package runtime _INTEGER_DIGITS :: "0123456789abcdefghijklmnopqrstuvwxyz" @(private="file") _INTEGER_DIGITS_VAR := _INTEGER_DIGITS when !ODIN_NO_RTTI { print_any_single :: #force_no_inline proc "contextless" (arg: any) { x := arg if x.data == nil { print_string("nil") return } if loc, ok := x.(Source_Code_Location); ok { print_caller_location(loc) return } x.id = typeid_base(x.id) switch v in x { case typeid: print_typeid(v) case ^Type_Info: print_type(v) case string: print_string(v) case cstring: print_string(string(v)) case []byte: print_string(string(v)) case rune: print_rune(v) case u8: print_u64(u64(v)) case u16: print_u64(u64(v)) case u16le: print_u64(u64(v)) case u16be: print_u64(u64(v)) case u32: print_u64(u64(v)) case u32le: print_u64(u64(v)) case u32be: print_u64(u64(v)) case u64: print_u64(u64(v)) case u64le: print_u64(u64(v)) case u64be: print_u64(u64(v)) case i8: print_i64(i64(v)) case i16: print_i64(i64(v)) case i16le: print_i64(i64(v)) case i16be: print_i64(i64(v)) case i32: print_i64(i64(v)) case i32le: print_i64(i64(v)) case i32be: print_i64(i64(v)) case i64: print_i64(i64(v)) case i64le: print_i64(i64(v)) case i64be: print_i64(i64(v)) case int: print_int(v) case uint: print_uint(v) case uintptr: print_uintptr(v) case rawptr: print_uintptr(uintptr(v)) case bool: print_string("true" if v else "false") case b8: print_string("true" if v else "false") case b16: print_string("true" if v else "false") case b32: print_string("true" if v else "false") case b64: print_string("true" if v else "false") case: ti := type_info_of(x.id) #partial switch v in ti.variant { case Type_Info_Pointer, Type_Info_Multi_Pointer: print_uintptr((^uintptr)(x.data)^) return } print_string("") } } println_any :: #force_no_inline proc "contextless" (args: ..any) { context = default_context() loop: for arg, i in args { assert(arg.id != nil) if i != 0 { print_string(" ") } print_any_single(arg) } print_string("\n") } } encode_rune :: proc "contextless" (c: rune) -> ([4]u8, int) { r := c buf: [4]u8 i := u32(r) mask :: u8(0x3f) if i <= 1<<7-1 { buf[0] = u8(r) return buf, 1 } if i <= 1<<11-1 { buf[0] = 0xc0 | u8(r>>6) buf[1] = 0x80 | u8(r) & mask return buf, 2 } // Invalid or Surrogate range if i > 0x0010ffff || (0xd800 <= i && i <= 0xdfff) { r = 0xfffd } if i <= 1<<16-1 { buf[0] = 0xe0 | u8(r>>12) buf[1] = 0x80 | u8(r>>6) & mask buf[2] = 0x80 | u8(r) & mask return buf, 3 } buf[0] = 0xf0 | u8(r>>18) buf[1] = 0x80 | u8(r>>12) & mask buf[2] = 0x80 | u8(r>>6) & mask buf[3] = 0x80 | u8(r) & mask return buf, 4 } print_string :: #force_no_inline proc "contextless" (str: string) -> (n: int) { n, _ = stderr_write(transmute([]byte)str) return } print_strings :: #force_no_inline proc "contextless" (args: ..string) -> (n: int) { for str in args { m, err := stderr_write(transmute([]byte)str) n += m if err != 0 { break } } return } print_byte :: #force_no_inline proc "contextless" (b: byte) -> (n: int) { n, _ = stderr_write([]byte{b}) return } print_encoded_rune :: #force_no_inline proc "contextless" (r: rune) { print_byte('\'') switch r { case '\a': print_string("\\a") case '\b': print_string("\\b") case '\e': print_string("\\e") case '\f': print_string("\\f") case '\n': print_string("\\n") case '\r': print_string("\\r") case '\t': print_string("\\t") case '\v': print_string("\\v") case: if r <= 0 { print_string("\\x00") } else if r < 32 { n0, n1 := u8(r) >> 4, u8(r) & 0xf print_string("\\x") print_byte(_INTEGER_DIGITS_VAR[n0]) print_byte(_INTEGER_DIGITS_VAR[n1]) } else { print_rune(r) } } print_byte('\'') } print_rune :: #force_no_inline proc "contextless" (r: rune) -> int #no_bounds_check { RUNE_SELF :: 0x80 if r < RUNE_SELF { return print_byte(byte(r)) } b, n := encode_rune(r) m, _ := stderr_write(b[:n]) return m } print_u64 :: #force_no_inline proc "contextless" (x: u64) #no_bounds_check { b :: u64(10) u := x a: [129]byte i := len(a) for u >= b { i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] u /= b } i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] stderr_write(a[i:]) } print_i64 :: #force_no_inline proc "contextless" (x: i64) #no_bounds_check { b :: u64(10) u := u64(abs(x)) neg := x < 0 a: [129]byte i := len(a) for u >= b { i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] u /= b } i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] if neg { i -= 1; a[i] = '-' } stderr_write(a[i:]) } print_uint :: proc "contextless" (x: uint) { print_u64(u64(x)) } print_uintptr :: proc "contextless" (x: uintptr) { print_u64(u64(x)) } print_int :: proc "contextless" (x: int) { print_i64(i64(x)) } print_caller_location :: #force_no_inline proc "contextless" (loc: Source_Code_Location) { print_string(loc.file_path) when ODIN_ERROR_POS_STYLE == .Default { print_byte('(') print_u64(u64(loc.line)) if loc.column != 0 { print_byte(':') print_u64(u64(loc.column)) } print_byte(')') } else when ODIN_ERROR_POS_STYLE == .Unix { print_byte(':') print_u64(u64(loc.line)) if loc.column != 0 { print_byte(':') print_u64(u64(loc.column)) } print_byte(':') } else { #panic("unhandled ODIN_ERROR_POS_STYLE") } } print_typeid :: #force_no_inline proc "contextless" (id: typeid) { when ODIN_NO_RTTI { if id == nil { print_string("nil") } else { print_string("") } } else { if id == nil { print_string("nil") } else { ti := type_info_of(id) print_type(ti) } } } @(optimization_mode="favor_size") print_type :: #force_no_inline proc "contextless" (ti: ^Type_Info) { if ti == nil { print_string("nil") return } switch info in ti.variant { case Type_Info_Named: print_string(info.name) case Type_Info_Integer: switch ti.id { case int: print_string("int") case uint: print_string("uint") case uintptr: print_string("uintptr") case: print_byte('i' if info.signed else 'u') print_u64(u64(8*ti.size)) } switch info.endianness { case .Platform: // nothing case .Little: print_string("le") case .Big: print_string("be") } case Type_Info_Rune: print_string("rune") case Type_Info_Float: print_byte('f') print_u64(u64(8*ti.size)) switch info.endianness { case .Platform: // nothing case .Little: print_string("le") case .Big: print_string("be") } case Type_Info_Complex: print_string("complex") print_u64(u64(8*ti.size)) case Type_Info_Quaternion: print_string("quaternion") print_u64(u64(8*ti.size)) case Type_Info_String: if info.is_cstring { print_byte('c') } print_string("string") switch info.encoding { case .UTF_8: /**/ case .UTF_16: print_string("16") } case Type_Info_Boolean: switch ti.id { case bool: print_string("bool") case: print_byte('b') print_u64(u64(8*ti.size)) } case Type_Info_Any: print_string("any") case Type_Info_Type_Id: print_string("typeid") case Type_Info_Pointer: if info.elem == nil { print_string("rawptr") } else { print_string("^") print_type(info.elem) } case Type_Info_Multi_Pointer: print_string("[^]") print_type(info.elem) case Type_Info_Soa_Pointer: print_string("#soa ^") print_type(info.elem) case Type_Info_Procedure: print_string("proc") if info.params == nil { print_string("()") } else { t := info.params.variant.(Type_Info_Parameters) print_byte('(') for t, i in t.types { if i > 0 { print_string(", ") } print_type(t) } print_string(")") } if info.results != nil { print_string(" -> ") print_type(info.results) } case Type_Info_Parameters: count := len(info.names) if count != 1 { print_byte('(') } for name, i in info.names { if i > 0 { print_string(", ") } t := info.types[i] if len(name) > 0 { print_string(name) print_string(": ") } print_type(t) } if count != 1 { print_string(")") } case Type_Info_Array: print_byte('[') print_u64(u64(info.count)) print_byte(']') print_type(info.elem) case Type_Info_Enumerated_Array: if info.is_sparse { print_string("#sparse") } print_byte('[') print_type(info.index) print_byte(']') print_type(info.elem) case Type_Info_Dynamic_Array: print_string("[dynamic]") print_type(info.elem) case Type_Info_Slice: print_string("[]") print_type(info.elem) case Type_Info_Map: print_string("map[") print_type(info.key) print_byte(']') print_type(info.value) case Type_Info_Struct: switch info.soa_kind { case .None: // Ignore case .Fixed: print_string("#soa[") print_u64(u64(info.soa_len)) print_byte(']') print_type(info.soa_base_type) return case .Slice: print_string("#soa[]") print_type(info.soa_base_type) return case .Dynamic: print_string("#soa[dynamic]") print_type(info.soa_base_type) return } print_string("struct ") if .packed in info.flags { print_string("#packed ") } if .raw_union in info.flags { print_string("#raw_union ") } if .all_or_none in info.flags { print_string("#all_or_none ") } if .simple in info.flags { print_string("#simple ") } if .align in info.flags { print_string("#align(") print_u64(u64(ti.align)) print_string(") ") } print_byte('{') for name, i in info.names[:info.field_count] { if i > 0 { print_string(", ") } print_string(name) print_string(": ") print_type(info.types[i]) } print_byte('}') case Type_Info_Union: print_string("union ") if info.custom_align { print_string("#align(") print_u64(u64(ti.align)) print_string(") ") } if info.no_nil { print_string("#no_nil ") } print_byte('{') for variant, i in info.variants { if i > 0 { print_string(", ") } print_type(variant) } print_string("}") case Type_Info_Enum: print_string("enum ") print_type(info.base) print_string(" {") for name, i in info.names { if i > 0 { print_string(", ") } print_string(name) } print_string("}") case Type_Info_Bit_Set: print_string("bit_set[") #partial switch elem in type_info_base(info.elem).variant { case Type_Info_Enum: print_type(info.elem) case Type_Info_Rune: print_encoded_rune(rune(info.lower)) print_string("..") print_encoded_rune(rune(info.upper)) case: print_i64(info.lower) print_string("..") print_i64(info.upper) } if info.underlying != nil { print_string("; ") print_type(info.underlying) } print_byte(']') case Type_Info_Bit_Field: print_string("bit_field ") print_type(info.backing_type) print_string(" {") for name, i in info.names[:info.field_count] { if i > 0 { print_string(", ") } print_string(name) print_string(": ") print_type(info.types[i]) print_string(" | ") print_u64(u64(info.bit_sizes[i])) } print_byte('}') case Type_Info_Simd_Vector: print_string("#simd[") print_u64(u64(info.count)) print_byte(']') print_type(info.elem) case Type_Info_Matrix: if info.layout == .Row_Major { print_string("#row_major ") } print_string("matrix[") print_u64(u64(info.row_count)) print_string(", ") print_u64(u64(info.column_count)) print_string("]") print_type(info.elem) } } @(require_results) write_string :: proc "contextless" (i: ^int, dst: []byte, src: string) -> bool { if i^ < len(dst) { i^ += copy(dst[i^:], src) return true } return false } @(require_results) write_byte :: proc "contextless" (i: ^int, dst: []byte, src: byte) -> bool { if i^ < len(dst) { dst[i^] = src i^ += 1 return true } return false } @(require_results) write_u64 :: proc "contextless" (j: ^int, dst: []byte, x: u64) -> bool { if j^ < len(dst) { b :: u64(10) u := x a: [129]byte i := len(a) for u >= b { i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] u /= b } i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] return write_string(j, dst, string(a[i:])) } return false } @(require_results) write_i64 :: proc "contextless" (j: ^int, dst: []byte, x: i64) -> bool { if j^ < len(dst) { b :: u64(10) u := u64(abs(x)) neg := x < 0 a: [129]byte i := len(a) for u >= b { i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] u /= b } i -= 1; a[i] = _INTEGER_DIGITS_VAR[u % b] if neg { i -= 1; a[i] = '-' } return write_string(j, dst, string(a[i:])) } return false } @(require_results) write_caller_location :: #force_no_inline proc "contextless" (i: ^int, buf: []byte, loc: Source_Code_Location) -> bool { write_string(i, buf, loc.file_path) or_return when ODIN_ERROR_POS_STYLE == .Default { write_byte(i, buf, '(') or_return write_u64 (i, buf, u64(loc.line)) or_return if loc.column != 0 { write_byte(i, buf, ':') or_return write_u64 (i, buf, u64(loc.column)) or_return } write_byte(i, buf, ')') or_return return true } else when ODIN_ERROR_POS_STYLE == .Unix { write_byte(i, buf, ':') or_return write_u64 (i, buf, u64(loc.line)) or_return if loc.column != 0 { write_byte(i, buf, ':') or_return write_u64 (i, buf, u64(loc.column)) or_return } write_byte(i, buf, ':') or_return return true } else { #panic("unhandled ODIN_ERROR_POS_STYLE") } } @(require_results) write_typeid :: #force_no_inline proc "contextless" (i: ^int, buf: []byte, id: typeid) -> bool { when ODIN_NO_RTTI { if id == nil { write_string(i, buf, "nil") or_return } else { write_string(i, buf, "") or_return } } else { if id == nil { write_string(i, buf, "nil") or_return } else { ti := type_info_of(id) write_write_type(i, buf, ti) or_return } } return true } @(require_results) write_rune :: #force_no_inline proc "contextless" (i: ^int, buf: []byte, r: rune) -> (written: int, ok: bool) #no_bounds_check { RUNE_SELF :: 0x80 if r < RUNE_SELF { write_byte(i, buf,byte(r)) or_return return 1, true } b, n := encode_rune(r) prev := i^ write_string(i, buf, string(b[:n])) or_return return i^ - prev, true } @(require_results) write_encoded_rune :: #force_no_inline proc "contextless" (i: ^int, buf: []byte, r: rune) -> bool { write_byte(i, buf, '\'') or_return switch r { case '\a': write_string(i, buf, "\\a") or_return case '\b': write_string(i, buf, "\\b") or_return case '\e': write_string(i, buf, "\\e") or_return case '\f': write_string(i, buf, "\\f") or_return case '\n': write_string(i, buf, "\\n") or_return case '\r': write_string(i, buf, "\\r") or_return case '\t': write_string(i, buf, "\\t") or_return case '\v': write_string(i, buf, "\\v") or_return case: if r <= 0 { write_string(i, buf, "\\x00") or_return } else if r < 32 { n0, n1 := u8(r) >> 4, u8(r) & 0xf write_string(i, buf, "\\x") or_return write_byte (i, buf, _INTEGER_DIGITS_VAR[n0]) or_return write_byte (i, buf, _INTEGER_DIGITS_VAR[n1]) or_return } else { _ = write_rune(i, buf, r) or_return } } write_byte(i, buf, '\'') or_return return true } @(optimization_mode="favor_size") write_write_type :: #force_no_inline proc "contextless" (i: ^int, buf: []byte, ti: ^Type_Info) -> bool { if ti == nil { write_string(i, buf, "nil") or_return return true } switch info in ti.variant { case Type_Info_Named: write_string(i, buf, info.name) or_return case Type_Info_Integer: switch ti.id { case int: write_string(i, buf, "int") or_return case uint: write_string(i, buf, "uint") or_return case uintptr: write_string(i, buf, "uintptr") or_return case: write_byte(i, buf, 'i' if info.signed else 'u') or_return write_u64 (i, buf, u64(8*ti.size)) or_return } switch info.endianness { case .Platform: // nothing case .Little: write_string(i, buf, "le") or_return case .Big: write_string(i, buf, "be") or_return } case Type_Info_Rune: write_string(i, buf, "rune") or_return case Type_Info_Float: write_byte(i, buf, 'f') or_return write_u64(i, buf, u64(8*ti.size)) or_return switch info.endianness { case .Platform: // nothing case .Little: write_string(i, buf, "le") or_return case .Big: write_string(i, buf, "be") or_return } case Type_Info_Complex: write_string(i, buf, "complex") or_return write_u64 (i, buf, u64(8*ti.size)) or_return case Type_Info_Quaternion: write_string(i, buf, "quaternion") or_return write_u64 (i, buf, u64(8*ti.size)) or_return case Type_Info_String: if info.is_cstring { write_byte(i, buf, 'c') or_return } write_string(i, buf, "string") or_return switch info.encoding { case .UTF_8: /**/ case .UTF_16: write_string(i, buf, "16") or_return } case Type_Info_Boolean: switch ti.id { case bool: write_string(i, buf, "bool") or_return case: write_byte(i, buf, 'b') or_return write_u64 (i, buf, u64(8*ti.size)) or_return } case Type_Info_Any: write_string(i, buf, "any") or_return case Type_Info_Type_Id: write_string(i, buf, "typeid") or_return case Type_Info_Pointer: if info.elem == nil { write_string(i, buf, "rawptr") or_return } else { write_string (i, buf, "^") or_return write_write_type(i, buf, info.elem) or_return } case Type_Info_Multi_Pointer: write_string (i, buf, "[^]") or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Soa_Pointer: write_string (i, buf, "#soa ^") or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Procedure: write_string(i, buf, "proc") or_return if info.params == nil { write_string(i, buf, "()") or_return } else { t := info.params.variant.(Type_Info_Parameters) write_byte(i, buf, '(') or_return for t, j in t.types { if j > 0 { write_string(i, buf, ", ") or_return } write_write_type(i, buf, t) or_return } write_string(i, buf, ")") or_return } if info.results != nil { write_string (i, buf, " -> ") or_return write_write_type(i, buf, info.results) or_return } case Type_Info_Parameters: count := len(info.names) if count != 1 { write_byte(i, buf, '(') or_return } for name, j in info.names { if j > 0 { write_string(i, buf, ", ") or_return } t := info.types[j] if len(name) > 0 { write_string(i, buf, name) or_return write_string(i, buf, ": ") or_return } write_write_type(i, buf, t) or_return } if count != 1 { write_string(i, buf, ")") or_return } case Type_Info_Array: write_byte (i, buf, '[') or_return write_u64 (i, buf, u64(info.count)) or_return write_byte (i, buf, ']') or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Enumerated_Array: if info.is_sparse { write_string(i, buf, "#sparse") or_return } write_byte (i, buf, '[') or_return write_write_type(i, buf, info.index) or_return write_byte (i, buf, ']') or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Dynamic_Array: write_string (i, buf, "[dynamic]") or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Slice: write_string (i, buf, "[]") or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Map: write_string (i, buf, "map[") or_return write_write_type(i, buf, info.key) or_return write_byte (i, buf, ']') or_return write_write_type(i, buf, info.value) or_return case Type_Info_Struct: switch info.soa_kind { case .None: // Ignore case .Fixed: write_string (i, buf, "#soa[") or_return write_u64 (i, buf, u64(info.soa_len)) or_return write_byte (i, buf, ']') or_return write_write_type(i, buf, info.soa_base_type) or_return return true case .Slice: write_string (i, buf, "#soa[]") or_return write_write_type(i, buf, info.soa_base_type) or_return return true case .Dynamic: write_string (i, buf, "#soa[dynamic]") or_return write_write_type(i, buf, info.soa_base_type) or_return return true } write_string(i, buf, "struct ") or_return if .packed in info.flags { write_string(i, buf, "#packed ") or_return } if .raw_union in info.flags { write_string(i, buf, "#raw_union ") or_return } if .all_or_none in info.flags { write_string(i, buf, "#all_or_none ") or_return } if .simple in info.flags { write_string(i, buf, "#simple ") or_return } if .align in info.flags { write_string(i, buf, "#align(") or_return write_u64(i, buf, u64(ti.align)) or_return write_string(i, buf, ") ") or_return } write_byte(i, buf, '{') or_return for name, j in info.names[:info.field_count] { if j > 0 { write_string(i, buf, ", ") or_return } write_string (i, buf, name) or_return write_string (i, buf, ": ") or_return write_write_type(i, buf, info.types[j]) or_return } write_byte(i, buf, '}') or_return case Type_Info_Union: write_string(i, buf, "union ") or_return if info.custom_align { write_string(i, buf, "#align(") or_return write_u64 (i, buf, u64(ti.align)) or_return write_string(i, buf, ") ") or_return } if info.no_nil { write_string(i, buf, "#no_nil ") or_return } write_byte(i, buf, '{') or_return for variant, j in info.variants { if j > 0 { write_string(i, buf, ", ") or_return } write_write_type(i, buf, variant) or_return } write_string(i, buf, "}") or_return case Type_Info_Enum: write_string (i, buf, "enum ") or_return write_write_type(i, buf, info.base) or_return write_string (i, buf, " {") or_return for name, j in info.names { if j > 0 { write_string(i, buf, ", ") or_return } write_string(i, buf, name) or_return } write_string(i, buf, "}") or_return case Type_Info_Bit_Set: write_string(i, buf, "bit_set[") or_return #partial switch elem in type_info_base(info.elem).variant { case Type_Info_Enum: write_write_type(i, buf, info.elem) or_return case Type_Info_Rune: write_encoded_rune(i, buf, rune(info.lower)) or_return write_string (i, buf, "..") or_return write_encoded_rune(i, buf, rune(info.upper)) or_return case: write_i64 (i, buf, info.lower) or_return write_string(i, buf, "..") or_return write_i64 (i, buf, info.upper) or_return } if info.underlying != nil { write_string (i, buf, "; ") or_return write_write_type(i, buf, info.underlying) or_return } write_byte(i, buf, ']') or_return case Type_Info_Bit_Field: write_string (i, buf, "bit_field ") or_return write_write_type(i, buf, info.backing_type) or_return write_string (i, buf, " {") or_return for name, j in info.names[:info.field_count] { if j > 0 { write_string(i, buf, ", ") or_return } write_string (i, buf, name) or_return write_string (i, buf, ": ") or_return write_write_type(i, buf, info.types[j]) or_return write_string (i, buf, " | ") or_return write_u64 (i, buf, u64(info.bit_sizes[j])) or_return } write_byte(i, buf, '}') or_return case Type_Info_Simd_Vector: write_string (i, buf, "#simd[") or_return write_u64 (i, buf, u64(info.count)) or_return write_byte (i, buf, ']') or_return write_write_type(i, buf, info.elem) or_return case Type_Info_Matrix: if info.layout == .Row_Major { write_string(i, buf, "#row_major ") or_return } write_string (i, buf, "matrix[") or_return write_u64 (i, buf, u64(info.row_count)) or_return write_string (i, buf, ", ") or_return write_u64 (i, buf, u64(info.column_count)) or_return write_string (i, buf, "]") or_return write_write_type(i, buf, info.elem) or_return } return true }