ERROR, 1
+ }
+ if sz == 3 {
+ return rune(s0&MASK3)<<12 | rune(b1&MASKX)<<6 | rune(b2&MASKX), 3
+ }
+ b3 := s[3]
+ if b3 < LOCB || HICB < b3 {
+ return RUNE_ERROR, 1
+ }
+ return rune(s0&MASK4)<<18 | rune(b1&MASKX)<<12 | rune(b2&MASKX)<<6 | rune(b3&MASKX), 4
+}
+
+string_decode_last_rune :: proc "contextless" (s: string) -> (rune, int) {
+ RUNE_ERROR :: '\ufffd'
+ RUNE_SELF :: 0x80
+ UTF_MAX :: 4
+
+ r: rune
+ size: int
+ start, end, limit: int
+
+ end = len(s)
+ if end == 0 {
+ return RUNE_ERROR, 0
+ }
+ start = end-1
+ r = rune(s[start])
+ if r < RUNE_SELF {
+ return r, 1
+ }
+
+ limit = max(end - UTF_MAX, 0)
+
+ for start-=1; start >= limit; start-=1 {
+ if (s[start] & 0xc0) != RUNE_SELF {
+ break
+ }
+ }
+
+ start = max(start, 0)
+ r, size = string_decode_rune(s[start:end])
+ if start+size != end {
+ return RUNE_ERROR, 1
+ }
+ return r, size
+}
+
+abs_complex32 :: #force_inline proc "contextless" (x: complex32) -> f16 {
+ p, q := abs(real(x)), abs(imag(x))
+ if p < q {
+ p, q = q, p
+ }
+ if p == 0 {
+ return 0
+ }
+ q = q / p
+ return p * f16(intrinsics.sqrt(f32(1 + q*q)))
+}
+abs_complex64 :: #force_inline proc "contextless" (x: complex64) -> f32 {
+ p, q := abs(real(x)), abs(imag(x))
+ if p < q {
+ p, q = q, p
+ }
+ if p == 0 {
+ return 0
+ }
+ q = q / p
+ return p * intrinsics.sqrt(1 + q*q)
+}
+abs_complex128 :: #force_inline proc "contextless" (x: complex128) -> f64 {
+ p, q := abs(real(x)), abs(imag(x))
+ if p < q {
+ p, q = q, p
+ }
+ if p == 0 {
+ return 0
+ }
+ q = q / p
+ return p * intrinsics.sqrt(1 + q*q)
+}
+abs_quaternion64 :: #force_inline proc "contextless" (x: quaternion64) -> f16 {
+ r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
+ return f16(intrinsics.sqrt(f32(r*r + i*i + j*j + k*k)))
+}
+abs_quaternion128 :: #force_inline proc "contextless" (x: quaternion128) -> f32 {
+ r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
+ return intrinsics.sqrt(r*r + i*i + j*j + k*k)
+}
+abs_quaternion256 :: #force_inline proc "contextless" (x: quaternion256) -> f64 {
+ r, i, j, k := real(x), imag(x), jmag(x), kmag(x)
+ return intrinsics.sqrt(r*r + i*i + j*j + k*k)
+}
+
+
+quo_complex32 :: proc "contextless" (n, m: complex32) -> complex32 {
+ e, f: f16
+
+ if abs(real(m)) >= abs(imag(m)) {
+ ratio := imag(m) / real(m)
+ denom := real(m) + ratio*imag(m)
+ e = (real(n) + imag(n)*ratio) / denom
+ f = (imag(n) - real(n)*ratio) / denom
+ } else {
+ ratio := real(m) / imag(m)
+ denom := imag(m) + ratio*real(m)
+ e = (real(n)*ratio + imag(n)) / denom
+ f = (imag(n)*ratio - real(n)) / denom
+ }
+
+ return complex(e, f)
+}
+
+
+quo_complex64 :: proc "contextless" (n, m: complex64) -> complex64 {
+ e, f: f32
+
+ if abs(real(m)) >= abs(imag(m)) {
+ ratio := imag(m) / real(m)
+ denom := real(m) + ratio*imag(m)
+ e = (real(n) + imag(n)*ratio) / denom
+ f = (imag(n) - real(n)*ratio) / denom
+ } else {
+ ratio := real(m) / imag(m)
+ denom := imag(m) + ratio*real(m)
+ e = (real(n)*ratio + imag(n)) / denom
+ f = (imag(n)*ratio - real(n)) / denom
+ }
+
+ return complex(e, f)
+}
+
+quo_complex128 :: proc "contextless" (n, m: complex128) -> complex128 {
+ e, f: f64
+
+ if abs(real(m)) >= abs(imag(m)) {
+ ratio := imag(m) / real(m)
+ denom := real(m) + ratio*imag(m)
+ e = (real(n) + imag(n)*ratio) / denom
+ f = (imag(n) - real(n)*ratio) / denom
+ } else {
+ ratio := real(m) / imag(m)
+ denom := imag(m) + ratio*real(m)
+ e = (real(n)*ratio + imag(n)) / denom
+ f = (imag(n)*ratio - real(n)) / denom
+ }
+
+ return complex(e, f)
+}
+
+mul_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
+ t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
+ t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
+ t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+mul_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
+ t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
+ t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
+ t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+mul_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ t0 := r0*q0 - r1*q1 - r2*q2 - r3*q3
+ t1 := r0*q1 + r1*q0 - r2*q3 + r3*q2
+ t2 := r0*q2 + r1*q3 + r2*q0 - r3*q1
+ t3 := r0*q3 - r1*q2 + r2*q1 + r3*q0
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+quo_quaternion64 :: proc "contextless" (q, r: quaternion64) -> quaternion64 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
+
+ t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
+ t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
+ t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
+ t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+quo_quaternion128 :: proc "contextless" (q, r: quaternion128) -> quaternion128 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
+
+ t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
+ t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
+ t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
+ t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+quo_quaternion256 :: proc "contextless" (q, r: quaternion256) -> quaternion256 {
+ q0, q1, q2, q3 := real(q), imag(q), jmag(q), kmag(q)
+ r0, r1, r2, r3 := real(r), imag(r), jmag(r), kmag(r)
+
+ invmag2 := 1.0 / (r0*r0 + r1*r1 + r2*r2 + r3*r3)
+
+ t0 := (r0*q0 + r1*q1 + r2*q2 + r3*q3) * invmag2
+ t1 := (r0*q1 - r1*q0 - r2*q3 - r3*q2) * invmag2
+ t2 := (r0*q2 - r1*q3 - r2*q0 + r3*q1) * invmag2
+ t3 := (r0*q3 + r1*q2 + r2*q1 - r3*q0) * invmag2
+
+ return quaternion(w=t0, x=t1, y=t2, z=t3)
+}
+
+@(link_name="__truncsfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+truncsfhf2 :: proc "c" (value: f32) -> __float16 {
+ v: struct #raw_union { i: u32, f: f32 }
+ i, s, e, m: i32
+
+ v.f = value
+ i = i32(v.i)
+
+ s = (i >> 16) & 0x00008000
+ e = ((i >> 23) & 0x000000ff) - (127 - 15)
+ m = i & 0x007fffff
+
+
+ if e <= 0 {
+ if e < -10 {
+ return transmute(__float16)u16(s)
+ }
+ m = (m | 0x00800000) >> u32(1 - e)
+
+ if m & 0x00001000 != 0 {
+ m += 0x00002000
+ }
+
+ return transmute(__float16)u16(s | (m >> 13))
+ } else if e == 0xff - (127 - 15) {
+ if m == 0 {
+ return transmute(__float16)u16(s | 0x7c00) /* NOTE(bill): infinity */
+ } else {
+ /* NOTE(bill): NAN */
+ m >>= 13
+ return transmute(__float16)u16(s | 0x7c00 | m | i32(m == 0))
+ }
+ } else {
+ if m & 0x00001000 != 0 {
+ m += 0x00002000
+ if (m & 0x00800000) != 0 {
+ m = 0
+ e += 1
+ }
+ }
+
+ if e > 30 {
+ f := i64(1e12)
+ for j := 0; j < 10; j += 1 {
+ /* NOTE(bill): Cause overflow */
+ g := intrinsics.volatile_load(&f)
+ g *= g
+ intrinsics.volatile_store(&f, g)
+ }
+
+ return transmute(__float16)u16(s | 0x7c00)
+ }
+
+ return transmute(__float16)u16(s | (e << 10) | (m >> 13))
+ }
+}
+
+
+@(link_name="__truncdfhf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+truncdfhf2 :: proc "c" (value: f64) -> __float16 {
+ return truncsfhf2(f32(value))
+}
+
+@(link_name="__gnu_h2f_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+gnu_h2f_ieee :: proc "c" (value_: __float16) -> f32 {
+ fp32 :: struct #raw_union { u: u32, f: f32 }
+
+ value := transmute(u16)value_
+ v: fp32
+ magic, inf_or_nan: fp32
+ magic.u = u32((254 - 15) << 23)
+ inf_or_nan.u = u32((127 + 16) << 23)
+
+ v.u = u32(value & 0x7fff) << 13
+ v.f *= magic.f
+ if v.f >= inf_or_nan.f {
+ v.u |= 255 << 23
+ }
+ v.u |= u32(value & 0x8000) << 16
+ return v.f
+}
+
+
+@(link_name="__gnu_f2h_ieee", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+gnu_f2h_ieee :: proc "c" (value: f32) -> __float16 {
+ return truncsfhf2(value)
+}
+
+@(link_name="__extendhfsf2", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+extendhfsf2 :: proc "c" (value: __float16) -> f32 {
+ return gnu_h2f_ieee(value)
+}
+
+
+
+@(link_name="__floattidf", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+floattidf :: proc "c" (a: i128) -> f64 {
+when IS_WASM {
+ return 0
+} else {
+ DBL_MANT_DIG :: 53
+ if a == 0 {
+ return 0.0
+ }
+ a := a
+ N :: size_of(i128) * 8
+ s := a >> (N-1)
+ a = (a ~ s) - s
+ sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits
+ e := i32(sd - 1) // exponent
+ if sd > DBL_MANT_DIG {
+ switch sd {
+ case DBL_MANT_DIG + 1:
+ a <<= 1
+ case DBL_MANT_DIG + 2:
+ // okay
+ case:
+ a = i128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
+ i128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0)
+ }
+
+ a |= i128((a & 4) != 0)
+ a += 1
+ a >>= 2
+
+ if a & (i128(1) << DBL_MANT_DIG) != 0 {
+ a >>= 1
+ e += 1
+ }
+ } else {
+ a <<= u128(DBL_MANT_DIG - sd) & 127
+ }
+ fb: [2]u32
+ fb[1] = (u32(s) & 0x80000000) | // sign
+ (u32(e + 1023) << 20) | // exponent
+ u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high
+ fb[0] = u32(a) // mantissa-low
+ return transmute(f64)fb
+}
+}
+
+
+@(link_name="__floattidf_unsigned", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+floattidf_unsigned :: proc "c" (a: u128) -> f64 {
+when IS_WASM {
+ return 0
+} else {
+ DBL_MANT_DIG :: 53
+ if a == 0 {
+ return 0.0
+ }
+ a := a
+ N :: size_of(u128) * 8
+ sd: = N - intrinsics.count_leading_zeros(a) // number of significant digits
+ e := i32(sd - 1) // exponent
+ if sd > DBL_MANT_DIG {
+ switch sd {
+ case DBL_MANT_DIG + 1:
+ a <<= 1
+ case DBL_MANT_DIG + 2:
+ // okay
+ case:
+ a = u128(u128(a) >> u128(sd - (DBL_MANT_DIG+2))) |
+ u128(u128(a) & (~u128(0) >> u128(N + DBL_MANT_DIG+2 - sd)) != 0)
+ }
+
+ a |= u128((a & 4) != 0)
+ a += 1
+ a >>= 2
+
+ if a & (1 << DBL_MANT_DIG) != 0 {
+ a >>= 1
+ e += 1
+ }
+ } else {
+ a <<= u128(DBL_MANT_DIG - sd)
+ }
+ fb: [2]u32
+ fb[1] = (0) | // sign
+ u32((e + 1023) << 20) | // exponent
+ u32((u64(a) >> 32) & 0x000FFFFF) // mantissa-high
+ fb[0] = u32(a) // mantissa-low
+ return transmute(f64)fb
+}
+}
+
+
+
+@(link_name="__fixunsdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+fixunsdfti :: #force_no_inline proc "c" (a: f64) -> u128 {
+ // TODO(bill): implement `fixunsdfti` correctly
+ x := u64(a)
+ return u128(x)
+}
+
+@(link_name="__fixunsdfdi", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+fixunsdfdi :: #force_no_inline proc "c" (a: f64) -> i128 {
+ // TODO(bill): implement `fixunsdfdi` correctly
+ x := i64(a)
+ return i128(x)
+}
+
+
+
+
+@(link_name="__umodti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+umodti3 :: proc "c" (a, b: u128) -> u128 {
+ r: u128 = ---
+ _ = udivmod128(a, b, &r)
+ return r
+}
+
+
+@(link_name="__udivmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+udivmodti4 :: proc "c" (a, b: u128, rem: ^u128) -> u128 {
+ return udivmod128(a, b, rem)
+}
+
+@(link_name="__udivti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+udivti3 :: proc "c" (a, b: u128) -> u128 {
+ return udivmodti4(a, b, nil)
+}
+
+
+@(link_name="__modti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+modti3 :: proc "c" (a, b: i128) -> i128 {
+ s_a := a >> (128 - 1)
+ s_b := b >> (128 - 1)
+ an := (a ~ s_a) - s_a
+ bn := (b ~ s_b) - s_b
+
+ r: u128 = ---
+ _ = udivmod128(transmute(u128)an, transmute(u128)bn, &r)
+ return (transmute(i128)r ~ s_a) - s_a
+}
+
+
+@(link_name="__divmodti4", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+divmodti4 :: proc "c" (a, b: i128, rem: ^i128) -> i128 {
+ u := udivmod128(transmute(u128)a, transmute(u128)b, cast(^u128)rem)
+ return transmute(i128)u
+}
+
+@(link_name="__divti3", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+divti3 :: proc "c" (a, b: i128) -> i128 {
+ u := udivmodti4(transmute(u128)a, transmute(u128)b, nil)
+ return transmute(i128)u
+}
+
+
+@(link_name="__fixdfti", linkage=RUNTIME_LINKAGE, require=RUNTIME_REQUIRE)
+fixdfti :: proc(a: u64) -> i128 {
+ significandBits :: 52
+ typeWidth :: (size_of(u64)*8)
+ exponentBits :: (typeWidth - significandBits - 1)
+ maxExponent :: ((1 << exponentBits) - 1)
+ exponentBias :: (maxExponent >> 1)
+
+ implicitBit :: (u64(1) << significandBits)
+ significandMask :: (implicitBit - 1)
+ signBit :: (u64(1) << (significandBits + exponentBits))
+ absMask :: (signBit - 1)
+ exponentMask :: (absMask ~ significandMask)
+
+ // Break a into sign, exponent, significand
+ aRep := a
+ aAbs := aRep & absMask
+ sign := i128(-1 if aRep & signBit != 0 else 1)
+ exponent := u64((aAbs >> significandBits) - exponentBias)
+ significand := u64((aAbs & significandMask) | implicitBit)
+
+ // If exponent is negative, the result is zero.
+ if exponent < 0 {
+ return 0
+ }
+
+ // If the value is too large for the integer type, saturate.
+ if exponent >= size_of(i128) * 8 {
+ return max(i128) if sign == 1 else min(i128)
+ }
+
+ // If 0 <= exponent < significandBits, right shift to get the result.
+ // Otherwise, shift left.
+ if exponent < significandBits {
+ return sign * i128(significand >> (significandBits - exponent))
+ } else {
+ return sign * (i128(significand) << (exponent - significandBits))
+ }
+
+}