// Easing procedures used for animations. package ease @require import "core:math" import "base:intrinsics" @(private) PI_2 :: math.PI / 2 // converted to odin from https://github.com/warrenm/AHEasing // with additional enum based call // Modeled after the parabola y = x^2 @(require_results) quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p } // Modeled after the parabola y = -x^2 + 2x @(require_results) quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return -(p * (p - 2)) } // Modeled after the piecewise quadratic // y = (1/2)((2x)^2) ; [0, 0.5) // y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1] @(require_results) quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 2 * p * p } else { return (-2 * p * p) + (4 * p) - 1 } } // Modeled after the cubic y = x^3 @(require_results) cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p } // Modeled after the cubic y = (x - 1)^3 + 1 @(require_results) cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f + 1 } // Modeled after the piecewise cubic // y = (1/2)((2x)^3) ; [0, 0.5) // y = (1/2)((2x-2)^3 + 2) ; [0.5, 1] @(require_results) cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 4 * p * p * p } else { f := (2 * p) - 2 return 0.5 * f * f * f + 1 } } // Modeled after the quartic x^4 @(require_results) quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p * p } // Modeled after the quartic y = 1 - (x - 1)^4 @(require_results) quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f * (1 - p) + 1 } // Modeled after the piecewise quartic // y = (1/2)((2x)^4) ; [0, 0.5) // y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1] @(require_results) quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 8 * p * p * p * p } else { f := p - 1 return -8 * f * f * f * f + 1 } } // Modeled after the quintic y = x^5 @(require_results) quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p * p * p } // Modeled after the quintic y = (x - 1)^5 + 1 @(require_results) quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := p - 1 return f * f * f * f * f + 1 } // Modeled after the piecewise quintic // y = (1/2)((2x)^5) ; [0, 0.5) // y = (1/2)((2x-2)^5 + 2) ; [0.5, 1] @(require_results) quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 16 * p * p * p * p * p } else { f := (2 * p) - 2 return 0.5 * f * f * f * f * f + 1 } } // Modeled after quarter-cycle of sine wave @(require_results) sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin((p - 1) * PI_2) + 1 } // Modeled after quarter-cycle of sine wave (different phase) @(require_results) sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(p * PI_2) } // Modeled after half sine wave @(require_results) sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 0.5 * (1 - math.cos(p * math.PI)) } // Modeled after shifted quadrant IV of unit circle @(require_results) circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - math.sqrt(1 - (p * p)) } // Modeled after shifted quadrant II of unit circle @(require_results) circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sqrt((2 - p) * p) } // Modeled after the piecewise circular function // y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5) // y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1] @(require_results) circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * (1 - math.sqrt(1 - 4 * (p * p))) } else { return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1) } } // Modeled after the exponential function y = 2^(10(x - 1)) @(require_results) exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 0.0 ? p : math.pow(2, 10 * (p - 1)) } // Modeled after the exponential function y = -2^(-10x) + 1 @(require_results) exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 1.0 ? p : 1 - math.pow(2, -10 * p) } // Modeled after the piecewise exponential // y = (1/2)2^(10(2x - 1)) ; [0,0.5) // y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1] @(require_results) exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p == 0.0 || p == 1.0 { return p } if p < 0.5 { return 0.5 * math.pow(2, (20 * p) - 10) } else { return -0.5 * math.pow(2, (-20 * p) + 10) + 1 } } // Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1)) @(require_results) elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1)) } // Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1 @(require_results) elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1 } // Modeled after the piecewise exponentially-damped sine wave: // y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5) // y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1] @(require_results) elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1)) } else { return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2) } } // Modeled after the overshooting cubic y = x^3-x*sin(x*pi) @(require_results) back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p * p * p - p * math.sin(p * math.PI) } // Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi)) @(require_results) back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { f := 1 - p return 1 - (f * f * f - f * math.sin(f * math.PI)) } // Modeled after the piecewise overshooting cubic function: // y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5) // y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1] @(require_results) back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { f := 2 * p return 0.5 * (f * f * f - f * math.sin(f * math.PI)) } else { f := (1 - (2*p - 1)) return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5 } } @(require_results) bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - bounce_out(1 - p) } @(require_results) bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 4/11.0 { return (121 * p * p)/16.0 } else if p < 8/11.0 { return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0 } else if p < 9/10.0 { return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0 } else { return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0 } } @(require_results) bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return 0.5 * bounce_in(p*2) } else { return 0.5 * bounce_out(p * 2 - 1) + 0.5 } } // additional enum variant Ease :: enum { Linear, Quadratic_In, Quadratic_Out, Quadratic_In_Out, Cubic_In, Cubic_Out, Cubic_In_Out, Quartic_In, Quartic_Out, Quartic_In_Out, Quintic_In, Quintic_Out, Quintic_In_Out, Sine_In, Sine_Out, Sine_In_Out, Circular_In, Circular_Out, Circular_In_Out, Exponential_In, Exponential_Out, Exponential_In_Out, Elastic_In, Elastic_Out, Elastic_In_Out, Back_In, Back_Out, Back_In_Out, Bounce_In, Bounce_Out, Bounce_In_Out, } @(require_results) ease :: proc "contextless" (type: Ease, p: $T) -> T where intrinsics.type_is_float(T) { switch type { case .Linear: return p case .Quadratic_In: return quadratic_in(p) case .Quadratic_Out: return quadratic_out(p) case .Quadratic_In_Out: return quadratic_in_out(p) case .Cubic_In: return cubic_in(p) case .Cubic_Out: return cubic_out(p) case .Cubic_In_Out: return cubic_in_out(p) case .Quartic_In: return quartic_in(p) case .Quartic_Out: return quartic_out(p) case .Quartic_In_Out: return quartic_in_out(p) case .Quintic_In: return quintic_in(p) case .Quintic_Out: return quintic_out(p) case .Quintic_In_Out: return quintic_in_out(p) case .Sine_In: return sine_in(p) case .Sine_Out: return sine_out(p) case .Sine_In_Out: return sine_in_out(p) case .Circular_In: return circular_in(p) case .Circular_Out: return circular_out(p) case .Circular_In_Out: return circular_in_out(p) case .Exponential_In: return exponential_in(p) case .Exponential_Out: return exponential_out(p) case .Exponential_In_Out: return exponential_in_out(p) case .Elastic_In: return elastic_in(p) case .Elastic_Out: return elastic_out(p) case .Elastic_In_Out: return elastic_in_out(p) case .Back_In: return back_in(p) case .Back_Out: return back_out(p) case .Back_In_Out: return back_in_out(p) case .Bounce_In: return bounce_in(p) case .Bounce_Out: return bounce_out(p) case .Bounce_In_Out: return bounce_in_out(p) } // in case type was invalid return 0 }