// Inverse easing procedures // These are the mathematical inverses of the corresponding easing functions, // allowing you to reverse the transformation: // if y = ease_fn(x), then x = ease_fn_inverse(y) + some_imprecision package ease @require import "core:math" import "base:intrinsics" // Helper for handling negative bases with fractional exponents // since math.pow(negative, fraction) returns NaN @(private) _signed_pow :: proc "contextless" (x, exp: $T) -> T where intrinsics.type_is_float(T) { if x >= 0 { return math.pow(x, exp) } else { return -math.pow(-x, exp) } } @(private) PI_2_INV :: 2 / math.PI // Inverse of quadratic_in // x = sqrt(y) @(require_results) quadratic_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sqrt(p) } // Inverse of quadratic_out // x = 1 - sqrt(1 - y) @(require_results) quadratic_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - math.sqrt(1 - p) } // Inverse of quadratic_in_out // x = sqrt(y/2) ; [0, 0.5) // x = 1 - sqrt((1-y)/2) ; [0.5, 1] @(require_results) quadratic_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return math.sqrt(p * 0.5) } else { return 1 - math.sqrt((1 - p) * 0.5) } } // Inverse of cubic_in // x = y^(1/3) @(require_results) cubic_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.pow(p, 1.0/3.0) } // Inverse of cubic_out // x = (y - 1)^(1/3) + 1 @(require_results) cubic_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return _signed_pow(p - 1, 1.0/3.0) + 1 } // Inverse of cubic_in_out // x = (y/4)^(1/3) ; [0, 0.5) // x = ((y-1)*2)^(1/3)/2 + 1 ; [0.5, 1] @(require_results) cubic_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return math.pow(p * 0.25, 1.0/3.0) } else { return _signed_pow((p - 1) * 2, 1.0/3.0) * 0.5 + 1 } } // Inverse of quartic_in // x = y^(1/4) @(require_results) quartic_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.pow(p, 0.25) } // Inverse of quartic_out // x = 1 - (1 - y)^(1/4) @(require_results) quartic_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - math.pow(1 - p, 0.25) } // Inverse of quartic_in_out // x = (y/8)^(1/4) ; [0, 0.5) // x = 1 - ((1-y)/8)^(1/4) ; [0.5, 1] @(require_results) quartic_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return math.pow(p * 0.125, 0.25) } else { return 1 - math.pow((1 - p) * 0.125, 0.25) } } // Inverse of quintic_in // x = y^(1/5) @(require_results) quintic_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.pow(p, 0.2) } // Inverse of quintic_out // x = (y - 1)^(1/5) + 1 @(require_results) quintic_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return _signed_pow(p - 1, 0.2) + 1 } // Inverse of quintic_in_out // x = (y/16)^(1/5) ; [0, 0.5) // x = ((y-1)*2)^(1/5)/2 + 1 ; [0.5, 1] @(require_results) quintic_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { return math.pow(0.0625 * p, 0.2) } else { return _signed_pow((p - 1) * 2, 0.2) * 0.5 + 1 } } // Inverse of sine_in // x = asin(y - 1) * 2/π + 1 @(require_results) sine_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.asin(p - 1) * PI_2_INV + 1 } // Inverse of sine_out // x = asin(y) * 2/π @(require_results) sine_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.asin(p) * PI_2_INV } // Inverse of sine_in_out // x = acos(1 - 2y) / π @(require_results) sine_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.acos(1 - 2*p) / math.PI } // Inverse of circular_in // x = sqrt(2y - y²) @(require_results) circular_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return math.sqrt(2*p - p*p) } // Inverse of circular_out // x = 1 - sqrt(1 - y²) @(require_results) circular_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return 1 - math.sqrt(1 - p*p) } // Inverse of circular_in_out // x = sqrt(1 - (1-2y)²) / 2 ; [0, 0.5) // x = 1 - sqrt(1 - (2y-1)²) / 2 ; [0.5, 1] @(require_results) circular_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p < 0.5 { q := 1 - 2*p return 0.5 * math.sqrt(1 - q*q) } else { q := 2*p - 1 return 1 - 0.5 * math.sqrt(1 - q*q) } } // Inverse of exponential_in // x = log₂(y) / 10 + 1 @(require_results) exponential_in_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 0.0 ? 0.0 : 0.1 * math.log2(p) + 1 } // Inverse of exponential_out // x = -log₂(1 - y) / 10 @(require_results) exponential_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { return p == 1.0 ? 1.0 : 0.1 * -math.log2(1 - p) } // Inverse of exponential_in_out // x = (log₂(2y) + 10) / 20 ; [0, 0.5) // x = (10 - log₂(2(1-y))) / 20 ; [0.5, 1] @(require_results) exponential_in_out_inverse :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) { if p == 0.0 || p == 1.0 { return p } if p < 0.5 { return 0.05 * (math.log2(2*p) + 10) } else { return 0.05 * (10 - math.log2(2*(1-p))) } } // Additional enum variant @(require_results) ease_inverse :: proc "contextless" (type: Ease, p: $T) -> T where intrinsics.type_is_float(T) { switch type { case .Linear: return p case .Quadratic_In: return quadratic_in_inverse(p) case .Quadratic_Out: return quadratic_out_inverse(p) case .Quadratic_In_Out: return quadratic_in_out_inverse(p) case .Cubic_In: return cubic_in_inverse(p) case .Cubic_Out: return cubic_out_inverse(p) case .Cubic_In_Out: return cubic_in_out_inverse(p) case .Quartic_In: return quartic_in_inverse(p) case .Quartic_Out: return quartic_out_inverse(p) case .Quartic_In_Out: return quartic_in_out_inverse(p) case .Quintic_In: return quintic_in_inverse(p) case .Quintic_Out: return quintic_out_inverse(p) case .Quintic_In_Out: return quintic_in_out_inverse(p) case .Sine_In: return sine_in_inverse(p) case .Sine_Out: return sine_out_inverse(p) case .Sine_In_Out: return sine_in_out_inverse(p) case .Circular_In: return circular_in_inverse(p) case .Circular_Out: return circular_out_inverse(p) case .Circular_In_Out: return circular_in_out_inverse(p) case .Exponential_In: return exponential_in_inverse(p) case .Exponential_Out: return exponential_out_inverse(p) case .Exponential_In_Out: return exponential_in_out_inverse(p) case .Elastic_In, .Elastic_Out, .Elastic_In_Out, .Back_In, .Back_Out, .Back_In_Out, .Bounce_In, .Bounce_Out, .Bounce_In_Out: // These do not have simple closed-form inverses return 0 } // In case type was invalid return 0 }