#include "llvm_backend.hpp" struct lbLoopData { lbAddr idx_addr; lbValue idx; lbBlock *body; lbBlock *done; lbBlock *loop; }; struct lbCompoundLitElemTempData { Ast * expr; lbValue value; i32 elem_index; lbValue gep; }; lbLoopData lb_loop_start(lbProcedure *p, isize count, Type *index_type=t_i32); void lb_loop_end(lbProcedure *p, lbLoopData const &data); LLVMValueRef llvm_zero32(lbModule *m) { return LLVMConstInt(lb_type(m, t_i32), 0, false); } LLVMValueRef llvm_one32(lbModule *m) { return LLVMConstInt(lb_type(m, t_i32), 1, false); } lbAddr lb_addr(lbValue addr) { lbAddr v = {lbAddr_Default, addr}; return v; } Type *lb_addr_type(lbAddr const &addr) { if (addr.addr.value == nullptr) { return nullptr; } if (addr.kind == lbAddr_Map) { Type *t = base_type(addr.map.type); GB_ASSERT(is_type_map(t)); return t->Map.value; } return type_deref(addr.addr.type); } LLVMTypeRef lb_addr_lb_type(lbAddr const &addr) { return LLVMGetElementType(LLVMTypeOf(addr.addr.value)); } lbValue lb_addr_get_ptr(lbProcedure *p, lbAddr const &addr) { if (addr.addr.value == nullptr) { GB_PANIC("Illegal addr -> nullptr"); return {}; } switch (addr.kind) { case lbAddr_Map: case lbAddr_BitField: { lbValue v = lb_addr_load(p, addr); return lb_address_from_load_or_generate_local(p, v); } case lbAddr_Context: GB_PANIC("lbAddr_Context should be handled elsewhere"); } return addr.addr; } lbValue lb_build_addr_ptr(lbProcedure *p, Ast *expr) { lbAddr addr = lb_build_addr(p, expr); return lb_addr_get_ptr(p, addr); } lbAddr lb_addr_bit_field(lbValue value, i32 index) { lbAddr addr = {}; addr.kind = lbAddr_BitField; addr.addr = value; addr.bit_field.value_index = index; return addr; } void lb_addr_store(lbProcedure *p, lbAddr const &addr, lbValue value) { if (addr.addr.value == nullptr) { return; } GB_ASSERT(value.type != nullptr); if (is_type_untyped_undef(value.type)) { Type *t = lb_addr_type(addr); value.type = t; value.value = LLVMGetUndef(lb_type(p->module, t)); } else if (is_type_untyped_nil(value.type)) { Type *t = lb_addr_type(addr); value.type = t; value.value = LLVMConstNull(lb_type(p->module, t)); } if (addr.kind == lbAddr_Map) { GB_PANIC("lbAddr_Map"); } else if (addr.kind == lbAddr_BitField) { GB_PANIC("lbAddr_BitField"); } else if (addr.kind == lbAddr_Context) { lbValue old = lb_addr_load(p, lb_find_or_generate_context_ptr(p)); lbAddr next_addr = lb_add_local_generated(p, t_context, true); lb_addr_store(p, next_addr, old); lb_push_context_onto_stack(p, next_addr); lbValue next = lb_addr_get_ptr(p, next_addr); if (addr.ctx.sel.index.count > 0) { lbValue lhs = lb_emit_deep_field_gep(p, next, addr.ctx.sel); lbValue rhs = lb_emit_conv(p, value, type_deref(lhs.type)); lb_emit_store(p, lhs, rhs); } else { lbValue lhs = next; lbValue rhs = lb_emit_conv(p, value, lb_addr_type(addr)); lb_emit_store(p, lhs, rhs); } return; } else if (addr.kind == lbAddr_SoaVariable) { GB_PANIC("lbAddr_SoaVariable"); } GB_ASSERT(value.value != nullptr); value = lb_emit_conv(p, value, lb_addr_type(addr)); LLVMBuildStore(p->builder, value.value, addr.addr.value); } void lb_emit_store(lbProcedure *p, lbValue ptr, lbValue value) { GB_ASSERT(value.value != nullptr); Type *a = type_deref(ptr.type); if (is_type_boolean(a)) { // NOTE(bill): There are multiple sized booleans, thus force a conversion (if necessarily) value = lb_emit_conv(p, value, a); } GB_ASSERT(are_types_identical(a, value.type)); LLVMValueRef v = LLVMBuildStore(p->builder, value.value, ptr.value); } lbValue lb_emit_load(lbProcedure *p, lbValue value) { lbModule *m = p->module; GB_ASSERT(value.value != nullptr); Type *t = type_deref(value.type); LLVMValueRef v = LLVMBuildLoad2(p->builder, lb_type(m, t), value.value, ""); return lbValue{v, t}; } lbValue lb_addr_load(lbProcedure *p, lbAddr const &addr) { GB_ASSERT(addr.addr.value != nullptr); if (addr.kind == lbAddr_Map) { GB_PANIC("lbAddr_Map"); } else if (addr.kind == lbAddr_BitField) { Type *bft = base_type(type_deref(addr.addr.type)); GB_ASSERT(is_type_bit_field(bft)); unsigned value_index = cast(unsigned)addr.bit_field.value_index; i32 size_in_bits = bft->BitField.fields[value_index]->type->BitFieldValue.bits; i32 size_in_bytes = next_pow2((size_in_bits+7)/8); if (size_in_bytes == 0) { GB_ASSERT(size_in_bits == 0); lbValue res = {}; res.type = t_i32; res.value = LLVMConstInt(lb_type(p->module, res.type), 0, false); return res; } Type *int_type = nullptr; switch (size_in_bytes) { case 1: int_type = t_u8; break; case 2: int_type = t_u16; break; case 4: int_type = t_u32; break; case 8: int_type = t_u64; break; case 16: int_type = t_u128; break; } GB_ASSERT(int_type != nullptr); LLVMValueRef internal_data = LLVMBuildStructGEP(p->builder, addr.addr.value, 1, ""); LLVMValueRef field_ptr = LLVMBuildStructGEP(p->builder, internal_data, value_index, ""); LLVMValueRef field = LLVMBuildLoad(p->builder, field_ptr, ""); lbValue res = {}; res.type = int_type; res.value = LLVMBuildZExtOrBitCast(p->builder, field, lb_type(p->module, int_type), ""); return res; } else if (addr.kind == lbAddr_Context) { if (addr.ctx.sel.index.count > 0) { lbValue a = addr.addr; lbValue b = lb_emit_deep_field_gep(p, a, addr.ctx.sel); return lb_emit_load(p, b); } } else if (addr.kind == lbAddr_SoaVariable) { GB_PANIC("lbAddr_SoaVariable"); } return lb_emit_load(p, addr.addr); } void lb_clone_struct_type(LLVMTypeRef dst, LLVMTypeRef src) { unsigned field_count = LLVMCountStructElementTypes(src); LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); LLVMGetStructElementTypes(src, fields); LLVMStructSetBody(dst, fields, field_count, LLVMIsPackedStruct(src)); gb_free(heap_allocator(), fields); } LLVMTypeRef lb_alignment_prefix_type_hack(lbModule *m, i64 alignment) { switch (alignment) { case 1: return LLVMArrayType(lb_type(m, t_u8), 0); case 2: return LLVMArrayType(lb_type(m, t_u16), 0); case 4: return LLVMArrayType(lb_type(m, t_u32), 0); case 8: return LLVMArrayType(lb_type(m, t_u64), 0); case 16: return LLVMArrayType(LLVMVectorType(lb_type(m, t_u32), 4), 0); default: GB_PANIC("Invalid alignment %d", cast(i32)alignment); break; } return nullptr; } bool lb_is_elem_const(Ast *elem, Type *elem_type) { if (!elem_type_can_be_constant(elem_type)) { return false; } if (elem->kind == Ast_FieldValue) { elem = elem->FieldValue.value; } TypeAndValue tav = type_and_value_of_expr(elem); GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s", expr_to_string(elem), type_to_string(tav.type)); return tav.value.kind != ExactValue_Invalid; } String lb_mangle_name(lbModule *m, Entity *e) { gbAllocator a = heap_allocator(); String name = e->token.string; AstPackage *pkg = e->pkg; GB_ASSERT_MSG(pkg != nullptr, "Missing package for '%.*s'", LIT(name)); String pkgn = pkg->name; GB_ASSERT(!rune_is_digit(pkgn[0])); isize max_len = pkgn.len + 1 + name.len + 1; bool require_suffix_id = is_type_polymorphic(e->type, true); if (require_suffix_id) { max_len += 21; } char *new_name = gb_alloc_array(a, char, max_len); isize new_name_len = gb_snprintf( new_name, max_len, "%.*s.%.*s", LIT(pkgn), LIT(name) ); if (require_suffix_id) { char *str = new_name + new_name_len-1; isize len = max_len-new_name_len; isize extra = gb_snprintf(str, len, "-%llu", cast(unsigned long long)e->id); new_name_len += extra-1; } return make_string((u8 *)new_name, new_name_len-1); } String lb_get_entity_name(lbModule *m, Entity *e, String default_name) { if (e != nullptr && e->kind == Entity_TypeName && e->TypeName.ir_mangled_name.len != 0) { return e->TypeName.ir_mangled_name; } if (e->pkg == nullptr) { return e->token.string; } String name = {}; bool no_name_mangle = false; if (e->kind == Entity_Variable) { bool is_foreign = e->Variable.is_foreign; bool is_export = e->Variable.is_export; no_name_mangle = e->Variable.link_name.len > 0 || is_foreign || is_export; if (e->Variable.link_name.len > 0) { return e->Variable.link_name; } } else if (e->kind == Entity_Procedure && e->Procedure.link_name.len > 0) { return e->Procedure.link_name; } else if (e->kind == Entity_Procedure && e->Procedure.is_export) { no_name_mangle = true; } if (!no_name_mangle) { name = lb_mangle_name(m, e); } if (name.len == 0) { name = e->token.string; } if (e != nullptr && e->kind == Entity_TypeName) { e->TypeName.ir_mangled_name = name; } else if (e != nullptr && e->kind == Entity_Procedure) { e->Procedure.link_name = name; } return name; } LLVMTypeRef lb_type_internal(lbModule *m, Type *type) { LLVMContextRef ctx = m->ctx; i64 size = type_size_of(type); // Check size GB_ASSERT(type != t_invalid); switch (type->kind) { case Type_Basic: switch (type->Basic.kind) { case Basic_llvm_bool: return LLVMInt1TypeInContext(ctx); case Basic_bool: return LLVMInt8TypeInContext(ctx); case Basic_b8: return LLVMInt8TypeInContext(ctx); case Basic_b16: return LLVMInt16TypeInContext(ctx); case Basic_b32: return LLVMInt32TypeInContext(ctx); case Basic_b64: return LLVMInt64TypeInContext(ctx); case Basic_i8: return LLVMInt8TypeInContext(ctx); case Basic_u8: return LLVMInt8TypeInContext(ctx); case Basic_i16: return LLVMInt16TypeInContext(ctx); case Basic_u16: return LLVMInt16TypeInContext(ctx); case Basic_i32: return LLVMInt32TypeInContext(ctx); case Basic_u32: return LLVMInt32TypeInContext(ctx); case Basic_i64: return LLVMInt64TypeInContext(ctx); case Basic_u64: return LLVMInt64TypeInContext(ctx); case Basic_i128: return LLVMInt128TypeInContext(ctx); case Basic_u128: return LLVMInt128TypeInContext(ctx); case Basic_rune: return LLVMInt32TypeInContext(ctx); // Basic_f16, case Basic_f32: return LLVMFloatTypeInContext(ctx); case Basic_f64: return LLVMDoubleTypeInContext(ctx); // Basic_complex32, case Basic_complex64: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..complex64"); LLVMTypeRef fields[2] = { lb_type(m, t_f32), lb_type(m, t_f32), }; LLVMStructSetBody(type, fields, 2, false); return type; } case Basic_complex128: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..complex128"); LLVMTypeRef fields[2] = { lb_type(m, t_f64), lb_type(m, t_f64), }; LLVMStructSetBody(type, fields, 2, false); return type; } case Basic_quaternion128: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..quaternion128"); LLVMTypeRef fields[4] = { lb_type(m, t_f32), lb_type(m, t_f32), lb_type(m, t_f32), lb_type(m, t_f32), }; LLVMStructSetBody(type, fields, 4, false); return type; } case Basic_quaternion256: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..quaternion256"); LLVMTypeRef fields[4] = { lb_type(m, t_f64), lb_type(m, t_f64), lb_type(m, t_f64), lb_type(m, t_f64), }; LLVMStructSetBody(type, fields, 4, false); return type; } case Basic_int: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size); case Basic_uint: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size); case Basic_uintptr: return LLVMIntTypeInContext(ctx, 8*cast(unsigned)build_context.word_size); case Basic_rawptr: return LLVMPointerType(LLVMInt8Type(), 0); case Basic_string: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..string"); LLVMTypeRef fields[2] = { LLVMPointerType(lb_type(m, t_u8), 0), lb_type(m, t_int), }; LLVMStructSetBody(type, fields, 2, false); return type; } case Basic_cstring: return LLVMPointerType(LLVMInt8Type(), 0); case Basic_any: { LLVMTypeRef type = LLVMStructCreateNamed(ctx, "..any"); LLVMTypeRef fields[2] = { LLVMPointerType(lb_type(m, t_rawptr), 0), lb_type(m, t_typeid), }; LLVMStructSetBody(type, fields, 2, false); return type; } case Basic_typeid: return LLVMIntType(8*cast(unsigned)build_context.word_size); // Endian Specific Types case Basic_i16le: return LLVMInt16TypeInContext(ctx); case Basic_u16le: return LLVMInt16TypeInContext(ctx); case Basic_i32le: return LLVMInt32TypeInContext(ctx); case Basic_u32le: return LLVMInt32TypeInContext(ctx); case Basic_i64le: return LLVMInt64TypeInContext(ctx); case Basic_u64le: return LLVMInt64TypeInContext(ctx); case Basic_i128le: return LLVMInt128TypeInContext(ctx); case Basic_u128le: return LLVMInt128TypeInContext(ctx); case Basic_i16be: return LLVMInt16TypeInContext(ctx); case Basic_u16be: return LLVMInt16TypeInContext(ctx); case Basic_i32be: return LLVMInt32TypeInContext(ctx); case Basic_u32be: return LLVMInt32TypeInContext(ctx); case Basic_i64be: return LLVMInt64TypeInContext(ctx); case Basic_u64be: return LLVMInt64TypeInContext(ctx); case Basic_i128be: return LLVMInt128TypeInContext(ctx); case Basic_u128be: return LLVMInt128TypeInContext(ctx); // Untyped types case Basic_UntypedBool: GB_PANIC("Basic_UntypedBool"); break; case Basic_UntypedInteger: GB_PANIC("Basic_UntypedInteger"); break; case Basic_UntypedFloat: GB_PANIC("Basic_UntypedFloat"); break; case Basic_UntypedComplex: GB_PANIC("Basic_UntypedComplex"); break; case Basic_UntypedQuaternion: GB_PANIC("Basic_UntypedQuaternion"); break; case Basic_UntypedString: GB_PANIC("Basic_UntypedString"); break; case Basic_UntypedRune: GB_PANIC("Basic_UntypedRune"); break; case Basic_UntypedNil: GB_PANIC("Basic_UntypedNil"); break; case Basic_UntypedUndef: GB_PANIC("Basic_UntypedUndef"); break; } break; case Type_Named: { Type *base = base_type(type->Named.base); switch (base->kind) { case Type_Basic: return lb_type(m, base); case Type_Named: case Type_Generic: case Type_BitFieldValue: GB_PANIC("INVALID TYPE"); break; case Type_Pointer: case Type_Opaque: case Type_Array: case Type_EnumeratedArray: case Type_Slice: case Type_DynamicArray: case Type_Map: case Type_Enum: case Type_BitSet: case Type_SimdVector: return lb_type(m, base); // TODO(bill): Deal with this correctly. Can this be named? case Type_Proc: return lb_type(m, base); case Type_Tuple: return lb_type(m, base); } LLVMTypeRef *found = map_get(&m->types, hash_type(base)); if (found) { LLVMTypeKind kind = LLVMGetTypeKind(*found); if (kind == LLVMStructTypeKind) { LLVMTypeRef llvm_type = LLVMStructCreateNamed(ctx, alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name))); map_set(&m->types, hash_type(type), llvm_type); lb_clone_struct_type(llvm_type, *found); } } switch (base->kind) { case Type_Struct: case Type_Union: case Type_BitField: { LLVMTypeRef llvm_type = LLVMStructCreateNamed(ctx, alloc_cstring(heap_allocator(), lb_get_entity_name(m, type->Named.type_name))); map_set(&m->types, hash_type(type), llvm_type); lb_clone_struct_type(llvm_type, lb_type(m, base)); return llvm_type; } } return lb_type(m, base); } case Type_Pointer: return LLVMPointerType(lb_type(m, type_deref(type)), 0); case Type_Opaque: return lb_type(m, base_type(type)); case Type_Array: return LLVMArrayType(lb_type(m, type->Array.elem), cast(unsigned)type->Array.count); case Type_EnumeratedArray: return LLVMArrayType(lb_type(m, type->EnumeratedArray.elem), cast(unsigned)type->EnumeratedArray.count); case Type_Slice: { LLVMTypeRef fields[2] = { LLVMPointerType(lb_type(m, type->Slice.elem), 0), // data lb_type(m, t_int), // len }; return LLVMStructTypeInContext(ctx, fields, 2, false); } break; case Type_DynamicArray: { LLVMTypeRef fields[4] = { LLVMPointerType(lb_type(m, type->DynamicArray.elem), 0), // data lb_type(m, t_int), // len lb_type(m, t_int), // cap lb_type(m, t_allocator), // allocator }; return LLVMStructTypeInContext(ctx, fields, 4, false); } break; case Type_Map: return lb_type(m, type->Map.internal_type); case Type_Struct: { if (type->Struct.is_raw_union) { unsigned field_count = 2; LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); i64 alignment = type_align_of(type); unsigned size_of_union = cast(unsigned)type_size_of(type); fields[0] = lb_alignment_prefix_type_hack(m, alignment); fields[1] = LLVMArrayType(lb_type(m, t_u8), size_of_union); return LLVMStructTypeInContext(ctx, fields, field_count, false); } isize offset = 0; if (type->Struct.custom_align > 0) { offset = 1; } unsigned field_count = cast(unsigned)(type->Struct.fields.count + offset); LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); GB_ASSERT(fields != nullptr); defer (gb_free(heap_allocator(), fields)); for_array(i, type->Struct.fields) { Entity *field = type->Struct.fields[i]; fields[i+offset] = lb_type(m, field->type); } if (type->Struct.custom_align > 0) { fields[0] = lb_alignment_prefix_type_hack(m, type->Struct.custom_align); } return LLVMStructTypeInContext(ctx, fields, field_count, type->Struct.is_packed); } break; case Type_Union: if (type->Union.variants.count == 0) { return LLVMStructTypeInContext(ctx, nullptr, 0, false); } else { // NOTE(bill): The zero size array is used to fix the alignment used in a structure as // LLVM takes the first element's alignment as the entire alignment (like C) i64 align = type_align_of(type); i64 size = type_size_of(type); if (is_type_union_maybe_pointer_original_alignment(type)) { LLVMTypeRef fields[1] = {lb_type(m, type->Union.variants[0])}; return LLVMStructTypeInContext(ctx, fields, 1, false); } unsigned block_size = cast(unsigned)type->Union.variant_block_size; LLVMTypeRef fields[3] = {}; unsigned field_count = 1; fields[0] = lb_alignment_prefix_type_hack(m, align); if (is_type_union_maybe_pointer(type)) { field_count += 1; fields[1] = lb_type(m, type->Union.variants[0]); } else { field_count += 2; fields[1] = LLVMArrayType(lb_type(m, t_u8), block_size); fields[2] = lb_type(m, union_tag_type(type)); } return LLVMStructTypeInContext(ctx, fields, field_count, false); } break; case Type_Enum: return lb_type(m, base_enum_type(type)); case Type_Tuple: if (type->Tuple.variables.count == 1) { return lb_type(m, type->Tuple.variables[0]->type); } else { unsigned field_count = cast(unsigned)(type->Tuple.variables.count); LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); defer (gb_free(heap_allocator(), fields)); for_array(i, type->Tuple.variables) { Entity *field = type->Tuple.variables[i]; fields[i] = lb_type(m, field->type); } return LLVMStructTypeInContext(ctx, fields, field_count, type->Tuple.is_packed); } case Type_Proc: { set_procedure_abi_types(heap_allocator(), type); LLVMTypeRef return_type = LLVMVoidTypeInContext(ctx); isize offset = 0; if (type->Proc.return_by_pointer) { offset = 1; } else if (type->Proc.abi_compat_result_type != nullptr) { return_type = lb_type(m, type->Proc.abi_compat_result_type); } isize extra_param_count = offset; if (type->Proc.calling_convention == ProcCC_Odin) { extra_param_count += 1; } isize param_count = type->Proc.abi_compat_params.count + extra_param_count; LLVMTypeRef *param_types = gb_alloc_array(heap_allocator(), LLVMTypeRef, param_count); defer (gb_free(heap_allocator(), param_types)); isize param_index = offset; for_array(i, type->Proc.abi_compat_params) { Type *param = type->Proc.abi_compat_params[i]; if (param == nullptr) { continue; } param_types[param_index++] = lb_type(m, param); } if (type->Proc.return_by_pointer) { param_types[0] = LLVMPointerType(lb_type(m, type->Proc.abi_compat_result_type), 0); } if (type->Proc.calling_convention == ProcCC_Odin) { param_types[param_index++] = lb_type(m, t_context_ptr); } LLVMTypeRef t = LLVMFunctionType(return_type, param_types, cast(unsigned)param_index, type->Proc.c_vararg); return LLVMPointerType(t, 0); } break; case Type_BitFieldValue: return LLVMIntType(type->BitFieldValue.bits); case Type_BitField: { LLVMTypeRef internal_type = nullptr; { GB_ASSERT(type->BitField.fields.count == type->BitField.sizes.count); unsigned field_count = cast(unsigned)type->BitField.fields.count; LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); defer (gb_free(heap_allocator(), fields)); for_array(i, type->BitField.sizes) { u32 size = type->BitField.sizes[i]; fields[i] = LLVMIntType(size); } internal_type = LLVMStructTypeInContext(ctx, fields, field_count, true); } unsigned field_count = 2; LLVMTypeRef *fields = gb_alloc_array(heap_allocator(), LLVMTypeRef, field_count); i64 alignment = 1; if (type->BitField.custom_align > 0) { alignment = type->BitField.custom_align; } fields[0] = lb_alignment_prefix_type_hack(m, alignment); fields[1] = internal_type; return LLVMStructTypeInContext(ctx, fields, field_count, true); } break; case Type_BitSet: return LLVMIntType(8*cast(unsigned)type_size_of(type)); case Type_SimdVector: if (type->SimdVector.is_x86_mmx) { return LLVMX86MMXTypeInContext(ctx); } return LLVMVectorType(lb_type(m, type->SimdVector.elem), cast(unsigned)type->SimdVector.count); } GB_PANIC("Invalid type %s", type_to_string(type)); return LLVMInt32TypeInContext(ctx); } LLVMTypeRef lb_type(lbModule *m, Type *type) { type = default_type(type); LLVMTypeRef *found = map_get(&m->types, hash_type(type)); if (found) { return *found; } LLVMTypeRef llvm_type = lb_type_internal(m, type); map_set(&m->types, hash_type(type), llvm_type); return llvm_type; } void lb_add_entity(lbModule *m, Entity *e, lbValue val) { if (e != nullptr) { map_set(&m->values, hash_entity(e), val); } } void lb_add_member(lbModule *m, String const &name, lbValue val) { if (name.len > 0) { map_set(&m->members, hash_string(name), val); } } void lb_add_member(lbModule *m, HashKey const &key, lbValue val) { map_set(&m->members, key, val); } void lb_add_procedure_value(lbModule *m, lbProcedure *p) { if (p->entity != nullptr) { map_set(&m->procedure_values, hash_pointer(p->value), p->entity); } } LLVMAttributeRef lb_create_enum_attribute(LLVMContextRef ctx, char const *name, u64 value) { unsigned kind = LLVMGetEnumAttributeKindForName(name, gb_strlen(name)); return LLVMCreateEnumAttribute(ctx, kind, value); } void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name, u64 value) { LLVMContextRef ctx = LLVMGetModuleContext(p->module->mod); LLVMAddAttributeAtIndex(p->value, cast(unsigned)index, lb_create_enum_attribute(ctx, name, value)); } void lb_add_proc_attribute_at_index(lbProcedure *p, isize index, char const *name) { lb_add_proc_attribute_at_index(p, index, name, true); } lbProcedure *lb_create_procedure(lbModule *m, Entity *entity) { GB_ASSERT(entity != nullptr); lbProcedure *p = gb_alloc_item(heap_allocator(), lbProcedure); p->module = m; entity->code_gen_module = m; p->entity = entity; p->name = lb_get_entity_name(m, entity); DeclInfo *decl = entity->decl_info; ast_node(pl, ProcLit, decl->proc_lit); Type *pt = base_type(entity->type); GB_ASSERT(pt->kind == Type_Proc); set_procedure_abi_types(heap_allocator(), entity->type); p->type = entity->type; p->type_expr = decl->type_expr; p->body = pl->body; p->tags = pt->Proc.tags; p->inlining = ProcInlining_none; p->is_foreign = false; p->is_export = false; p->is_entry_point = false; gbAllocator a = heap_allocator(); p->children.allocator = a; p->params.allocator = a; p->defer_stmts.allocator = a; p->blocks.allocator = a; p->branch_blocks.allocator = a; p->context_stack.allocator = a; char *name = alloc_cstring(heap_allocator(), p->name); LLVMTypeRef func_ptr_type = lb_type(m, p->type); LLVMTypeRef func_type = LLVMGetElementType(func_ptr_type); p->value = LLVMAddFunction(m->mod, name, func_type); lbValue value = {}; value.type = p->type; value.value = p->value; lb_add_entity(m, entity, value); lb_add_procedure_value(m, p); LLVMSetFunctionCallConv(p->value, lb_calling_convention_map[pt->Proc.calling_convention]); lbValue proc_value = {p->value, p->type}; lb_add_entity(m, entity, proc_value); lb_add_member(m, p->name, proc_value); LLVMContextRef ctx = LLVMGetModuleContext(m->mod); // NOTE(bill): offset==0 is the return value isize offset = 1; if (pt->Proc.return_by_pointer) { lb_add_proc_attribute_at_index(p, 1, "sret"); lb_add_proc_attribute_at_index(p, 1, "noalias"); offset = 2; } isize parameter_index = 0; if (pt->Proc.param_count) { TypeTuple *params = &pt->Proc.params->Tuple; for (isize i = 0; i < pt->Proc.param_count; i++) { Entity *e = params->variables[i]; Type *original_type = e->type; Type *abi_type = pt->Proc.abi_compat_params[i]; if (e->kind != Entity_Variable) continue; if (i+1 == params->variables.count && pt->Proc.c_vararg) { continue; } if (is_type_tuple(abi_type)) { for_array(j, abi_type->Tuple.variables) { Type *tft = abi_type->Tuple.variables[j]->type; if (e->flags&EntityFlag_NoAlias) { lb_add_proc_attribute_at_index(p, offset+parameter_index+j, "noalias"); } } parameter_index += abi_type->Tuple.variables.count; } else { if (e->flags&EntityFlag_NoAlias) { lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias"); } parameter_index += 1; } } } if (pt->Proc.calling_convention == ProcCC_Odin) { lb_add_proc_attribute_at_index(p, offset+parameter_index, "noalias"); lb_add_proc_attribute_at_index(p, offset+parameter_index, "nonnull"); lb_add_proc_attribute_at_index(p, offset+parameter_index, "nocapture"); } return p; } lbValue lb_value_param(lbProcedure *p, Entity *e, Type *abi_type, i32 index, lbParamPasskind *kind_) { lbParamPasskind kind = lbParamPass_Value; if (e != nullptr && abi_type != e->type) { if (is_type_pointer(abi_type)) { GB_ASSERT(e->kind == Entity_Variable); kind = lbParamPass_Pointer; if (e->flags&EntityFlag_Value) { kind = lbParamPass_ConstRef; } } else if (is_type_integer(abi_type)) { kind = lbParamPass_Integer; } else if (abi_type == t_llvm_bool) { kind = lbParamPass_Value; } else if (is_type_simd_vector(abi_type)) { kind = lbParamPass_BitCast; } else if (is_type_float(abi_type)) { kind = lbParamPass_BitCast; } else if (is_type_tuple(abi_type)) { kind = lbParamPass_Tuple; } else { GB_PANIC("Invalid abi type pass kind %s", type_to_string(abi_type)); } } if (kind_) *kind_ = kind; lbValue res = {}; res.value = LLVMGetParam(p->value, cast(unsigned)index); res.type = abi_type; return res; } lbValue lb_add_param(lbProcedure *p, Entity *e, Ast *expr, Type *abi_type, i32 index) { lbParamPasskind kind = lbParamPass_Value; lbValue v = lb_value_param(p, e, abi_type, index, &kind); array_add(&p->params, v); lbValue res = {}; switch (kind) { case lbParamPass_Value: { lbAddr l = lb_add_local(p, e->type, e, false, index); lbValue x = v; if (abi_type == t_llvm_bool) { x = lb_emit_conv(p, x, t_bool); } lb_addr_store(p, l, x); return x; } case lbParamPass_Pointer: lb_add_entity(p->module, e, v); return lb_emit_load(p, v); case lbParamPass_Integer: { lbAddr l = lb_add_local(p, e->type, e, false, index); lbValue iptr = lb_emit_conv(p, l.addr, alloc_type_pointer(p->type)); lb_emit_store(p, iptr, v); return lb_addr_load(p, l); } case lbParamPass_ConstRef: lb_add_entity(p->module, e, v); return lb_emit_load(p, v); case lbParamPass_BitCast: { lbAddr l = lb_add_local(p, e->type, e, false, index); lbValue x = lb_emit_transmute(p, v, e->type); lb_addr_store(p, l, x); return x; } case lbParamPass_Tuple: { lbAddr l = lb_add_local(p, e->type, e, true, index); Type *st = struct_type_from_systemv_distribute_struct_fields(abi_type); lbValue ptr = lb_emit_transmute(p, l.addr, alloc_type_pointer(st)); if (abi_type->Tuple.variables.count > 0) { array_pop(&p->params); } for_array(i, abi_type->Tuple.variables) { Type *t = abi_type->Tuple.variables[i]->type; lbParamPasskind elem_kind = lbParamPass_Value; lbValue elem = lb_value_param(p, nullptr, t, index+cast(i32)i, &elem_kind); array_add(&p->params, elem); lbValue dst = lb_emit_struct_ep(p, ptr, cast(i32)i); lb_emit_store(p, dst, elem); } return lb_addr_load(p, l); } } GB_PANIC("Unreachable"); return {}; } void lb_start_block(lbProcedure *p, lbBlock *b) { GB_ASSERT(b != nullptr); p->curr_block = b; LLVMPositionBuilderAtEnd(p->builder, b->block); } void lb_begin_procedure_body(lbProcedure *p) { DeclInfo *decl = decl_info_of_entity(p->entity); if (decl != nullptr) { for_array(i, decl->labels) { BlockLabel bl = decl->labels[i]; lbBranchBlocks bb = {bl.label, nullptr, nullptr}; array_add(&p->branch_blocks, bb); } } p->builder = LLVMCreateBuilder(); p->decl_block = lb_create_block(p, "decls"); p->entry_block = lb_create_block(p, "entry"); lb_start_block(p, p->entry_block); GB_ASSERT(p->type != nullptr); i32 parameter_index = 0; if (p->type->Proc.return_by_pointer) { // NOTE(bill): this must be parameter 0 Type *ptr_type = alloc_type_pointer(reduce_tuple_to_single_type(p->type->Proc.results)); Entity *e = alloc_entity_param(nullptr, make_token_ident(str_lit("agg.result")), ptr_type, false, false); e->flags |= EntityFlag_Sret | EntityFlag_NoAlias; lbValue return_ptr_value = {}; return_ptr_value.value = LLVMGetParam(p->value, 0); return_ptr_value.type = alloc_type_pointer(p->type->Proc.abi_compat_result_type); p->return_ptr = lb_addr(return_ptr_value); lb_add_entity(p->module, e, return_ptr_value); parameter_index += 1; } if (p->type->Proc.params != nullptr) { TypeTuple *params = &p->type->Proc.params->Tuple; if (p->type_expr != nullptr) { ast_node(pt, ProcType, p->type_expr); isize param_index = 0; isize q_index = 0; for_array(i, params->variables) { ast_node(fl, FieldList, pt->params); GB_ASSERT(fl->list.count > 0); GB_ASSERT(fl->list[0]->kind == Ast_Field); if (q_index == fl->list[param_index]->Field.names.count) { q_index = 0; param_index++; } ast_node(field, Field, fl->list[param_index]); Ast *name = field->names[q_index++]; Entity *e = params->variables[i]; if (e->kind != Entity_Variable) { continue; } Type *abi_type = p->type->Proc.abi_compat_params[i]; if (e->token.string != "") { lb_add_param(p, e, name, abi_type, parameter_index); } if (is_type_tuple(abi_type)) { parameter_index += cast(i32)abi_type->Tuple.variables.count; } else { parameter_index += 1; } } } else { auto abi_types = p->type->Proc.abi_compat_params; for_array(i, params->variables) { Entity *e = params->variables[i]; if (e->kind != Entity_Variable) { continue; } Type *abi_type = e->type; if (abi_types.count > 0) { abi_type = abi_types[i]; } if (e->token.string != "") { lb_add_param(p, e, nullptr, abi_type, parameter_index); } if (is_type_tuple(abi_type)) { parameter_index += cast(i32)abi_type->Tuple.variables.count; } else { parameter_index += 1; } } } } if (p->type->Proc.has_named_results) { GB_ASSERT(p->type->Proc.result_count > 0); TypeTuple *results = &p->type->Proc.results->Tuple; LLVMValueRef return_ptr = LLVMGetParam(p->value, 0); isize result_index = 0; for_array(i, results->variables) { Entity *e = results->variables[i]; if (e->kind != Entity_Variable) { continue; } if (e->token.string != "") { GB_ASSERT(!is_blank_ident(e->token)); lbAddr res = lb_add_local(p, e->type, e); lbValue c = {}; switch (e->Variable.param_value.kind) { case ParameterValue_Constant: c = lb_const_value(p->module, e->type, e->Variable.param_value.value); break; case ParameterValue_Nil: c = lb_const_nil(p->module, e->type); break; case ParameterValue_Location: GB_PANIC("ParameterValue_Location"); break; } if (c.value != nullptr) { lb_addr_store(p, res, c); } } result_index += 1; } } if (p->type->Proc.calling_convention == ProcCC_Odin) { Entity *e = alloc_entity_param(nullptr, make_token_ident(str_lit("__.context_ptr")), t_context_ptr, false, false); e->flags |= EntityFlag_NoAlias; lbValue param = {}; param.value = LLVMGetParam(p->value, LLVMCountParams(p->value)-1); param.type = e->type; lb_add_entity(p->module, e, param); lbAddr ctx_addr = {}; ctx_addr.kind = lbAddr_Context; ctx_addr.addr = param; lbContextData ctx = {ctx_addr, p->scope_index}; array_add(&p->context_stack, ctx); } lb_start_block(p, p->entry_block); } void lb_end_procedure_body(lbProcedure *p) { LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block); LLVMBuildBr(p->builder, p->entry_block->block); LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block); if (p->type->Proc.result_count == 0) { LLVMValueRef instr = LLVMGetLastInstruction(p->curr_block->block); if (!LLVMIsAReturnInst(instr)) { LLVMBuildRetVoid(p->builder); } } p->curr_block = nullptr; } void lb_end_procedure(lbProcedure *p) { LLVMDisposeBuilder(p->builder); } void lb_add_edge(lbBlock *from, lbBlock *to) { LLVMValueRef instr = LLVMGetLastInstruction(from->block); if (instr == nullptr || !LLVMIsATerminatorInst(instr)) { array_add(&from->succs, to); array_add(&to->preds, from); } } lbBlock *lb_create_block(lbProcedure *p, char const *name) { lbBlock *b = gb_alloc_item(heap_allocator(), lbBlock); b->block = LLVMAppendBasicBlockInContext(p->module->ctx, p->value, name); b->scope = p->curr_scope; b->scope_index = p->scope_index; b->preds.allocator = heap_allocator(); b->succs.allocator = heap_allocator(); array_add(&p->blocks, b); return b; } void lb_emit_jump(lbProcedure *p, lbBlock *target_block) { if (p->curr_block == nullptr) { return; } LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block); if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) { return; } lb_add_edge(p->curr_block, target_block); LLVMBuildBr(p->builder, target_block->block); p->curr_block = nullptr; } void lb_emit_if(lbProcedure *p, lbValue cond, lbBlock *true_block, lbBlock *false_block) { lbBlock *b = p->curr_block; if (b == nullptr) { return; } LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block); if (last_instr != nullptr && LLVMIsATerminatorInst(last_instr)) { return; } lb_add_edge(b, true_block); lb_add_edge(b, false_block); LLVMBuildCondBr(p->builder, cond.value, true_block->block, false_block->block); } lbValue lb_build_cond(lbProcedure *p, Ast *cond, lbBlock *true_block, lbBlock *false_block) { switch (cond->kind) { case_ast_node(pe, ParenExpr, cond); return lb_build_cond(p, pe->expr, true_block, false_block); case_end; case_ast_node(ue, UnaryExpr, cond); if (ue->op.kind == Token_Not) { return lb_build_cond(p, ue->expr, false_block, true_block); } case_end; case_ast_node(be, BinaryExpr, cond); if (be->op.kind == Token_CmpAnd) { lbBlock *block = lb_create_block(p, "cmp.and"); lb_build_cond(p, be->left, block, false_block); lb_start_block(p, block); return lb_build_cond(p, be->right, true_block, false_block); } else if (be->op.kind == Token_CmpOr) { lbBlock *block = lb_create_block(p, "cmp.or"); lb_build_cond(p, be->left, true_block, block); lb_start_block(p, block); return lb_build_cond(p, be->right, true_block, false_block); } case_end; } lbValue v = lb_build_expr(p, cond); // v = lb_emit_conv(p, v, t_bool); v = lb_emit_conv(p, v, t_llvm_bool); LLVMBuildCondBr(p->builder, v.value, true_block->block, false_block->block); return v; } lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e, bool zero_init, i32 param_index) { GB_ASSERT(p->decl_block != p->curr_block); LLVMPositionBuilderAtEnd(p->builder, p->decl_block->block); char const *name = ""; if (e != nullptr) { name = alloc_cstring(heap_allocator(), e->token.string); } LLVMTypeRef llvm_type = lb_type(p->module, type); LLVMValueRef ptr = LLVMBuildAlloca(p->builder, llvm_type, name); LLVMSetAlignment(ptr, 16); // TODO(bill): Make this configurable LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block); if (zero_init) { LLVMBuildStore(p->builder, LLVMConstNull(lb_type(p->module, type)), ptr); } lbValue val = {}; val.value = ptr; val.type = alloc_type_pointer(type); if (e != nullptr) { lb_add_entity(p->module, e, val); } return lb_addr(val); } lbAddr lb_add_local_generated(lbProcedure *p, Type *type, bool zero_init) { return lb_add_local(p, type, nullptr, zero_init); } void lb_build_nested_proc(lbProcedure *p, AstProcLit *pd, Entity *e) { GB_ASSERT(pd->body != nullptr); lbModule *m = p->module; auto *min_dep_set = &m->info->minimum_dependency_set; if (ptr_set_exists(min_dep_set, e) == false) { // NOTE(bill): Nothing depends upon it so doesn't need to be built return; } // NOTE(bill): Generate a new name // parent.name-guid String original_name = e->token.string; String pd_name = original_name; if (e->Procedure.link_name.len > 0) { pd_name = e->Procedure.link_name; } isize name_len = p->name.len + 1 + pd_name.len + 1 + 10 + 1; char *name_text = gb_alloc_array(heap_allocator(), char, name_len); i32 guid = cast(i32)p->children.count; name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%d", LIT(p->name), LIT(pd_name), guid); String name = make_string(cast(u8 *)name_text, name_len-1); set_procedure_abi_types(heap_allocator(), e->type); e->Procedure.link_name = name; lbProcedure *nested_proc = lb_create_procedure(p->module, e); lbValue value = {}; value.value = nested_proc->value; value.type = nested_proc->type; lb_add_entity(m, e, value); array_add(&p->children, nested_proc); array_add(&m->procedures_to_generate, nested_proc); } void lb_build_constant_value_decl(lbProcedure *p, AstValueDecl *vd) { if (vd == nullptr || vd->is_mutable) { return; } auto *min_dep_set = &p->module->info->minimum_dependency_set; for_array(i, vd->names) { Ast *ident = vd->names[i]; GB_ASSERT(ident->kind == Ast_Ident); Entity *e = entity_of_ident(ident); GB_ASSERT(e != nullptr); switch (e->kind) { case Entity_TypeName: case Entity_Procedure: break; default: continue; } if (e->kind == Entity_TypeName) { bool polymorphic_struct = false; if (e->type != nullptr && e->kind == Entity_TypeName) { Type *bt = base_type(e->type); if (bt->kind == Type_Struct) { polymorphic_struct = bt->Struct.is_polymorphic; } } if (!polymorphic_struct && !ptr_set_exists(min_dep_set, e)) { continue; } // NOTE(bill): Generate a new name // parent_proc.name-guid String ts_name = e->token.string; lbModule *m = p->module; isize name_len = p->name.len + 1 + ts_name.len + 1 + 10 + 1; char *name_text = gb_alloc_array(heap_allocator(), char, name_len); i32 guid = cast(i32)m->members.entries.count; name_len = gb_snprintf(name_text, name_len, "%.*s.%.*s-%d", LIT(p->name), LIT(ts_name), guid); String name = make_string(cast(u8 *)name_text, name_len-1); e->TypeName.ir_mangled_name = name; // irValue *value = ir_value_type_name(name, e->type); // ir_add_entity_name(m, e, name); // ir_gen_global_type_name(m, e, name); } else if (e->kind == Entity_Procedure) { CheckerInfo *info = p->module->info; DeclInfo *decl = decl_info_of_entity(e); ast_node(pl, ProcLit, decl->proc_lit); if (pl->body != nullptr) { auto *found = map_get(&info->gen_procs, hash_pointer(ident)); if (found) { auto procs = *found; for_array(i, procs) { Entity *e = procs[i]; if (!ptr_set_exists(min_dep_set, e)) { continue; } DeclInfo *d = decl_info_of_entity(e); lb_build_nested_proc(p, &d->proc_lit->ProcLit, e); } } else { lb_build_nested_proc(p, pl, e); } } else { // FFI - Foreign function interace String original_name = e->token.string; String name = original_name; if (e->Procedure.is_foreign) { // lb_add_foreign_library_path(proc->module, e->Procedure.foreign_library); } if (e->Procedure.link_name.len > 0) { name = e->Procedure.link_name; } HashKey key = hash_string(name); lbValue *prev_value = map_get(&p->module->members, key); if (prev_value != nullptr) { // NOTE(bill): Don't do mutliple declarations in the IR return; } set_procedure_abi_types(heap_allocator(), e->type); e->Procedure.link_name = name; lbProcedure *nested_proc = lb_create_procedure(p->module, e); lbValue value = {}; value.value = nested_proc->value; value.type = nested_proc->type; array_add(&p->module->procedures_to_generate, nested_proc); if (p != nullptr) { array_add(&p->children, nested_proc); } else { map_set(&p->module->members, hash_string(name), value); } } } } } void lb_build_stmt_list(lbProcedure *p, Array const &stmts) { for_array(i, stmts) { Ast *stmt = stmts[i]; switch (stmt->kind) { case_ast_node(vd, ValueDecl, stmt); lb_build_constant_value_decl(p, vd); case_end; case_ast_node(fb, ForeignBlockDecl, stmt); ast_node(block, BlockStmt, fb->body); lb_build_stmt_list(p, block->stmts); case_end; } } for_array(i, stmts) { lb_build_stmt(p, stmts[i]); } } lbBranchBlocks lb_lookup_branch_blocks(lbProcedure *p, Ast *ident) { GB_ASSERT(ident->kind == Ast_Ident); Entity *e = entity_of_ident(ident); GB_ASSERT(e->kind == Entity_Label); for_array(i, p->branch_blocks) { lbBranchBlocks *b = &p->branch_blocks[i]; if (b->label == e->Label.node) { return *b; } } GB_PANIC("Unreachable"); lbBranchBlocks empty = {}; return empty; } lbTargetList *lb_push_target_list(lbProcedure *p, Ast *label, lbBlock *break_, lbBlock *continue_, lbBlock *fallthrough_) { lbTargetList *tl = gb_alloc_item(heap_allocator(), lbTargetList); tl->prev = p->target_list; tl->break_ = break_; tl->continue_ = continue_; tl->fallthrough_ = fallthrough_; p->target_list = tl; if (label != nullptr) { // Set label blocks GB_ASSERT(label->kind == Ast_Label); for_array(i, p->branch_blocks) { lbBranchBlocks *b = &p->branch_blocks[i]; GB_ASSERT(b->label != nullptr && label != nullptr); GB_ASSERT(b->label->kind == Ast_Label); if (b->label == label) { b->break_ = break_; b->continue_ = continue_; return tl; } } GB_PANIC("Unreachable"); } return tl; } void lb_pop_target_list(lbProcedure *p) { p->target_list = p->target_list->prev; } void lb_open_scope(lbProcedure *p) { p->scope_index += 1; } void lb_close_scope(lbProcedure *p, lbDeferExitKind kind, lbBlock *block, bool pop_stack=true) { lb_emit_defer_stmts(p, kind, block); GB_ASSERT(p->scope_index > 0); // NOTE(bill): Remove `context`s made in that scope isize end_idx = p->context_stack.count-1; isize pop_count = 0; for (;;) { if (end_idx < 0) { break; } lbContextData *end = &p->context_stack[end_idx]; if (end == nullptr) { break; } if (end->scope_index != p->scope_index) { break; } end_idx -= 1; pop_count += 1; } if (pop_stack) { for (isize i = 0; i < pop_count; i++) { array_pop(&p->context_stack); } } p->scope_index -= 1; } void lb_build_when_stmt(lbProcedure *p, AstWhenStmt *ws) { TypeAndValue tv = type_and_value_of_expr(ws->cond); GB_ASSERT(is_type_boolean(tv.type)); GB_ASSERT(tv.value.kind == ExactValue_Bool); if (tv.value.value_bool) { lb_build_stmt_list(p, ws->body->BlockStmt.stmts); } else if (ws->else_stmt) { switch (ws->else_stmt->kind) { case Ast_BlockStmt: lb_build_stmt_list(p, ws->else_stmt->BlockStmt.stmts); break; case Ast_WhenStmt: lb_build_when_stmt(p, &ws->else_stmt->WhenStmt); break; default: GB_PANIC("Invalid 'else' statement in 'when' statement"); break; } } } void lb_build_stmt(lbProcedure *p, Ast *node) { switch (node->kind) { case_ast_node(bs, EmptyStmt, node); case_end; case_ast_node(us, UsingStmt, node); case_end; case_ast_node(ws, WhenStmt, node); lb_build_when_stmt(p, ws); case_end; case_ast_node(bs, BlockStmt, node); if (bs->label != nullptr) { lbBlock *done = lb_create_block(p, "block.done"); lbTargetList *tl = lb_push_target_list(p, bs->label, done, nullptr, nullptr); tl->is_block = true; lb_open_scope(p); lb_build_stmt_list(p, bs->stmts); lb_close_scope(p, lbDeferExit_Default, nullptr); lb_emit_jump(p, done); lb_start_block(p, done); } else { lb_open_scope(p); lb_build_stmt_list(p, bs->stmts); lb_close_scope(p, lbDeferExit_Default, nullptr); } case_end; case_ast_node(vd, ValueDecl, node); if (!vd->is_mutable) { return; } bool is_static = false; if (vd->names.count > 0) { Entity *e = entity_of_ident(vd->names[0]); if (e->flags & EntityFlag_Static) { // NOTE(bill): If one of the entities is static, they all are is_static = true; } } if (is_static) { for_array(i, vd->names) { lbValue value = {}; if (vd->values.count > 0) { GB_ASSERT(vd->names.count == vd->values.count); Ast *ast_value = vd->values[i]; GB_ASSERT(ast_value->tav.mode == Addressing_Constant || ast_value->tav.mode == Addressing_Invalid); value = lb_const_value(p->module, ast_value->tav.type, ast_value->tav.value); } Ast *ident = vd->names[i]; GB_ASSERT(!is_blank_ident(ident)); Entity *e = entity_of_ident(ident); GB_ASSERT(e->flags & EntityFlag_Static); String name = e->token.string; String mangled_name = {}; { gbString str = gb_string_make_length(heap_allocator(), p->name.text, p->name.len); str = gb_string_appendc(str, "-"); str = gb_string_append_fmt(str, ".%.*s-%llu", LIT(name), cast(long long)e->id); mangled_name.text = cast(u8 *)str; mangled_name.len = gb_string_length(str); } char *c_name = alloc_cstring(heap_allocator(), mangled_name); LLVMValueRef global = LLVMAddGlobal(p->module->mod, lb_type(p->module, e->type), c_name); if (value.value != nullptr) { LLVMSetInitializer(global, value.value); } else { LLVMSetInitializer(global, LLVMConstNull(lb_type(p->module, e->type))); } if (e->Variable.thread_local_model != "") { LLVMSetThreadLocal(global, true); String m = e->Variable.thread_local_model; LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel; if (m == "default") { mode = LLVMGeneralDynamicTLSModel; } else if (m == "localdynamic") { mode = LLVMLocalDynamicTLSModel; } else if (m == "initialexec") { mode = LLVMInitialExecTLSModel; } else if (m == "localexec") { mode = LLVMLocalExecTLSModel; } else { GB_PANIC("Unhandled thread local mode %.*s", LIT(m)); } LLVMSetThreadLocalMode(global, mode); } else { LLVMSetLinkage(global, LLVMInternalLinkage); } lbValue global_val = {global, alloc_type_pointer(e->type)}; lb_add_entity(p->module, e, global_val); lb_add_member(p->module, mangled_name, global_val); } return; } if (vd->values.count == 0) { // declared and zero-initialized for_array(i, vd->names) { Ast *name = vd->names[i]; if (!is_blank_ident(name)) { Entity *e = entity_of_ident(name); lb_add_local(p, e->type, e, true); } } } else { // Tuple(s) auto lvals = array_make(heap_allocator(), 0, vd->names.count); auto inits = array_make(heap_allocator(), 0, vd->names.count); for_array(i, vd->names) { Ast *name = vd->names[i]; lbAddr lval = {}; if (!is_blank_ident(name)) { Entity *e = entity_of_ident(name); lval = lb_add_local(p, e->type, e, false); } array_add(&lvals, lval); } for_array(i, vd->values) { lbValue init = lb_build_expr(p, vd->values[i]); Type *t = init.type; if (t->kind == Type_Tuple) { for_array(i, t->Tuple.variables) { Entity *e = t->Tuple.variables[i]; lbValue v = lb_emit_struct_ev(p, init, cast(i32)i); array_add(&inits, v); } } else { array_add(&inits, init); } } for_array(i, inits) { lbAddr lval = lvals[i]; lbValue init = inits[i]; lb_addr_store(p, lval, init); } } case_end; case_ast_node(as, AssignStmt, node); if (as->op.kind == Token_Eq) { auto lvals = array_make(heap_allocator(), 0, as->lhs.count); for_array(i, as->lhs) { Ast *lhs = as->lhs[i]; lbAddr lval = {}; if (!is_blank_ident(lhs)) { lval = lb_build_addr(p, lhs); } array_add(&lvals, lval); } if (as->lhs.count == as->rhs.count) { if (as->lhs.count == 1) { lbAddr lval = lvals[0]; Ast *rhs = as->rhs[0]; lbValue init = lb_build_expr(p, rhs); lb_addr_store(p, lvals[0], init); } else { auto inits = array_make(heap_allocator(), 0, lvals.count); for_array(i, as->rhs) { lbValue init = lb_build_expr(p, as->rhs[i]); array_add(&inits, init); } for_array(i, inits) { lbAddr lval = lvals[i]; lbValue init = inits[i]; lb_addr_store(p, lval, init); } } } else { auto inits = array_make(heap_allocator(), 0, lvals.count); for_array(i, as->rhs) { lbValue init = lb_build_expr(p, as->rhs[i]); Type *t = init.type; // TODO(bill): refactor for code reuse as this is repeated a bit if (t->kind == Type_Tuple) { for_array(i, t->Tuple.variables) { Entity *e = t->Tuple.variables[i]; lbValue v = lb_emit_struct_ev(p, init, cast(i32)i); array_add(&inits, v); } } else { array_add(&inits, init); } } for_array(i, inits) { lbAddr lval = lvals[i]; lbValue init = inits[i]; lb_addr_store(p, lval, init); } } } else { // NOTE(bill): Only 1 += 1 is allowed, no tuples // +=, -=, etc i32 op = cast(i32)as->op.kind; op += Token_Add - Token_AddEq; // Convert += to + if (op == Token_CmpAnd || op == Token_CmpOr) { // TODO(bill): assign op // Type *type = as->lhs[0]->tav.type; // lbValue new_value = lb_emit_logical_binary_expr(p, cast(TokenKind)op, as->lhs[0], as->rhs[0], type); // lbAddr lhs = lb_build_addr(p, as->lhs[0]); // lb_addr_store(p, lhs, new_value); } else { // TODO(bill): Assign op // lbAddr lhs = lb_build_addr(p, as->lhs[0]); // lbValue value = lb_build_expr(p, as->rhs[0]); // lb_build_assign_op(p, lhs, value, cast(TokenKind)op); } return; } case_end; case_ast_node(es, ExprStmt, node); lb_build_expr(p, es->expr); case_end; case_ast_node(ds, DeferStmt, node); isize scope_index = p->scope_index; lb_add_defer_node(p, scope_index, ds->stmt); case_end; case_ast_node(rs, ReturnStmt, node); lbValue res = {}; TypeTuple *tuple = &p->type->Proc.results->Tuple; isize return_count = p->type->Proc.result_count; isize res_count = rs->results.count; if (return_count == 0) { // No return values LLVMBuildRetVoid(p->builder); return; } else if (return_count == 1) { Entity *e = tuple->variables[0]; if (res_count == 0) { lbValue *found = map_get(&p->module->values, hash_entity(e)); GB_ASSERT(found); res = lb_emit_load(p, *found); } else { res = lb_build_expr(p, rs->results[0]); res = lb_emit_conv(p, res, e->type); } } else { auto results = array_make(heap_allocator(), 0, return_count); if (res_count != 0) { for (isize res_index = 0; res_index < res_count; res_index++) { lbValue res = lb_build_expr(p, rs->results[res_index]); Type *t = res.type; if (t->kind == Type_Tuple) { for_array(i, t->Tuple.variables) { Entity *e = t->Tuple.variables[i]; lbValue v = lb_emit_struct_ev(p, res, cast(i32)i); array_add(&results, v); } } else { array_add(&results, res); } } } else { for (isize res_index = 0; res_index < return_count; res_index++) { Entity *e = tuple->variables[res_index]; lbValue *found = map_get(&p->module->values, hash_entity(e)); GB_ASSERT(found); lbValue res = lb_emit_load(p, *found); array_add(&results, res); } } GB_ASSERT(results.count == return_count); Type *ret_type = p->type->Proc.results; // NOTE(bill): Doesn't need to be zero because it will be initialized in the loops res = lb_add_local_generated(p, ret_type, false).addr; for_array(i, results) { Entity *e = tuple->variables[i]; lbValue field = lb_emit_struct_ep(p, res, cast(i32)i); lbValue val = lb_emit_conv(p, results[i], e->type); lb_emit_store(p, field, val); } res = lb_emit_load(p, res); } if (p->type->Proc.return_by_pointer) { if (res.value != nullptr) { lb_addr_store(p, p->return_ptr, res); } else { lb_addr_store(p, p->return_ptr, lb_const_nil(p->module, p->type->Proc.abi_compat_result_type)); } LLVMBuildRetVoid(p->builder); } else { GB_ASSERT_MSG(res.value != nullptr, "%.*s", LIT(p->name)); Type *abi_rt = p->type->Proc.abi_compat_result_type; if (!are_types_identical(res.type, abi_rt)) { res = lb_emit_transmute(p, res, abi_rt); } LLVMBuildRet(p->builder, res.value); } case_end; case_ast_node(is, IfStmt, node); lb_open_scope(p); // Scope #1 if (is->init != nullptr) { // TODO(bill): Should this have a separate block to begin with? #if 1 lbBlock *init = lb_create_block(p, "if.init"); lb_emit_jump(p, init); lb_start_block(p, init); #endif lb_build_stmt(p, is->init); } lbBlock *then = lb_create_block(p, "if.then"); lbBlock *done = lb_create_block(p, "if.done"); lbBlock *else_ = done; if (is->else_stmt != nullptr) { else_ = lb_create_block(p, "if.else"); } lb_build_cond(p, is->cond, then, else_); lb_start_block(p, then); if (is->label != nullptr) { lbTargetList *tl = lb_push_target_list(p, is->label, done, nullptr, nullptr); tl->is_block = true; } lb_build_stmt(p, is->body); lb_emit_jump(p, done); if (is->else_stmt != nullptr) { lb_start_block(p, else_); lb_open_scope(p); lb_build_stmt(p, is->else_stmt); lb_close_scope(p, lbDeferExit_Default, nullptr); lb_emit_jump(p, done); } lb_start_block(p, done); lb_close_scope(p, lbDeferExit_Default, nullptr); case_end; case_ast_node(fs, ForStmt, node); lb_open_scope(p); // Open Scope here if (fs->init != nullptr) { #if 1 lbBlock *init = lb_create_block(p, "for.init"); lb_emit_jump(p, init); lb_start_block(p, init); #endif lb_build_stmt(p, fs->init); } lbBlock *body = lb_create_block(p, "for.body"); lbBlock *done = lb_create_block(p, "for.done"); // NOTE(bill): Append later lbBlock *loop = body; if (fs->cond != nullptr) { loop = lb_create_block(p, "for.loop"); } lbBlock *post = loop; if (fs->post != nullptr) { post = lb_create_block(p, "for.post"); } lb_emit_jump(p, loop); lb_start_block(p, loop); if (loop != body) { lb_build_cond(p, fs->cond, body, done); lb_start_block(p, body); } lb_push_target_list(p, fs->label, done, post, nullptr); lb_build_stmt(p, fs->body); lb_close_scope(p, lbDeferExit_Default, nullptr); lb_pop_target_list(p); lb_emit_jump(p, post); if (fs->post != nullptr) { lb_start_block(p, post); lb_build_stmt(p, fs->post); lb_emit_jump(p, loop); } lb_start_block(p, done); case_end; case_ast_node(rs, RangeStmt, node); // TODO(bill): RangeStmt case_end; case_ast_node(rs, InlineRangeStmt, node); // TODO(bill): InlineRangeStmt case_end; case_ast_node(ss, SwitchStmt, node); if (true) { return; } if (ss->init != nullptr) { lb_build_stmt(p, ss->init); } lbValue tag = lb_const_bool(p->module, t_llvm_bool, true); if (ss->tag != nullptr) { tag = lb_build_expr(p, ss->tag); } lbBlock *done = lb_create_block(p, "switch.done"); // NOTE(bill): Append later ast_node(body, BlockStmt, ss->body); Array default_stmts = {}; lbBlock *default_fall = nullptr; lbBlock *default_block = nullptr; lbBlock *fall = nullptr; bool append_fall = false; isize case_count = body->stmts.count; for_array(i, body->stmts) { Ast *clause = body->stmts[i]; lbBlock *body = fall; ast_node(cc, CaseClause, clause); if (body == nullptr) { if (cc->list.count == 0) { body = lb_create_block(p, "switch.dflt.body"); } else { body = lb_create_block(p, "switch.case.body"); } } if (append_fall && body == fall) { append_fall = false; } fall = done; if (i+1 < case_count) { append_fall = true; fall = lb_create_block(p, "switch.fall.body"); } if (cc->list.count == 0) { // default case default_stmts = cc->stmts; default_fall = fall; default_block = body; continue; } lbBlock *next_cond = nullptr; for_array(j, cc->list) { Ast *expr = unparen_expr(cc->list[j]); next_cond = lb_create_block(p, "switch.case.next"); lbValue cond = lb_const_bool(p->module, t_llvm_bool, false); if (is_ast_range(expr)) { ast_node(ie, BinaryExpr, expr); TokenKind op = Token_Invalid; switch (ie->op.kind) { case Token_Ellipsis: op = Token_LtEq; break; case Token_RangeHalf: op = Token_Lt; break; default: GB_PANIC("Invalid interval operator"); break; } lbValue lhs = lb_build_expr(p, ie->left); lbValue rhs = lb_build_expr(p, ie->right); // TODO(bill): do short circuit here lbValue cond_lhs = lb_emit_comp(p, Token_LtEq, lhs, tag); lbValue cond_rhs = lb_emit_comp(p, op, tag, rhs); cond = lb_emit_arith(p, Token_And, cond_lhs, cond_rhs, t_bool); } else { if (expr->tav.mode == Addressing_Type) { GB_ASSERT(is_type_typeid(tag.type)); lbValue e = lb_typeid(p->module, expr->tav.type); e = lb_emit_conv(p, e, tag.type); cond = lb_emit_comp(p, Token_CmpEq, tag, e); } else { cond = lb_emit_comp(p, Token_CmpEq, tag, lb_build_expr(p, expr)); } } lb_emit_if(p, cond, body, next_cond); lb_start_block(p, next_cond); } lb_emit_jump(p, body); lb_start_block(p, body); lb_push_target_list(p, ss->label, done, nullptr, fall); lb_open_scope(p); lb_build_stmt_list(p, cc->stmts); lb_close_scope(p, lbDeferExit_Default, body); lb_pop_target_list(p); lb_emit_jump(p, done); p->curr_block = next_cond; } if (default_block != nullptr) { lb_emit_jump(p, default_block); lb_start_block(p, default_block); lb_push_target_list(p, ss->label, done, nullptr, default_fall); lb_open_scope(p); lb_build_stmt_list(p, default_stmts); lb_close_scope(p, lbDeferExit_Default, default_block); lb_pop_target_list(p); } lb_emit_jump(p, done); lb_start_block(p, done); case_end; case_ast_node(ss, TypeSwitchStmt, node); // TODO(bill): TypeSwitchStmt case_end; case_ast_node(bs, BranchStmt, node); lbBlock *block = nullptr; if (bs->label != nullptr) { lbBranchBlocks bb = lb_lookup_branch_blocks(p, bs->label); switch (bs->token.kind) { case Token_break: block = bb.break_; break; case Token_continue: block = bb.continue_; break; case Token_fallthrough: GB_PANIC("fallthrough cannot have a label"); break; } } else { for (lbTargetList *t = p->target_list; t != nullptr && block == nullptr; t = t->prev) { if (t->is_block) { continue; } switch (bs->token.kind) { case Token_break: block = t->break_; break; case Token_continue: block = t->continue_; break; case Token_fallthrough: block = t->fallthrough_; break; } } } if (block != nullptr) { lb_emit_defer_stmts(p, lbDeferExit_Branch, block); } lb_emit_jump(p, block); case_end; } } lbValue lb_emit_select(lbProcedure *p, lbValue cond, lbValue x, lbValue y) { cond = lb_emit_conv(p, cond, t_llvm_bool); lbValue res = {}; res.value = LLVMBuildSelect(p->builder, cond.value, x.value, y.value, ""); res.type = x.type; return res; } lbValue lb_const_nil(lbModule *m, Type *type) { LLVMValueRef v = LLVMConstNull(lb_type(m, type)); return lbValue{v, type}; } lbValue lb_const_undef(lbModule *m, Type *type) { LLVMValueRef v = LLVMGetUndef(lb_type(m, type)); return lbValue{v, type}; } lbValue lb_const_int(lbModule *m, Type *type, u64 value) { lbValue res = {}; res.value = LLVMConstInt(lb_type(m, type), value, !is_type_unsigned(type)); res.type = type; return res; } lbValue lb_const_bool(lbModule *m, Type *type, bool value) { lbValue res = {}; res.value = LLVMConstInt(lb_type(m, type), value, false); res.type = type; return res; } LLVMValueRef lb_const_f32(lbModule *m, f32 f, Type *type=t_f32) { u32 u = bit_cast(f); LLVMValueRef i = LLVMConstInt(LLVMInt32TypeInContext(m->ctx), u, false); return LLVMConstBitCast(i, lb_type(m, type)); } lbValue lb_emit_min(lbProcedure *p, Type *t, lbValue x, lbValue y) { x = lb_emit_conv(p, x, t); y = lb_emit_conv(p, y, t); if (is_type_float(t)) { gbAllocator a = heap_allocator(); i64 sz = 8*type_size_of(t); auto args = array_make(heap_allocator(), 2); args[0] = x; args[1] = y; switch (sz) { case 32: return lb_emit_runtime_call(p, "min_f32", args); case 64: return lb_emit_runtime_call(p, "min_f64", args); } GB_PANIC("Unknown float type"); } return lb_emit_select(p, lb_emit_comp(p, Token_Lt, x, y), x, y); } lbValue lb_emit_max(lbProcedure *p, Type *t, lbValue x, lbValue y) { x = lb_emit_conv(p, x, t); y = lb_emit_conv(p, y, t); if (is_type_float(t)) { gbAllocator a = heap_allocator(); i64 sz = 8*type_size_of(t); auto args = array_make(heap_allocator(), 2); args[0] = x; args[1] = y; switch (sz) { case 32: return lb_emit_runtime_call(p, "max_f32", args); case 64: return lb_emit_runtime_call(p, "max_f64", args); } GB_PANIC("Unknown float type"); } return lb_emit_select(p, lb_emit_comp(p, Token_Gt, x, y), x, y); } lbValue lb_emit_clamp(lbProcedure *p, Type *t, lbValue x, lbValue min, lbValue max) { lbValue z = {}; z = lb_emit_max(p, t, x, min); z = lb_emit_min(p, t, z, max); return z; } lbValue lb_find_or_add_entity_string(lbModule *m, String const &str) { HashKey key = hash_string(str); lbValue *found = map_get(&m->const_strings, key); if (found != nullptr) { return *found; } lbValue v = lb_const_value(m, t_string, exact_value_string(str)); map_set(&m->const_strings, key, v); return v; } lbValue lb_find_or_add_entity_string_byte_slice(lbModule *m, String const &str) { HashKey key = hash_string(str); lbValue *found = map_get(&m->const_string_byte_slices, key); if (found != nullptr) { return *found; } Type *t = t_u8_slice; lbValue v = lb_const_value(m, t, exact_value_string(str)); map_set(&m->const_string_byte_slices, key, v); return v; } isize lb_type_info_index(CheckerInfo *info, Type *type, bool err_on_not_found=true) { isize index = type_info_index(info, type, false); if (index >= 0) { auto *set = &info->minimum_dependency_type_info_set; for_array(i, set->entries) { if (set->entries[i].ptr == index) { return i+1; } } } if (err_on_not_found) { GB_PANIC("NOT FOUND lb_type_info_index %s @ index %td", type_to_string(type), index); } return -1; } lbValue lb_typeid(lbModule *m, Type *type, Type *typeid_type) { type = default_type(type); u64 id = cast(u64)lb_type_info_index(m->info, type); GB_ASSERT(id >= 0); u64 kind = Typeid_Invalid; u64 named = is_type_named(type) && type->kind != Type_Basic; u64 special = 0; u64 reserved = 0; Type *bt = base_type(type); TypeKind tk = bt->kind; switch (tk) { case Type_Basic: { u32 flags = bt->Basic.flags; if (flags & BasicFlag_Boolean) kind = Typeid_Boolean; if (flags & BasicFlag_Integer) kind = Typeid_Integer; if (flags & BasicFlag_Unsigned) kind = Typeid_Integer; if (flags & BasicFlag_Float) kind = Typeid_Float; if (flags & BasicFlag_Complex) kind = Typeid_Complex; if (flags & BasicFlag_Pointer) kind = Typeid_Pointer; if (flags & BasicFlag_String) kind = Typeid_String; if (flags & BasicFlag_Rune) kind = Typeid_Rune; } break; case Type_Pointer: kind = Typeid_Pointer; break; case Type_Array: kind = Typeid_Array; break; case Type_EnumeratedArray: kind = Typeid_Enumerated_Array; break; case Type_Slice: kind = Typeid_Slice; break; case Type_DynamicArray: kind = Typeid_Dynamic_Array; break; case Type_Map: kind = Typeid_Map; break; case Type_Struct: kind = Typeid_Struct; break; case Type_Enum: kind = Typeid_Enum; break; case Type_Union: kind = Typeid_Union; break; case Type_Tuple: kind = Typeid_Tuple; break; case Type_Proc: kind = Typeid_Procedure; break; case Type_BitField: kind = Typeid_Bit_Field; break; case Type_BitSet: kind = Typeid_Bit_Set; break; } if (is_type_cstring(type)) { special = 1; } else if (is_type_integer(type) && !is_type_unsigned(type)) { special = 1; } u64 data = 0; if (build_context.word_size == 4) { data |= (id &~ (1u<<24)) << 0u; // index data |= (kind &~ (1u<<5)) << 24u; // kind data |= (named &~ (1u<<1)) << 29u; // kind data |= (special &~ (1u<<1)) << 30u; // kind data |= (reserved &~ (1u<<1)) << 31u; // kind } else { GB_ASSERT(build_context.word_size == 8); data |= (id &~ (1ull<<56)) << 0ul; // index data |= (kind &~ (1ull<<5)) << 56ull; // kind data |= (named &~ (1ull<<1)) << 61ull; // kind data |= (special &~ (1ull<<1)) << 62ull; // kind data |= (reserved &~ (1ull<<1)) << 63ull; // kind } lbValue res = {}; res.value = LLVMConstInt(lb_type(m, typeid_type), data, false); res.type = typeid_type; return res; } lbValue lb_type_info(lbModule *m, Type *type) { GB_PANIC("TODO(bill): lb_type_info"); return {}; } lbValue lb_const_value(lbModule *m, Type *type, ExactValue value) { LLVMContextRef ctx = m->ctx; type = default_type(type); Type *original_type = type; lbValue res = {}; res.type = original_type; type = core_type(type); value = convert_exact_value_for_type(value, type); if (value.kind == ExactValue_Typeid) { return lb_typeid(m, value.value_typeid, original_type); } // GB_ASSERT_MSG(is_type_typed(type), "%s", type_to_string(type)); if (is_type_slice(type)) { if (value.kind == ExactValue_String) { GB_ASSERT(is_type_u8_slice(type)); res.value = lb_find_or_add_entity_string_byte_slice(m, value.value_string).value; return res; } else { ast_node(cl, CompoundLit, value.value_compound); isize count = cl->elems.count; if (count == 0) { return lb_const_nil(m, type); } count = gb_max(cl->max_count, count); Type *elem = base_type(type)->Slice.elem; Type *t = alloc_type_array(elem, count); lbValue backing_array = lb_const_value(m, t, value); isize max_len = 7+8+1; char *str = gb_alloc_array(heap_allocator(), char, max_len); isize len = gb_snprintf(str, max_len, "csba$%x", m->global_array_index); m->global_array_index++; String name = make_string(cast(u8 *)str, len-1); Entity *e = alloc_entity_constant(nullptr, make_token_ident(name), t, value); LLVMValueRef global_data = LLVMAddGlobal(m->mod, lb_type(m, t), str); LLVMSetInitializer(global_data, backing_array.value); lbValue g = {}; g.value = global_data; g.type = t; lb_add_entity(m, e, g); lb_add_member(m, name, g); { LLVMValueRef indices[2] = {llvm_zero32(m), llvm_zero32(m)}; LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2); LLVMValueRef len = LLVMConstInt(lb_type(m, t_int), count, true); LLVMValueRef values[2] = {ptr, len}; res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2); return res; } } } else if (is_type_array(type) && value.kind == ExactValue_String && !is_type_u8(core_array_type(type))) { LLVMValueRef data = LLVMConstStringInContext(ctx, cast(char const *)value.value_string.text, cast(unsigned)value.value_string.len, false); res.value = data; return res; } else if (is_type_array(type) && value.kind != ExactValue_Invalid && value.kind != ExactValue_String && value.kind != ExactValue_Compound) { i64 count = type->Array.count; Type *elem = type->Array.elem; lbValue single_elem = lb_const_value(m, elem, value); LLVMValueRef *elems = gb_alloc_array(heap_allocator(), LLVMValueRef, count); for (i64 i = 0; i < count; i++) { elems[i] = single_elem.value; } res.value = LLVMConstArray(lb_type(m, elem), elems, cast(unsigned)count); return res; } switch (value.kind) { case ExactValue_Invalid: res.value = LLVMConstNull(lb_type(m, original_type)); return res; case ExactValue_Bool: res.value = LLVMConstInt(lb_type(m, original_type), value.value_bool, false); return res; case ExactValue_String: { HashKey key = hash_string(value.value_string); lbValue *found = map_get(&m->const_strings, key); if (found != nullptr) { res.value = found->value; res.type = default_type(original_type); return res; } LLVMValueRef indices[2] = {llvm_zero32(m), llvm_zero32(m)}; LLVMValueRef data = LLVMConstStringInContext(ctx, cast(char const *)value.value_string.text, cast(unsigned)value.value_string.len, false); isize max_len = 7+8+1; char *str = gb_alloc_array(heap_allocator(), char, max_len); isize len = gb_snprintf(str, max_len, "csbs$%x", m->global_array_index); len -= 1; m->global_array_index++; LLVMValueRef global_data = LLVMAddGlobal(m->mod, LLVMTypeOf(data), str); LLVMSetInitializer(global_data, data); LLVMValueRef ptr = LLVMConstInBoundsGEP(global_data, indices, 2); if (is_type_cstring(type)) { res.value = ptr; return res; } LLVMValueRef str_len = LLVMConstInt(lb_type(m, t_int), len, true); LLVMValueRef values[2] = {ptr, str_len}; res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2); res.type = default_type(original_type); map_set(&m->const_strings, key, res); return res; } case ExactValue_Integer: if (is_type_pointer(type)) { LLVMValueRef i = LLVMConstIntOfArbitraryPrecision(lb_type(m, t_uintptr), cast(unsigned)value.value_integer.len, big_int_ptr(&value.value_integer)); res.value = LLVMConstBitCast(i, lb_type(m, original_type)); } else { res.value = LLVMConstIntOfArbitraryPrecision(lb_type(m, original_type), cast(unsigned)value.value_integer.len, big_int_ptr(&value.value_integer)); } return res; case ExactValue_Float: if (type_size_of(type) == 4) { f32 f = cast(f32)value.value_float; res.value = lb_const_f32(m, f, type); return res; } res.value = LLVMConstReal(lb_type(m, original_type), value.value_float); return res; case ExactValue_Complex: { LLVMValueRef values[2] = {}; switch (8*type_size_of(type)) { case 64: values[0] = lb_const_f32(m, cast(f32)value.value_complex.real); values[1] = lb_const_f32(m, cast(f32)value.value_complex.imag); break; case 128: values[0] = LLVMConstReal(lb_type(m, t_f64), value.value_complex.real); values[1] = LLVMConstReal(lb_type(m, t_f64), value.value_complex.imag); break; } res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 2); return res; } break; case ExactValue_Quaternion: { LLVMValueRef values[4] = {}; switch (8*type_size_of(type)) { case 128: // @QuaternionLayout values[3] = lb_const_f32(m, cast(f32)value.value_quaternion.real); values[0] = lb_const_f32(m, cast(f32)value.value_quaternion.imag); values[1] = lb_const_f32(m, cast(f32)value.value_quaternion.jmag); values[2] = lb_const_f32(m, cast(f32)value.value_quaternion.kmag); break; case 256: // @QuaternionLayout values[3] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.real); values[0] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.imag); values[1] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.jmag); values[2] = LLVMConstReal(lb_type(m, t_f64), value.value_quaternion.kmag); break; } res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, 4); return res; } break; case ExactValue_Pointer: res.value = LLVMConstBitCast(LLVMConstInt(lb_type(m, t_uintptr), value.value_pointer, false), lb_type(m, original_type)); return res; case ExactValue_Compound: if (is_type_slice(type)) { return lb_const_value(m, type, value); } else if (is_type_array(type)) { ast_node(cl, CompoundLit, value.value_compound); Type *elem_type = type->Array.elem; isize elem_count = cl->elems.count; if (elem_count == 0) { return lb_const_nil(m, original_type); } if (cl->elems[0]->kind == Ast_FieldValue) { // TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count); defer (gb_free(heap_allocator(), values)); isize value_index = 0; for (i64 i = 0; i < type->Array.count; i++) { bool found = false; for (isize j = 0; j < elem_count; j++) { Ast *elem = cl->elems[j]; ast_node(fv, FieldValue, elem); if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } if (lo == i) { TypeAndValue tav = fv->value->tav; if (tav.mode != Addressing_Constant) { break; } LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value; for (i64 k = lo; k < hi; k++) { values[value_index++] = val; } found = true; i += (hi-lo-1); break; } } else { TypeAndValue index_tav = fv->field->tav; GB_ASSERT(index_tav.mode == Addressing_Constant); i64 index = exact_value_to_i64(index_tav.value); if (index == i) { TypeAndValue tav = fv->value->tav; if (tav.mode != Addressing_Constant) { break; } LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value; values[value_index++] = val; found = true; break; } } } if (!found) { values[value_index++] = LLVMConstNull(lb_type(m, elem_type)); } } res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->Array.count); return res; } else { GB_ASSERT_MSG(elem_count == type->Array.count, "%td != %td", elem_count, type->Array.count); LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->Array.count); defer (gb_free(heap_allocator(), values)); for (isize i = 0; i < elem_count; i++) { TypeAndValue tav = cl->elems[i]->tav; GB_ASSERT(tav.mode != Addressing_Invalid); values[i] = lb_const_value(m, elem_type, tav.value).value; } for (isize i = elem_count; i < type->Array.count; i++) { values[i] = LLVMConstNull(lb_type(m, elem_type)); } res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->Array.count); return res; } } else if (is_type_enumerated_array(type)) { ast_node(cl, CompoundLit, value.value_compound); Type *elem_type = type->EnumeratedArray.elem; isize elem_count = cl->elems.count; if (elem_count == 0) { return lb_const_nil(m, original_type); } if (cl->elems[0]->kind == Ast_FieldValue) { // TODO(bill): This is O(N*M) and will be quite slow; it should probably be sorted before hand LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count); defer (gb_free(heap_allocator(), values)); isize value_index = 0; i64 total_lo = exact_value_to_i64(type->EnumeratedArray.min_value); i64 total_hi = exact_value_to_i64(type->EnumeratedArray.max_value); for (i64 i = total_lo; i <= total_hi; i++) { bool found = false; for (isize j = 0; j < elem_count; j++) { Ast *elem = cl->elems[j]; ast_node(fv, FieldValue, elem); if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } if (lo == i) { TypeAndValue tav = fv->value->tav; if (tav.mode != Addressing_Constant) { break; } LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value; for (i64 k = lo; k < hi; k++) { values[value_index++] = val; } found = true; i += (hi-lo-1); break; } } else { TypeAndValue index_tav = fv->field->tav; GB_ASSERT(index_tav.mode == Addressing_Constant); i64 index = exact_value_to_i64(index_tav.value); if (index == i) { TypeAndValue tav = fv->value->tav; if (tav.mode != Addressing_Constant) { break; } LLVMValueRef val = lb_const_value(m, elem_type, tav.value).value; values[value_index++] = val; found = true; break; } } } if (!found) { values[value_index++] = LLVMConstNull(lb_type(m, elem_type)); } } res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->EnumeratedArray.count); return res; } else { GB_ASSERT_MSG(elem_count == type->EnumeratedArray.count, "%td != %td", elem_count, type->EnumeratedArray.count); LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, type->EnumeratedArray.count); defer (gb_free(heap_allocator(), values)); for (isize i = 0; i < elem_count; i++) { TypeAndValue tav = cl->elems[i]->tav; GB_ASSERT(tav.mode != Addressing_Invalid); values[i] = lb_const_value(m, elem_type, tav.value).value; } for (isize i = elem_count; i < type->EnumeratedArray.count; i++) { values[i] = LLVMConstNull(lb_type(m, elem_type)); } res.value = LLVMConstArray(lb_type(m, elem_type), values, cast(unsigned int)type->EnumeratedArray.count); return res; } } else if (is_type_simd_vector(type)) { ast_node(cl, CompoundLit, value.value_compound); Type *elem_type = type->SimdVector.elem; isize elem_count = cl->elems.count; if (elem_count == 0) { return lb_const_nil(m, original_type); } isize total_elem_count = type->SimdVector.count; LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, total_elem_count); defer (gb_free(heap_allocator(), values)); for (isize i = 0; i < elem_count; i++) { TypeAndValue tav = cl->elems[i]->tav; GB_ASSERT(tav.mode != Addressing_Invalid); values[i] = lb_const_value(m, elem_type, tav.value).value; } for (isize i = elem_count; i < type->SimdVector.count; i++) { values[i] = LLVMConstNull(lb_type(m, elem_type)); } res.value = LLVMConstVector(values, cast(unsigned)total_elem_count); return res; } else if (is_type_struct(type)) { ast_node(cl, CompoundLit, value.value_compound); if (cl->elems.count == 0) { return lb_const_nil(m, type); } isize offset = 0; if (type->Struct.custom_align > 0) { offset = 1; } isize value_count = type->Struct.fields.count + offset; LLVMValueRef *values = gb_alloc_array(heap_allocator(), LLVMValueRef, value_count); bool *visited = gb_alloc_array(heap_allocator(), bool, value_count); defer (gb_free(heap_allocator(), values)); defer (gb_free(heap_allocator(), visited)); if (cl->elems.count > 0) { if (cl->elems[0]->kind == Ast_FieldValue) { isize elem_count = cl->elems.count; for (isize i = 0; i < elem_count; i++) { ast_node(fv, FieldValue, cl->elems[i]); String name = fv->field->Ident.token.string; TypeAndValue tav = fv->value->tav; GB_ASSERT(tav.mode != Addressing_Invalid); Selection sel = lookup_field(type, name, false); Entity *f = type->Struct.fields[sel.index[0]]; values[offset+f->Variable.field_index] = lb_const_value(m, f->type, tav.value).value; visited[offset+f->Variable.field_index] = true; } } else { for_array(i, cl->elems) { Entity *f = type->Struct.fields[i]; TypeAndValue tav = cl->elems[i]->tav; ExactValue val = {}; if (tav.mode != Addressing_Invalid) { val = tav.value; } values[offset+f->Variable.field_index] = lb_const_value(m, f->type, val).value; visited[offset+f->Variable.field_index] = true; } } } for (isize i = 0; i < type->Struct.fields.count; i++) { if (!visited[offset+i]) { GB_ASSERT(values[offset+i] == nullptr); values[offset+i] = lb_const_nil(m, type->Struct.fields[i]->type).value; } } if (type->Struct.custom_align > 0) { values[0] = LLVMConstNull(lb_alignment_prefix_type_hack(m, type->Struct.custom_align)); } res.value = LLVMConstNamedStruct(lb_type(m, original_type), values, cast(unsigned)value_count); return res; } else if (is_type_bit_set(type)) { ast_node(cl, CompoundLit, value.value_compound); if (cl->elems.count == 0) { return lb_const_nil(m, original_type); } i64 sz = type_size_of(type); if (sz == 0) { return lb_const_nil(m, original_type); } u64 bits = 0; for_array(i, cl->elems) { Ast *e = cl->elems[i]; GB_ASSERT(e->kind != Ast_FieldValue); TypeAndValue tav = e->tav; if (tav.mode != Addressing_Constant) { continue; } GB_ASSERT(tav.value.kind == ExactValue_Integer); i64 v = big_int_to_i64(&tav.value.value_integer); i64 lower = type->BitSet.lower; bits |= 1ull<module; LLVMValueRef fields[5] = {}; fields[0]/*file*/ = lb_find_or_add_entity_string(p->module, pos.file).value; fields[1]/*line*/ = lb_const_int(m, t_int, pos.line).value; fields[2]/*column*/ = lb_const_int(m, t_int, pos.column).value; fields[3]/*procedure*/ = lb_find_or_add_entity_string(p->module, procedure).value; fields[4]/*hash*/ = lb_const_int(m, t_u64, lb_generate_source_code_location_hash(pos)).value; lbValue res = {}; res.value = LLVMConstNamedStruct(lb_type(m, t_source_code_location), fields, 5); res.type = t_source_code_location; return res; } lbValue lb_emit_unary_arith(lbProcedure *p, TokenKind op, lbValue x, Type *type) { switch (op) { case Token_Add: return x; case Token_Not: // Boolean not case Token_Xor: // Bitwise not case Token_Sub: // Number negation break; case Token_Pointer: GB_PANIC("This should be handled elsewhere"); break; } if (is_type_array(x.type)) { // IMPORTANT TODO(bill): This is very wasteful with regards to stack memory Type *tl = base_type(x.type); lbValue val = lb_address_from_load_or_generate_local(p, x); GB_ASSERT(is_type_array(type)); Type *elem_type = base_array_type(type); // NOTE(bill): Doesn't need to be zero because it will be initialized in the loops lbAddr res_addr = lb_add_local_generated(p, type, false); lbValue res = lb_addr_get_ptr(p, res_addr); bool inline_array_arith = type_size_of(type) <= build_context.max_align; i32 count = cast(i32)tl->Array.count; if (inline_array_arith) { // inline for (i32 i = 0; i < count; i++) { lbValue e = lb_emit_load(p, lb_emit_array_epi(p, val, i)); lbValue z = lb_emit_unary_arith(p, op, e, elem_type); lb_emit_store(p, lb_emit_array_epi(p, res, i), z); } } else { auto loop_data = lb_loop_start(p, count, t_i32); lbValue e = lb_emit_load(p, lb_emit_array_ep(p, val, loop_data.idx)); lbValue z = lb_emit_unary_arith(p, op, e, elem_type); lb_emit_store(p, lb_emit_array_ep(p, res, loop_data.idx), z); lb_loop_end(p, loop_data); } return lb_emit_load(p, res); } if (op == Token_Not) { lbValue cmp = {}; cmp.value = LLVMBuildNot(p->builder, x.value, ""); cmp.type = x.type; return lb_emit_conv(p, cmp, type); } if (op == Token_Sub && is_type_integer(type) && is_type_different_to_arch_endianness(type)) { Type *platform_type = integer_endian_type_to_platform_type(type); lbValue v = lb_emit_byte_swap(p, x, platform_type); lbValue res = {}; res.value = LLVMBuildNeg(p->builder, v.value, ""); res.type = platform_type; return lb_emit_byte_swap(p, res, type); } lbValue res = {}; switch (op) { case Token_Not: // Boolean not res.value = LLVMBuildNot(p->builder, x.value, ""); res.type = x.type; return res; case Token_Xor: // Bitwise not res.value = LLVMBuildXor(p->builder, x.value, LLVMConstAllOnes(lb_type(p->module, x.type)), ""); res.type = x.type; return res; case Token_Sub: // Number negation if (is_type_integer(x.type)) { res.value = LLVMBuildNeg(p->builder, x.value, ""); } else if (is_type_float(x.type)) { res.value = LLVMBuildFNeg(p->builder, x.value, ""); } else { GB_PANIC("Unhandled type %s", type_to_string(x.type)); } res.type = x.type; return res; } return res; } lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) { lbModule *m = p->module; lhs = lb_emit_conv(p, lhs, type); rhs = lb_emit_conv(p, rhs, type); lbValue res = {}; res.type = type; switch (op) { case Token_Add: if (is_type_float(type)) { res.value = LLVMBuildFAdd(p->builder, lhs.value, rhs.value, ""); return res; } res.value = LLVMBuildAdd(p->builder, lhs.value, rhs.value, ""); return res; case Token_Sub: if (is_type_float(type)) { res.value = LLVMBuildFSub(p->builder, lhs.value, rhs.value, ""); return res; } res.value = LLVMBuildSub(p->builder, lhs.value, rhs.value, ""); return res; case Token_Mul: if (is_type_float(type)) { res.value = LLVMBuildFMul(p->builder, lhs.value, rhs.value, ""); return res; } res.value = LLVMBuildMul(p->builder, lhs.value, rhs.value, ""); return res; case Token_Quo: if (is_type_float(type)) { res.value = LLVMBuildFDiv(p->builder, lhs.value, rhs.value, ""); return res; } else if (is_type_unsigned(type)) { res.value = LLVMBuildUDiv(p->builder, lhs.value, rhs.value, ""); return res; } res.value = LLVMBuildSDiv(p->builder, lhs.value, rhs.value, ""); return res; case Token_Mod: if (is_type_float(type)) { res.value = LLVMBuildFRem(p->builder, lhs.value, rhs.value, ""); return res; } else if (is_type_unsigned(type)) { res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, ""); return res; } res.value = LLVMBuildSRem(p->builder, lhs.value, rhs.value, ""); return res; case Token_ModMod: if (is_type_unsigned(type)) { res.value = LLVMBuildURem(p->builder, lhs.value, rhs.value, ""); return res; } else { LLVMValueRef a = LLVMBuildSRem(p->builder, lhs.value, rhs.value, ""); LLVMValueRef b = LLVMBuildAdd(p->builder, a, rhs.value, ""); LLVMValueRef c = LLVMBuildSRem(p->builder, b, rhs.value, ""); res.value = c; return res; } case Token_And: res.value = LLVMBuildAnd(p->builder, lhs.value, rhs.value, ""); return res; case Token_Or: res.value = LLVMBuildOr(p->builder, lhs.value, rhs.value, ""); return res; case Token_Xor: res.value = LLVMBuildXor(p->builder, lhs.value, rhs.value, ""); return res; case Token_Shl: rhs = lb_emit_conv(p, rhs, lhs.type); res.value = LLVMBuildShl(p->builder, lhs.value, rhs.value, ""); return res; case Token_Shr: if (is_type_unsigned(type)) { res.value = LLVMBuildLShr(p->builder, lhs.value, rhs.value, ""); return res; } rhs = lb_emit_conv(p, rhs, lhs.type); res.value = LLVMBuildAShr(p->builder, lhs.value, rhs.value, ""); return res; case Token_AndNot: { LLVMValueRef all_ones = LLVMConstAllOnes(lb_type(m, type)); LLVMValueRef new_rhs = LLVMBuildXor(p->builder, all_ones, rhs.value, ""); res.value = LLVMBuildAnd(p->builder, lhs.value, new_rhs, ""); return res; } break; } GB_PANIC("unhandled operator of lb_emit_arith"); return {}; } lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) { ast_node(be, BinaryExpr, expr); TypeAndValue tv = type_and_value_of_expr(expr); switch (be->op.kind) { case Token_Add: case Token_Sub: case Token_Mul: case Token_Quo: case Token_Mod: case Token_ModMod: case Token_And: case Token_Or: case Token_Xor: case Token_AndNot: case Token_Shl: case Token_Shr: { Type *type = default_type(tv.type); lbValue left = lb_build_expr(p, be->left); lbValue right = lb_build_expr(p, be->right); return lb_emit_arith(p, be->op.kind, left, right, type); } case Token_CmpEq: case Token_NotEq: case Token_Lt: case Token_LtEq: case Token_Gt: case Token_GtEq: { lbValue left = lb_build_expr(p, be->left); Type *type = default_type(tv.type); lbValue right = lb_build_expr(p, be->right); lbValue cmp = lb_emit_comp(p, be->op.kind, left, right); return lb_emit_conv(p, cmp, type); } case Token_CmpAnd: case Token_CmpOr: GB_PANIC("TODO(bill): && ||"); break; case Token_in: case Token_not_in: GB_PANIC("TODO(bill): in/not_in"); break; default: GB_PANIC("Invalid binary expression"); break; } return {}; } lbValue lb_emit_conv(lbProcedure *p, lbValue value, Type *t) { lbModule *m = p->module; t = reduce_tuple_to_single_type(t); Type *src_type = value.type; if (are_types_identical(t, src_type)) { return value; } Type *src = core_type(src_type); Type *dst = core_type(t); // if (is_type_untyped_nil(src) && type_has_nil(dst)) { if (is_type_untyped_nil(src)) { return lb_const_nil(m, t); } if (is_type_untyped_undef(src)) { return lb_const_undef(m, t); } if (LLVMIsConstant(value.value)) { if (is_type_any(dst)) { lbAddr default_value = lb_add_local_generated(p, default_type(src_type), false); lb_addr_store(p, default_value, value); return lb_emit_conv(p, lb_addr_load(p, default_value), t_any); } else if (dst->kind == Type_Basic) { // if (is_type_float(dst)) { // return value; // } else if (is_type_integer(dst)) { // return value; // } // ExactValue ev = value->Constant.value; // if (is_type_float(dst)) { // ev = exact_value_to_float(ev); // } else if (is_type_complex(dst)) { // ev = exact_value_to_complex(ev); // } else if (is_type_quaternion(dst)) { // ev = exact_value_to_quaternion(ev); // } else if (is_type_string(dst)) { // // Handled elsewhere // GB_ASSERT_MSG(ev.kind == ExactValue_String, "%d", ev.kind); // } else if (is_type_integer(dst)) { // ev = exact_value_to_integer(ev); // } else if (is_type_pointer(dst)) { // // IMPORTANT NOTE(bill): LLVM doesn't support pointer constants expect 'null' // lbValue i = ir_add_module_constant(p->module, t_uintptr, ev); // return ir_emit(p, ir_instr_conv(p, irConv_inttoptr, i, t_uintptr, dst)); // } // return lb_const_value(p->module, t, ev); } } if (are_types_identical(src, dst)) { if (!are_types_identical(src_type, t)) { return lb_emit_transmute(p, value, t); } return value; } // bool <-> llvm bool if (is_type_boolean(src) && dst == t_llvm_bool) { lbValue res = {}; res.value = LLVMBuildTrunc(p->builder, value.value, lb_type(m, dst), ""); res.type = dst; return res; } if (src == t_llvm_bool && is_type_boolean(dst)) { lbValue res = {}; res.value = LLVMBuildZExt(p->builder, value.value, lb_type(m, dst), ""); res.type = dst; return res; } // integer -> integer if (is_type_integer(src) && is_type_integer(dst)) { GB_ASSERT(src->kind == Type_Basic && dst->kind == Type_Basic); i64 sz = type_size_of(default_type(src)); i64 dz = type_size_of(default_type(dst)); if (sz > 1 && is_type_different_to_arch_endianness(src)) { Type *platform_src_type = integer_endian_type_to_platform_type(src); value = lb_emit_byte_swap(p, value, platform_src_type); } LLVMOpcode op = LLVMTrunc; if (dz < sz) { op = LLVMTrunc; } else if (dz == sz) { // NOTE(bill): In LLVM, all integers are signed and rely upon 2's compliment // NOTE(bill): Copy the value just for type correctness op = LLVMBitCast; } else if (dz > sz) { if (is_type_unsigned(src)) { op = LLVMZExt; // zero extent } else { op = LLVMSExt; // sign extent } } if (dz > 1 && is_type_different_to_arch_endianness(dst)) { Type *platform_dst_type = integer_endian_type_to_platform_type(dst); lbValue res = {}; res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, platform_dst_type), ""); res.type = t; return lb_emit_byte_swap(p, res, t); } else { lbValue res = {}; res.value = LLVMBuildCast(p->builder, op, value.value, lb_type(m, t), ""); res.type = t; return res; } } // boolean -> boolean/integer if (is_type_boolean(src) && (is_type_boolean(dst) || is_type_integer(dst))) { LLVMValueRef b = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), ""); lbValue res = {}; res.value = LLVMBuildZExt(p->builder, value.value, lb_type(m, t), ""); res.type = t; return res; } if (is_type_cstring(src) && is_type_u8_ptr(dst)) { return lb_emit_transmute(p, value, dst); } if (is_type_u8_ptr(src) && is_type_cstring(dst)) { return lb_emit_transmute(p, value, dst); } if (is_type_cstring(src) && is_type_rawptr(dst)) { return lb_emit_transmute(p, value, dst); } if (is_type_rawptr(src) && is_type_cstring(dst)) { return lb_emit_transmute(p, value, dst); } if (are_types_identical(src, t_cstring) && are_types_identical(dst, t_string)) { lbValue c = lb_emit_conv(p, value, t_cstring); auto args = array_make(heap_allocator(), 1); args[0] = c; lbValue s = lb_emit_runtime_call(p, "cstring_to_string", args); return lb_emit_conv(p, s, dst); } // integer -> boolean if (is_type_integer(src) && is_type_boolean(dst)) { lbValue res = {}; res.value = LLVMBuildICmp(p->builder, LLVMIntNE, value.value, LLVMConstNull(lb_type(m, value.type)), ""); res.type = t_llvm_bool; return lb_emit_conv(p, res, t); } // float -> float if (is_type_float(src) && is_type_float(dst)) { gbAllocator a = heap_allocator(); i64 sz = type_size_of(src); i64 dz = type_size_of(dst); lbValue res = {}; res.type = t; if (dz >= sz) { res.value = LLVMBuildFPExt(p->builder, value.value, lb_type(m, t), ""); } else { res.value = LLVMBuildFPTrunc(p->builder, value.value, lb_type(m, t), ""); } return res; } #if 0 if (is_type_complex(src) && is_type_complex(dst)) { Type *ft = base_complex_elem_type(dst); lbValue gen = lb_add_local_generated(p, dst, false); lbValue real = lb_emit_conv(p, ir_emit_struct_ev(p, value, 0), ft); lbValue imag = lb_emit_conv(p, ir_emit_struct_ev(p, value, 1), ft); lb_emit_store(p, ir_emit_struct_ep(p, gen, 0), real); lb_emit_store(p, ir_emit_struct_ep(p, gen, 1), imag); return lb_emit_load(p, gen); } if (is_type_quaternion(src) && is_type_quaternion(dst)) { // @QuaternionLayout Type *ft = base_complex_elem_type(dst); lbValue gen = lb_add_local_generated(p, dst, false); lbValue q0 = lb_emit_conv(p, ir_emit_struct_ev(p, value, 0), ft); lbValue q1 = lb_emit_conv(p, ir_emit_struct_ev(p, value, 1), ft); lbValue q2 = lb_emit_conv(p, ir_emit_struct_ev(p, value, 2), ft); lbValue q3 = lb_emit_conv(p, ir_emit_struct_ev(p, value, 3), ft); lb_emit_store(p, ir_emit_struct_ep(p, gen, 0), q0); lb_emit_store(p, ir_emit_struct_ep(p, gen, 1), q1); lb_emit_store(p, ir_emit_struct_ep(p, gen, 2), q2); lb_emit_store(p, ir_emit_struct_ep(p, gen, 3), q3); return lb_emit_load(p, gen); } if (is_type_float(src) && is_type_complex(dst)) { Type *ft = base_complex_elem_type(dst); lbValue gen = lb_add_local_generated(p, dst, true); lbValue real = lb_emit_conv(p, value, ft); lb_emit_store(p, ir_emit_struct_ep(p, gen, 0), real); return lb_emit_load(p, gen); } if (is_type_float(src) && is_type_quaternion(dst)) { Type *ft = base_complex_elem_type(dst); lbValue gen = lb_add_local_generated(p, dst, true); lbValue real = lb_emit_conv(p, value, ft); // @QuaternionLayout lb_emit_store(p, ir_emit_struct_ep(p, gen, 3), real); return lb_emit_load(p, gen); } if (is_type_complex(src) && is_type_quaternion(dst)) { Type *ft = base_complex_elem_type(dst); lbValue gen = lb_add_local_generated(p, dst, true); lbValue real = lb_emit_conv(p, ir_emit_struct_ev(p, value, 0), ft); lbValue imag = lb_emit_conv(p, ir_emit_struct_ev(p, value, 1), ft); // @QuaternionLayout lb_emit_store(p, ir_emit_struct_ep(p, gen, 3), real); lb_emit_store(p, ir_emit_struct_ep(p, gen, 0), imag); return lb_emit_load(p, gen); } #endif // float <-> integer if (is_type_float(src) && is_type_integer(dst)) { lbValue res = {}; res.type = t; if (is_type_unsigned(dst)) { res.value = LLVMBuildFPToUI(p->builder, value.value, lb_type(m, t), ""); } else { res.value = LLVMBuildFPToSI(p->builder, value.value, lb_type(m, t), ""); } return res; } if (is_type_integer(src) && is_type_float(dst)) { lbValue res = {}; res.type = t; if (is_type_unsigned(src)) { res.value = LLVMBuildUIToFP(p->builder, value.value, lb_type(m, t), ""); } else { res.value = LLVMBuildSIToFP(p->builder, value.value, lb_type(m, t), ""); } return res; } // Pointer <-> uintptr if (is_type_pointer(src) && is_type_uintptr(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), ""); return res; } if (is_type_uintptr(src) && is_type_pointer(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), ""); return res; } #if 0 if (is_type_union(dst)) { for_array(i, dst->Union.variants) { Type *vt = dst->Union.variants[i]; if (are_types_identical(vt, src_type)) { gbAllocator a = heap_allocator(); lbValue parent = lb_add_local_generated(p, t, true); lb_emit_store_union_variant(p, parent, value, vt); return lb_emit_load(p, parent); } } } // NOTE(bill): This has to be done before 'Pointer <-> Pointer' as it's // subtype polymorphism casting if (check_is_assignable_to_using_subtype(src_type, t)) { Type *st = type_deref(src_type); Type *pst = st; st = type_deref(st); bool st_is_ptr = is_type_pointer(src_type); st = base_type(st); Type *dt = t; bool dt_is_ptr = type_deref(dt) != dt; GB_ASSERT(is_type_struct(st) || is_type_raw_union(st)); String field_name = ir_lookup_subtype_polymorphic_field(p->module->info, t, src_type); if (field_name.len > 0) { // NOTE(bill): It can be casted Selection sel = lookup_field(st, field_name, false, true); if (sel.entity != nullptr) { ir_emit_comment(p, str_lit("cast - polymorphism")); if (st_is_ptr) { lbValue res = lb_emit_deep_field_gep(p, value, sel); Type *rt = ir_type(res); if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) { res = lb_emit_load(p, res); } return res; } else { if (is_type_pointer(ir_type(value))) { Type *rt = ir_type(value); if (!are_types_identical(rt, dt) && are_types_identical(type_deref(rt), dt)) { value = lb_emit_load(p, value); } else { value = lb_emit_deep_field_gep(p, value, sel); return lb_emit_load(p, value); } } return ir_emit_deep_field_ev(p, value, sel); } } else { GB_PANIC("invalid subtype cast %s.%.*s", type_to_string(src_type), LIT(field_name)); } } } #endif // Pointer <-> Pointer if (is_type_pointer(src) && is_type_pointer(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(m, t), ""); return res; } // proc <-> proc if (is_type_proc(src) && is_type_proc(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(m, t), ""); return res; } // pointer -> proc if (is_type_pointer(src) && is_type_proc(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(m, t), ""); return res; } // proc -> pointer if (is_type_proc(src) && is_type_pointer(dst)) { lbValue res = {}; res.type = t; res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(m, t), ""); return res; } #if 0 // []byte/[]u8 <-> string if (is_type_u8_slice(src) && is_type_string(dst)) { lbValue elem = ir_slice_elem(p, value); lbValue len = ir_slice_len(p, value); return ir_emit_string(p, elem, len); } if (is_type_string(src) && is_type_u8_slice(dst)) { lbValue elem = ir_string_elem(p, value); lbValue elem_ptr = lb_add_local_generated(p, ir_type(elem), false); lb_emit_store(p, elem_ptr, elem); lbValue len = ir_string_len(p, value); lbValue slice = ir_add_local_slice(p, t, elem_ptr, v_zero, len); return lb_emit_load(p, slice); } if (is_type_array(dst)) { Type *elem = dst->Array.elem; lbValue e = lb_emit_conv(p, value, elem); // NOTE(bill): Doesn't need to be zero because it will be initialized in the loops lbValue v = lb_add_local_generated(p, t, false); isize index_count = cast(isize)dst->Array.count; for (i32 i = 0; i < index_count; i++) { lbValue elem = ir_emit_array_epi(p, v, i); lb_emit_store(p, elem, e); } return lb_emit_load(p, v); } if (is_type_any(dst)) { lbValue result = lb_add_local_generated(p, t_any, true); if (is_type_untyped_nil(src)) { return lb_emit_load(p, result); } Type *st = default_type(src_type); lbValue data = ir_address_from_load_or_generate_local(p, value); GB_ASSERT_MSG(is_type_pointer(ir_type(data)), type_to_string(ir_type(data))); GB_ASSERT_MSG(is_type_typed(st), "%s", type_to_string(st)); data = lb_emit_conv(p, data, t_rawptr); lbValue id = lb_typeid(p->module, st); lb_emit_store(p, ir_emit_struct_ep(p, result, 0), data); lb_emit_store(p, ir_emit_struct_ep(p, result, 1), id); return lb_emit_load(p, result); } #endif if (is_type_untyped(src)) { if (is_type_string(src) && is_type_string(dst)) { lbAddr result = lb_add_local_generated(p, t, false); lb_addr_store(p, result, value); return lb_addr_load(p, result); } } gb_printf_err("%.*s\n", LIT(p->name)); gb_printf_err("lb_emit_conv: src -> dst\n"); gb_printf_err("Not Identical %s != %s\n", type_to_string(src_type), type_to_string(t)); gb_printf_err("Not Identical %s != %s\n", type_to_string(src), type_to_string(dst)); gb_printf_err("Not Identical %p != %p\n", src_type, t); gb_printf_err("Not Identical %p != %p\n", src, dst); GB_PANIC("Invalid type conversion: '%s' to '%s' for procedure '%.*s'", type_to_string(src_type), type_to_string(t), LIT(p->name)); return {}; } bool lb_is_type_aggregate(Type *t) { t = base_type(t); switch (t->kind) { case Type_Basic: switch (t->Basic.kind) { case Basic_string: case Basic_any: return true; // case Basic_complex32: case Basic_complex64: case Basic_complex128: case Basic_quaternion128: case Basic_quaternion256: return true; } break; case Type_Pointer: return false; case Type_Array: case Type_Slice: case Type_Struct: case Type_Union: case Type_Tuple: case Type_DynamicArray: case Type_Map: case Type_BitField: case Type_SimdVector: return true; case Type_Named: return lb_is_type_aggregate(t->Named.base); } return false; } lbValue lb_emit_transmute(lbProcedure *p, lbValue value, Type *t) { Type *src_type = value.type; if (are_types_identical(t, src_type)) { return value; } lbValue res = {}; res.type = t; Type *src = base_type(src_type); Type *dst = base_type(t); lbModule *m = p->module; i64 sz = type_size_of(src); i64 dz = type_size_of(dst); GB_ASSERT_MSG(sz == dz, "Invalid transmute conversion: '%s' to '%s'", type_to_string(src_type), type_to_string(t)); // NOTE(bill): Casting between an integer and a pointer cannot be done through a bitcast if (is_type_uintptr(src) && is_type_pointer(dst)) { res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), ""); return res; } if (is_type_pointer(src) && is_type_uintptr(dst)) { res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), ""); return res; } if (is_type_uintptr(src) && is_type_proc(dst)) { res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), ""); return res; } if (is_type_proc(src) && is_type_uintptr(dst)) { res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), ""); return res; } if (is_type_integer(src) && (is_type_pointer(dst) || is_type_cstring(dst))) { res.value = LLVMBuildIntToPtr(p->builder, value.value, lb_type(m, t), ""); return res; } else if ((is_type_pointer(src) || is_type_cstring(src)) && is_type_integer(dst)) { res.value = LLVMBuildPtrToInt(p->builder, value.value, lb_type(m, t), ""); return res; } if (lb_is_type_aggregate(src) || lb_is_type_aggregate(dst)) { lbValue s = lb_address_from_load_or_generate_local(p, value); lbValue d = lb_emit_transmute(p, s, alloc_type_pointer(t)); return lb_emit_load(p, d); } res.value = LLVMBuildBitCast(p->builder, value.value, lb_type(p->module, t), ""); // GB_PANIC("lb_emit_transmute"); return res; } void lb_emit_init_context(lbProcedure *p, lbValue c) { lbModule *m = p->module; gbAllocator a = heap_allocator(); auto args = array_make(a, 1); args[0] = c.value != nullptr ? c : m->global_default_context.addr; // lb_emit_runtime_call(p, "__init_context", args); } void lb_push_context_onto_stack(lbProcedure *p, lbAddr ctx) { lbContextData cd = {ctx, p->scope_index}; array_add(&p->context_stack, cd); } lbAddr lb_find_or_generate_context_ptr(lbProcedure *p) { if (p->context_stack.count > 0) { return p->context_stack[p->context_stack.count-1].ctx; } // lbBlock *tmp_block = p->curr_block; // p->curr_block = p->blocks[0]; // defer (p->curr_block = tmp_block); lbAddr c = lb_add_local_generated(p, t_context, false); c.kind = lbAddr_Context; lb_push_context_onto_stack(p, c); lb_addr_store(p, c, lb_addr_load(p, p->module->global_default_context)); lb_emit_init_context(p, c.addr); return c; } lbValue lb_address_from_load_or_generate_local(lbProcedure *p, lbValue value) { if (LLVMIsALoadInst(value.value)) { lbValue res = {}; res.value = LLVMGetOperand(value.value, 0); res.type = alloc_type_pointer(value.type); return res; } lbAddr res = lb_add_local_generated(p, value.type, false); lb_addr_store(p, res, value); return res.addr; } lbValue lb_copy_value_to_ptr(lbProcedure *p, lbValue val, Type *new_type, i64 alignment) { i64 type_alignment = type_align_of(new_type); if (alignment < type_alignment) { alignment = type_alignment; } GB_ASSERT_MSG(are_types_identical(new_type, val.type), "%s %s", type_to_string(new_type), type_to_string(val.type)); lbAddr ptr = lb_add_local_generated(p, new_type, false); LLVMSetAlignment(ptr.addr.value, cast(unsigned)alignment); lb_addr_store(p, ptr, val); ptr.kind = lbAddr_Context; return ptr.addr; } lbValue lb_emit_struct_ep(lbProcedure *p, lbValue s, i32 index) { gbAllocator a = heap_allocator(); GB_ASSERT(is_type_pointer(s.type)); Type *t = base_type(type_deref(s.type)); Type *result_type = nullptr; if (t->kind == Type_Opaque) { t = t->Opaque.elem; } if (is_type_struct(t)) { result_type = alloc_type_pointer(t->Struct.fields[index]->type); } else if (is_type_union(t)) { GB_ASSERT(index == -1); // return ir_emit_union_tag_ptr(proc, s); GB_PANIC("ir_emit_union_tag_ptr"); } else if (is_type_tuple(t)) { GB_ASSERT(t->Tuple.variables.count > 0); result_type = alloc_type_pointer(t->Tuple.variables[index]->type); } else if (is_type_complex(t)) { Type *ft = base_complex_elem_type(t); switch (index) { case 0: result_type = alloc_type_pointer(ft); break; case 1: result_type = alloc_type_pointer(ft); break; } } else if (is_type_quaternion(t)) { Type *ft = base_complex_elem_type(t); switch (index) { case 0: result_type = alloc_type_pointer(ft); break; case 1: result_type = alloc_type_pointer(ft); break; case 2: result_type = alloc_type_pointer(ft); break; case 3: result_type = alloc_type_pointer(ft); break; } } else if (is_type_slice(t)) { switch (index) { case 0: result_type = alloc_type_pointer(alloc_type_pointer(t->Slice.elem)); break; case 1: result_type = alloc_type_pointer(t_int); break; } } else if (is_type_string(t)) { switch (index) { case 0: result_type = alloc_type_pointer(t_u8_ptr); break; case 1: result_type = alloc_type_pointer(t_int); break; } } else if (is_type_any(t)) { switch (index) { case 0: result_type = alloc_type_pointer(t_rawptr); break; case 1: result_type = alloc_type_pointer(t_typeid); break; } } else if (is_type_dynamic_array(t)) { switch (index) { case 0: result_type = alloc_type_pointer(alloc_type_pointer(t->DynamicArray.elem)); break; case 1: result_type = t_int_ptr; break; case 2: result_type = t_int_ptr; break; case 3: result_type = t_allocator_ptr; break; } } else if (is_type_map(t)) { init_map_internal_types(t); Type *itp = alloc_type_pointer(t->Map.internal_type); s = lb_emit_transmute(p, s, itp); Type *gst = t->Map.internal_type; GB_ASSERT(gst->kind == Type_Struct); switch (index) { case 0: result_type = alloc_type_pointer(gst->Struct.fields[0]->type); break; case 1: result_type = alloc_type_pointer(gst->Struct.fields[1]->type); break; } } else if (is_type_array(t)) { return lb_emit_array_epi(p, s, index); } else { GB_PANIC("TODO(bill): struct_gep type: %s, %d", type_to_string(s.type), index); } GB_ASSERT_MSG(result_type != nullptr, "%s %d", type_to_string(t), index); lbValue res = {}; res.value = LLVMBuildStructGEP2(p->builder, lb_type(p->module, type_deref(s.type)), s.value, cast(unsigned)index, ""); res.type = result_type; return res; } lbValue lb_emit_struct_ev(lbProcedure *p, lbValue s, i32 index) { if (LLVMIsALoadInst(s.value)) { lbValue res = {}; res.value = LLVMGetOperand(s.value, 0); res.type = alloc_type_pointer(s.type); lbValue ptr = lb_emit_struct_ep(p, res, index); return lb_emit_load(p, ptr); } gbAllocator a = heap_allocator(); Type *t = base_type(s.type); Type *result_type = nullptr; switch (t->kind) { case Type_Basic: switch (t->Basic.kind) { case Basic_string: switch (index) { case 0: result_type = t_u8_ptr; break; case 1: result_type = t_int; break; } break; case Basic_any: switch (index) { case 0: result_type = t_rawptr; break; case 1: result_type = t_typeid; break; } break; case Basic_complex64: case Basic_complex128: { Type *ft = base_complex_elem_type(t); switch (index) { case 0: result_type = ft; break; case 1: result_type = ft; break; } break; } case Basic_quaternion128: case Basic_quaternion256: { Type *ft = base_complex_elem_type(t); switch (index) { case 0: result_type = ft; break; case 1: result_type = ft; break; case 2: result_type = ft; break; case 3: result_type = ft; break; } break; } } break; case Type_Struct: result_type = t->Struct.fields[index]->type; break; case Type_Union: GB_ASSERT(index == -1); // return lb_emit_union_tag_value(proc, s); GB_PANIC("lb_emit_union_tag_value"); case Type_Tuple: GB_ASSERT(t->Tuple.variables.count > 0); result_type = t->Tuple.variables[index]->type; if (t->Tuple.variables.count == 1) { return s; } break; case Type_Slice: switch (index) { case 0: result_type = alloc_type_pointer(t->Slice.elem); break; case 1: result_type = t_int; break; } break; case Type_DynamicArray: switch (index) { case 0: result_type = alloc_type_pointer(t->DynamicArray.elem); break; case 1: result_type = t_int; break; case 2: result_type = t_int; break; case 3: result_type = t_allocator; break; } break; case Type_Map: { init_map_internal_types(t); Type *gst = t->Map.generated_struct_type; switch (index) { case 0: result_type = gst->Struct.fields[0]->type; break; case 1: result_type = gst->Struct.fields[1]->type; break; } } break; case Type_Array: result_type = t->Array.elem; break; default: GB_PANIC("TODO(bill): struct_ev type: %s, %d", type_to_string(s.type), index); break; } GB_ASSERT_MSG(result_type != nullptr, "%s, %d", type_to_string(s.type), index); lbValue res = {}; res.value = LLVMBuildExtractValue(p->builder, s.value, cast(unsigned)index, ""); res.type = result_type; return res; } lbValue lb_emit_deep_field_gep(lbProcedure *p, lbValue e, Selection sel) { GB_ASSERT(sel.index.count > 0); Type *type = type_deref(e.type); gbAllocator a = heap_allocator(); for_array(i, sel.index) { i32 index = cast(i32)sel.index[i]; if (is_type_pointer(type)) { type = type_deref(type); e = lb_emit_load(p, e); } type = core_type(type); if (type->kind == Type_Opaque) { type = type->Opaque.elem; } if (is_type_quaternion(type)) { e = lb_emit_struct_ep(p, e, index); } else if (is_type_raw_union(type)) { type = type->Struct.fields[index]->type; GB_ASSERT(is_type_pointer(e.type)); e = lb_emit_transmute(p, e, alloc_type_pointer(type)); } else if (is_type_struct(type)) { type = type->Struct.fields[index]->type; e = lb_emit_struct_ep(p, e, index); } else if (type->kind == Type_Union) { GB_ASSERT(index == -1); type = t_type_info_ptr; e = lb_emit_struct_ep(p, e, index); } else if (type->kind == Type_Tuple) { type = type->Tuple.variables[index]->type; e = lb_emit_struct_ep(p, e, index); } else if (type->kind == Type_Basic) { switch (type->Basic.kind) { case Basic_any: { if (index == 0) { type = t_rawptr; } else if (index == 1) { type = t_type_info_ptr; } e = lb_emit_struct_ep(p, e, index); break; } case Basic_string: e = lb_emit_struct_ep(p, e, index); break; default: GB_PANIC("un-gep-able type"); break; } } else if (type->kind == Type_Slice) { e = lb_emit_struct_ep(p, e, index); } else if (type->kind == Type_DynamicArray) { e = lb_emit_struct_ep(p, e, index); } else if (type->kind == Type_Array) { e = lb_emit_array_epi(p, e, index); } else if (type->kind == Type_Map) { e = lb_emit_struct_ep(p, e, index); } else { GB_PANIC("un-gep-able type %s", type_to_string(type)); } } return e; } void lb_build_defer_stmt(lbProcedure *p, lbDefer d) { lbBlock *b = lb_create_block(p, "defer"); // NOTE(bill): The prev block may defer injection before it's terminator LLVMValueRef last_instr = LLVMGetLastInstruction(p->curr_block->block); if (last_instr == nullptr || !LLVMIsATerminatorInst(last_instr)) { lb_emit_jump(p, b); } lb_start_block(p, b); if (d.kind == lbDefer_Node) { lb_build_stmt(p, d.stmt); } else if (d.kind == lbDefer_Instr) { // NOTE(bill): Need to make a new copy LLVMValueRef instr = LLVMInstructionClone(d.instr.value); LLVMInsertIntoBuilder(p->builder, instr); } else if (d.kind == lbDefer_Proc) { lb_emit_call(p, d.proc.deferred, d.proc.result_as_args); } } void lb_emit_defer_stmts(lbProcedure *p, lbDeferExitKind kind, lbBlock *block) { isize count = p->defer_stmts.count; isize i = count; while (i --> 0) { lbDefer d = p->defer_stmts[i]; if (p->context_stack.count >= d.context_stack_count) { p->context_stack.count = d.context_stack_count; } if (kind == lbDeferExit_Default) { if (p->scope_index == d.scope_index && d.scope_index > 0) { // TODO(bill): Which is correct: > 0 or > 1? lb_build_defer_stmt(p, d); array_pop(&p->defer_stmts); continue; } else { break; } } else if (kind == lbDeferExit_Return) { lb_build_defer_stmt(p, d); } else if (kind == lbDeferExit_Branch) { GB_ASSERT(block != nullptr); isize lower_limit = block->scope_index; if (lower_limit < d.scope_index) { lb_build_defer_stmt(p, d); } } } } lbDefer lb_add_defer_node(lbProcedure *p, isize scope_index, Ast *stmt) { lbDefer d = {lbDefer_Node}; d.scope_index = scope_index; d.context_stack_count = p->context_stack.count; d.block = p->curr_block; d.stmt = stmt; array_add(&p->defer_stmts, d); return d; } lbDefer lb_add_defer_proc(lbProcedure *p, isize scope_index, lbValue deferred, Array const &result_as_args) { lbDefer d = {lbDefer_Proc}; d.scope_index = p->scope_index; d.block = p->curr_block; d.proc.deferred = deferred; d.proc.result_as_args = result_as_args; array_add(&p->defer_stmts, d); return d; } Array lb_value_to_array(lbProcedure *p, lbValue value) { Array array = {}; Type *t = base_type(value.type); if (t == nullptr) { // Do nothing } else if (is_type_tuple(t)) { GB_ASSERT(t->kind == Type_Tuple); auto *rt = &t->Tuple; if (rt->variables.count > 0) { array = array_make(heap_allocator(), rt->variables.count); for_array(i, rt->variables) { lbValue elem = lb_emit_struct_ev(p, value, cast(i32)i); array[i] = elem; } } } else { array = array_make(heap_allocator(), 1); array[0] = value; } return array; } lbValue lb_emit_call_internal(lbProcedure *p, lbValue value, lbValue return_ptr, Array const &processed_args, Type *abi_rt, lbAddr context_ptr, ProcInlining inlining) { unsigned arg_count = cast(unsigned)processed_args.count; if (return_ptr.value != nullptr) { arg_count += 1; } if (context_ptr.addr.value != nullptr) { arg_count += 1; } LLVMValueRef *args = gb_alloc_array(heap_allocator(), LLVMValueRef, arg_count); isize arg_index = 0; if (return_ptr.value != nullptr) { args[arg_index++] = return_ptr.value; } for_array(i, processed_args) { lbValue arg = processed_args[i]; args[arg_index++] = arg.value; } if (context_ptr.addr.value != nullptr) { args[arg_index++] = context_ptr.addr.value; } LLVMBasicBlockRef curr_block = LLVMGetInsertBlock(p->builder); GB_ASSERT(curr_block != p->decl_block->block); LLVMValueRef ret = LLVMBuildCall(p->builder, value.value, args, arg_count, "");; lbValue res = {}; res.value = ret; res.type = abi_rt; return res; } lbValue lb_emit_runtime_call(lbProcedure *p, char const *c_name, Array const &args) { String name = make_string_c(c_name); AstPackage *pkg = p->module->info->runtime_package; Entity *e = scope_lookup_current(pkg->scope, name); lbValue *found = nullptr; if (p->module != e->code_gen_module) { gb_mutex_lock(&p->module->mutex); } found = map_get(&e->code_gen_module->values, hash_entity(e)); if (p->module != e->code_gen_module) { gb_mutex_unlock(&p->module->mutex); } GB_ASSERT_MSG(found != nullptr, "%s", c_name); return lb_emit_call(p, *found, args); } lbValue lb_emit_call(lbProcedure *p, lbValue value, Array const &args, ProcInlining inlining, bool use_return_ptr_hint) { lbModule *m = p->module; Type *pt = base_type(value.type); GB_ASSERT(pt->kind == Type_Proc); Type *results = pt->Proc.results; if (p->entity != nullptr) { if (p->entity->flags & EntityFlag_Disabled) { return {}; } } lbAddr context_ptr = {}; if (pt->Proc.calling_convention == ProcCC_Odin) { context_ptr = lb_find_or_generate_context_ptr(p); } set_procedure_abi_types(heap_allocator(), pt); bool is_c_vararg = pt->Proc.c_vararg; isize param_count = pt->Proc.param_count; if (is_c_vararg) { GB_ASSERT(param_count-1 <= args.count); param_count -= 1; } else { GB_ASSERT_MSG(param_count == args.count, "%td == %td", param_count, args.count); } auto processed_args = array_make(heap_allocator(), 0, args.count); for (isize i = 0; i < param_count; i++) { Entity *e = pt->Proc.params->Tuple.variables[i]; if (e->kind != Entity_Variable) { // array_add(&processed_args, args[i]); continue; } GB_ASSERT(e->flags & EntityFlag_Param); Type *original_type = e->type; Type *new_type = pt->Proc.abi_compat_params[i]; Type *arg_type = args[i].type; if (are_types_identical(arg_type, new_type)) { // NOTE(bill): Done array_add(&processed_args, args[i]); } else if (!are_types_identical(original_type, new_type)) { if (is_type_pointer(new_type) && !is_type_pointer(original_type)) { if (e->flags&EntityFlag_ImplicitReference) { array_add(&processed_args, lb_address_from_load_or_generate_local(p, args[i])); } else if (!is_type_pointer(arg_type)) { array_add(&processed_args, lb_copy_value_to_ptr(p, args[i], original_type, 16)); } } else if (is_type_integer(new_type) || is_type_float(new_type)) { array_add(&processed_args, lb_emit_transmute(p, args[i], new_type)); } else if (new_type == t_llvm_bool) { array_add(&processed_args, lb_emit_conv(p, args[i], new_type)); } else if (is_type_simd_vector(new_type)) { array_add(&processed_args, lb_emit_transmute(p, args[i], new_type)); } else if (is_type_tuple(new_type)) { Type *abi_type = pt->Proc.abi_compat_params[i]; Type *st = struct_type_from_systemv_distribute_struct_fields(abi_type); lbValue x = lb_emit_transmute(p, args[i], st); for (isize j = 0; j < new_type->Tuple.variables.count; j++) { lbValue xx = lb_emit_struct_ev(p, x, cast(i32)j); array_add(&processed_args, xx); } } } else { lbValue x = lb_emit_conv(p, args[i], new_type); array_add(&processed_args, x); } } if (inlining == ProcInlining_none) { inlining = p->inlining; } lbValue result = {}; Type *abi_rt = reduce_tuple_to_single_type(pt->Proc.abi_compat_result_type); Type *rt = reduce_tuple_to_single_type(results); if (pt->Proc.return_by_pointer) { lbValue return_ptr = {}; if (use_return_ptr_hint && p->return_ptr_hint_value.value != nullptr) { if (are_types_identical(type_deref(p->return_ptr_hint_value.type), rt)) { return_ptr = p->return_ptr_hint_value; p->return_ptr_hint_used = true; } } if (return_ptr.value == nullptr) { lbAddr r = lb_add_local_generated(p, rt, true); return_ptr = r.addr; } GB_ASSERT(is_type_pointer(return_ptr.type)); lb_emit_call_internal(p, value, return_ptr, processed_args, nullptr, context_ptr, inlining); result = lb_emit_load(p, return_ptr); } else { result = lb_emit_call_internal(p, value, {}, processed_args, abi_rt, context_ptr, inlining); if (abi_rt != rt) { result = lb_emit_transmute(p, result, rt); } } Entity **found = map_get(&p->module->procedure_values, hash_pointer(value.value)); if (found != nullptr) { Entity *e = *found; if (e != nullptr && entity_has_deferred_procedure(e)) { DeferredProcedureKind kind = e->Procedure.deferred_procedure.kind; Entity *deferred_entity = e->Procedure.deferred_procedure.entity; lbValue *deferred_found = map_get(&p->module->values, hash_entity(deferred_entity)); GB_ASSERT(deferred_found != nullptr); lbValue deferred = *deferred_found; auto in_args = args; Array result_as_args = {}; switch (kind) { case DeferredProcedure_none: break; case DeferredProcedure_in: result_as_args = in_args; break; case DeferredProcedure_out: result_as_args = lb_value_to_array(p, result); break; } lb_add_defer_proc(p, p->scope_index, deferred, result_as_args); } } return result; } lbValue lb_emit_array_ep(lbProcedure *p, lbValue s, lbValue index) { Type *t = s.type; GB_ASSERT(is_type_pointer(t)); Type *st = base_type(type_deref(t)); GB_ASSERT_MSG(is_type_array(st) || is_type_enumerated_array(st), "%s", type_to_string(st)); LLVMValueRef indices[2] = {}; indices[0] = llvm_zero32(p->module); indices[1] = lb_emit_conv(p, index, t_i32).value; Type *ptr = base_array_type(st); lbValue res = {}; res.value = LLVMBuildGEP(p->builder, s.value, indices, 2, ""); res.type = alloc_type_pointer(ptr); return res; } lbValue lb_emit_array_epi(lbProcedure *p, lbValue s, i32 index) { Type *t = s.type; GB_ASSERT(is_type_pointer(t)); Type *st = base_type(type_deref(t)); GB_ASSERT_MSG(is_type_array(st) || is_type_enumerated_array(st), "%s", type_to_string(st)); GB_ASSERT(0 <= index); Type *ptr = base_array_type(st); lbValue res = {}; res.value = LLVMBuildStructGEP(p->builder, s.value, index, ""); res.type = alloc_type_pointer(ptr); return res; } lbValue lb_emit_ptr_offset(lbProcedure *p, lbValue ptr, lbValue index) { LLVMValueRef indices[1] = {index.value}; lbValue res = {}; res.type = ptr.type; res.value = LLVMBuildGEP2(p->builder, lb_type(p->module, type_deref(ptr.type)), ptr.value, indices, 1, ""); return res; } void lb_fill_slice(lbProcedure *p, lbAddr const &slice, lbValue base_elem, lbValue len) { Type *t = lb_addr_type(slice); GB_ASSERT(is_type_slice(t)); lbValue ptr = lb_addr_get_ptr(p, slice); lb_emit_store(p, lb_emit_struct_ep(p, ptr, 0), base_elem); lb_emit_store(p, lb_emit_struct_ep(p, ptr, 1), len); } void lb_fill_string(lbProcedure *p, lbAddr const &string, lbValue base_elem, lbValue len) { Type *t = lb_addr_type(string); GB_ASSERT(is_type_string(t)); lbValue ptr = lb_addr_get_ptr(p, string); lb_emit_store(p, lb_emit_struct_ep(p, ptr, 0), base_elem); lb_emit_store(p, lb_emit_struct_ep(p, ptr, 1), len); } lbValue lb_string_elem(lbProcedure *p, lbValue string) { Type *t = base_type(string.type); GB_ASSERT(t->kind == Type_Basic && t->Basic.kind == Basic_string); return lb_emit_struct_ev(p, string, 0); } lbValue lb_string_len(lbProcedure *p, lbValue string) { Type *t = base_type(string.type); GB_ASSERT_MSG(t->kind == Type_Basic && t->Basic.kind == Basic_string, "%s", type_to_string(t)); return lb_emit_struct_ev(p, string, 1); } lbValue lb_cstring_len(lbProcedure *p, lbValue value) { GB_ASSERT(is_type_cstring(value.type)); auto args = array_make(heap_allocator(), 1); args[0] = lb_emit_conv(p, value, t_cstring); return lb_emit_runtime_call(p, "cstring_len", args); } lbValue lb_array_elem(lbProcedure *p, lbValue array_ptr) { Type *t = type_deref(array_ptr.type); GB_ASSERT(is_type_array(t)); return lb_emit_struct_ep(p, array_ptr, 0); } lbValue lb_slice_elem(lbProcedure *p, lbValue slice) { GB_ASSERT(is_type_slice(slice.type)); return lb_emit_struct_ev(p, slice, 0); } lbValue lb_slice_len(lbProcedure *p, lbValue slice) { GB_ASSERT(is_type_slice(slice.type)); return lb_emit_struct_ev(p, slice, 1); } lbValue lb_dynamic_array_elem(lbProcedure *p, lbValue da) { GB_ASSERT(is_type_dynamic_array(da.type)); return lb_emit_struct_ev(p, da, 0); } lbValue lb_dynamic_array_len(lbProcedure *p, lbValue da) { GB_ASSERT(is_type_dynamic_array(da.type)); return lb_emit_struct_ev(p, da, 1); } lbValue lb_dynamic_array_cap(lbProcedure *p, lbValue da) { GB_ASSERT(is_type_dynamic_array(da.type)); return lb_emit_struct_ev(p, da, 2); } lbValue lb_dynamic_array_allocator(lbProcedure *p, lbValue da) { GB_ASSERT(is_type_dynamic_array(da.type)); return lb_emit_struct_ev(p, da, 3); } lbValue lb_map_entries(lbProcedure *p, lbValue value) { gbAllocator a = heap_allocator(); Type *t = base_type(value.type); GB_ASSERT_MSG(t->kind == Type_Map, "%s", type_to_string(t)); init_map_internal_types(t); Type *gst = t->Map.generated_struct_type; i32 index = 1; lbValue entries = lb_emit_struct_ev(p, value, index); return entries; } lbValue lb_map_entries_ptr(lbProcedure *p, lbValue value) { gbAllocator a = heap_allocator(); Type *t = base_type(type_deref(value.type)); GB_ASSERT_MSG(t->kind == Type_Map, "%s", type_to_string(t)); init_map_internal_types(t); Type *gst = t->Map.generated_struct_type; i32 index = 1; lbValue entries = lb_emit_struct_ep(p, value, index); return entries; } lbValue lb_map_len(lbProcedure *p, lbValue value) { lbValue entries = lb_map_entries(p, value); return lb_dynamic_array_len(p, entries); } lbValue lb_map_cap(lbProcedure *p, lbValue value) { lbValue entries = lb_map_entries(p, value); return lb_dynamic_array_cap(p, entries); } lbValue lb_soa_struct_len(lbProcedure *p, lbValue value) { Type *t = base_type(value.type); bool is_ptr = false; if (is_type_pointer(t)) { is_ptr = true; t = base_type(type_deref(t)); } if (t->Struct.soa_kind == StructSoa_Fixed) { return lb_const_int(p->module, t_int, t->Struct.soa_count); } GB_ASSERT(t->Struct.soa_kind == StructSoa_Slice || t->Struct.soa_kind == StructSoa_Dynamic); isize n = 0; Type *elem = base_type(t->Struct.soa_elem); if (elem->kind == Type_Struct) { n = elem->Struct.fields.count; } else if (elem->kind == Type_Array) { n = elem->Array.count; } else { GB_PANIC("Unreachable"); } if (is_ptr) { lbValue v = lb_emit_struct_ep(p, value, cast(i32)n); return lb_emit_load(p, v); } return lb_emit_struct_ev(p, value, cast(i32)n); } lbValue lb_soa_struct_cap(lbProcedure *p, lbValue value) { Type *t = base_type(value.type); bool is_ptr = false; if (is_type_pointer(t)) { is_ptr = true; t = base_type(type_deref(t)); } if (t->Struct.soa_kind == StructSoa_Fixed) { return lb_const_int(p->module, t_int, t->Struct.soa_count); } GB_ASSERT(t->Struct.soa_kind == StructSoa_Dynamic); isize n = 0; Type *elem = base_type(t->Struct.soa_elem); if (elem->kind == Type_Struct) { n = elem->Struct.fields.count+1; } else if (elem->kind == Type_Array) { n = elem->Array.count+1; } else { GB_PANIC("Unreachable"); } if (is_ptr) { lbValue v = lb_emit_struct_ep(p, value, cast(i32)n); return lb_emit_load(p, v); } return lb_emit_struct_ev(p, value, cast(i32)n); } lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv, BuiltinProcId id) { ast_node(ce, CallExpr, expr); switch (id) { case BuiltinProc_DIRECTIVE: { ast_node(bd, BasicDirective, ce->proc); String name = bd->name; GB_ASSERT(name == "location"); String procedure = p->entity->token.string; TokenPos pos = ast_token(ce->proc).pos; if (ce->args.count > 0) { Ast *ident = unselector_expr(ce->args[0]); GB_ASSERT(ident->kind == Ast_Ident); Entity *e = entity_of_ident(ident); GB_ASSERT(e != nullptr); if (e->parent_proc_decl != nullptr && e->parent_proc_decl->entity != nullptr) { procedure = e->parent_proc_decl->entity->token.string; } else { procedure = str_lit(""); } pos = e->token.pos; } return lb_emit_source_code_location(p, procedure, pos); } case BuiltinProc_type_info_of: { Ast *arg = ce->args[0]; TypeAndValue tav = type_and_value_of_expr(arg); if (tav.mode == Addressing_Type) { Type *t = default_type(type_of_expr(arg)); return lb_type_info(p->module, t); } GB_ASSERT(is_type_typeid(tav.type)); auto args = array_make(heap_allocator(), 1); args[0] = lb_build_expr(p, arg); return lb_emit_runtime_call(p, "__type_info_of", args); } case BuiltinProc_typeid_of: { Ast *arg = ce->args[0]; TypeAndValue tav = type_and_value_of_expr(arg); if (tav.mode == Addressing_Type) { Type *t = default_type(type_of_expr(arg)); return lb_typeid(p->module, t); } Type *t = base_type(tav.type); GB_ASSERT(are_types_identical(t, t_type_info_ptr)); auto args = array_make(heap_allocator(), 1); args[0] = lb_emit_conv(p, lb_build_expr(p, arg), t_type_info_ptr); return lb_emit_runtime_call(p, "__typeid_of", args); } case BuiltinProc_len: { lbValue v = lb_build_expr(p, ce->args[0]); Type *t = base_type(v.type); if (is_type_pointer(t)) { // IMPORTANT TODO(bill): Should there be a nil pointer check? v = lb_emit_load(p, v); t = type_deref(t); } if (is_type_cstring(t)) { return lb_cstring_len(p, v); } else if (is_type_string(t)) { return lb_string_len(p, v); } else if (is_type_array(t)) { GB_PANIC("Array lengths are constant"); } else if (is_type_slice(t)) { return lb_slice_len(p, v); } else if (is_type_dynamic_array(t)) { return lb_dynamic_array_len(p, v); } else if (is_type_map(t)) { return lb_map_len(p, v); } else if (is_type_soa_struct(t)) { return lb_soa_struct_len(p, v); } GB_PANIC("Unreachable"); break; } case BuiltinProc_cap: { lbValue v = lb_build_expr(p, ce->args[0]); Type *t = base_type(v.type); if (is_type_pointer(t)) { // IMPORTANT TODO(bill): Should there be a nil pointer check? v = lb_emit_load(p, v); t = type_deref(t); } if (is_type_string(t)) { GB_PANIC("Unreachable"); } else if (is_type_array(t)) { GB_PANIC("Array lengths are constant"); } else if (is_type_slice(t)) { return lb_slice_len(p, v); } else if (is_type_dynamic_array(t)) { return lb_dynamic_array_cap(p, v); } else if (is_type_map(t)) { return lb_map_cap(p, v); } else if (is_type_soa_struct(t)) { return lb_soa_struct_cap(p, v); } GB_PANIC("Unreachable"); break; } case BuiltinProc_swizzle: { lbAddr addr = lb_build_addr(p, ce->args[0]); isize index_count = ce->args.count-1; if (index_count == 0) { return lb_addr_load(p, addr); } lbValue src = lb_addr_get_ptr(p, addr); // TODO(bill): Should this be zeroed or not? lbAddr dst = lb_add_local_generated(p, tv.type, true); lbValue dst_ptr = lb_addr_get_ptr(p, dst); for (i32 i = 1; i < ce->args.count; i++) { TypeAndValue tv = type_and_value_of_expr(ce->args[i]); GB_ASSERT(is_type_integer(tv.type)); GB_ASSERT(tv.value.kind == ExactValue_Integer); i32 src_index = cast(i32)big_int_to_i64(&tv.value.value_integer); i32 dst_index = i-1; lbValue src_elem = lb_emit_array_epi(p, src, src_index); lbValue dst_elem = lb_emit_array_epi(p, dst_ptr, dst_index); lb_emit_store(p, dst_elem, lb_emit_load(p, src_elem)); } return lb_addr_load(p, dst); } case BuiltinProc_complex: { lbValue real = lb_build_expr(p, ce->args[0]); lbValue imag = lb_build_expr(p, ce->args[1]); lbAddr dst_addr = lb_add_local_generated(p, tv.type, false); lbValue dst = lb_addr_get_ptr(p, dst_addr); Type *ft = base_complex_elem_type(tv.type); real = lb_emit_conv(p, real, ft); imag = lb_emit_conv(p, imag, ft); lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), real); lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), imag); return lb_emit_load(p, dst); } case BuiltinProc_quaternion: { lbValue real = lb_build_expr(p, ce->args[0]); lbValue imag = lb_build_expr(p, ce->args[1]); lbValue jmag = lb_build_expr(p, ce->args[2]); lbValue kmag = lb_build_expr(p, ce->args[3]); // @QuaternionLayout lbAddr dst_addr = lb_add_local_generated(p, tv.type, false); lbValue dst = lb_addr_get_ptr(p, dst_addr); Type *ft = base_complex_elem_type(tv.type); real = lb_emit_conv(p, real, ft); imag = lb_emit_conv(p, imag, ft); jmag = lb_emit_conv(p, jmag, ft); kmag = lb_emit_conv(p, kmag, ft); lb_emit_store(p, lb_emit_struct_ep(p, dst, 3), real); lb_emit_store(p, lb_emit_struct_ep(p, dst, 0), imag); lb_emit_store(p, lb_emit_struct_ep(p, dst, 1), jmag); lb_emit_store(p, lb_emit_struct_ep(p, dst, 2), kmag); return lb_emit_load(p, dst); } case BuiltinProc_real: { lbValue val = lb_build_expr(p, ce->args[0]); if (is_type_complex(val.type)) { lbValue real = lb_emit_struct_ev(p, val, 0); return lb_emit_conv(p, real, tv.type); } else if (is_type_quaternion(val.type)) { // @QuaternionLayout lbValue real = lb_emit_struct_ev(p, val, 3); return lb_emit_conv(p, real, tv.type); } GB_PANIC("invalid type for real"); return {}; } case BuiltinProc_imag: { lbValue val = lb_build_expr(p, ce->args[0]); if (is_type_complex(val.type)) { lbValue imag = lb_emit_struct_ev(p, val, 1); return lb_emit_conv(p, imag, tv.type); } else if (is_type_quaternion(val.type)) { // @QuaternionLayout lbValue imag = lb_emit_struct_ev(p, val, 0); return lb_emit_conv(p, imag, tv.type); } GB_PANIC("invalid type for imag"); return {}; } case BuiltinProc_jmag: { lbValue val = lb_build_expr(p, ce->args[0]); if (is_type_quaternion(val.type)) { // @QuaternionLayout lbValue imag = lb_emit_struct_ev(p, val, 1); return lb_emit_conv(p, imag, tv.type); } GB_PANIC("invalid type for jmag"); return {}; } case BuiltinProc_kmag: { lbValue val = lb_build_expr(p, ce->args[0]); if (is_type_quaternion(val.type)) { // @QuaternionLayout lbValue imag = lb_emit_struct_ev(p, val, 2); return lb_emit_conv(p, imag, tv.type); } GB_PANIC("invalid type for kmag"); return {}; } case BuiltinProc_conj: { lbValue val = lb_build_expr(p, ce->args[0]); lbValue res = {}; Type *t = val.type; if (is_type_complex(t)) { res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false)); lbValue real = lb_emit_struct_ev(p, val, 0); lbValue imag = lb_emit_struct_ev(p, val, 1); imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type); lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real); lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag); } else if (is_type_quaternion(t)) { // @QuaternionLayout res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false)); lbValue real = lb_emit_struct_ev(p, val, 3); lbValue imag = lb_emit_struct_ev(p, val, 0); lbValue jmag = lb_emit_struct_ev(p, val, 1); lbValue kmag = lb_emit_struct_ev(p, val, 2); imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type); jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type); kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type); lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real); lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag); lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag); lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag); } return lb_emit_load(p, res); } case BuiltinProc_expand_to_tuple: { lbValue val = lb_build_expr(p, ce->args[0]); Type *t = base_type(val.type); if (!is_type_tuple(tv.type)) { if (t->kind == Type_Struct) { GB_ASSERT(t->Struct.fields.count == 1); return lb_emit_struct_ev(p, val, 0); } else if (t->kind == Type_Array) { GB_ASSERT(t->Array.count == 1); return lb_emit_array_epi(p, val, 0); } else { GB_PANIC("Unknown type of expand_to_tuple"); } } GB_ASSERT(is_type_tuple(tv.type)); // NOTE(bill): Doesn't need to be zero because it will be initialized in the loops lbValue tuple = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false)); if (t->kind == Type_Struct) { for_array(src_index, t->Struct.fields) { Entity *field = t->Struct.fields[src_index]; i32 field_index = field->Variable.field_index; lbValue f = lb_emit_struct_ev(p, val, field_index); lbValue ep = lb_emit_struct_ep(p, tuple, cast(i32)src_index); lb_emit_store(p, ep, f); } } else if (t->kind == Type_Array) { // TODO(bill): Clean-up this code lbValue ap = lb_address_from_load_or_generate_local(p, val); for (i32 i = 0; i < cast(i32)t->Array.count; i++) { lbValue f = lb_emit_load(p, lb_emit_array_epi(p, ap, i)); lbValue ep = lb_emit_struct_ep(p, tuple, i); lb_emit_store(p, ep, f); } } else { GB_PANIC("Unknown type of expand_to_tuple"); } return lb_emit_load(p, tuple); } case BuiltinProc_min: { Type *t = type_of_expr(expr); if (ce->args.count == 2) { return lb_emit_min(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1])); } else { lbValue x = lb_build_expr(p, ce->args[0]); for (isize i = 1; i < ce->args.count; i++) { x = lb_emit_min(p, t, x, lb_build_expr(p, ce->args[i])); } return x; } } case BuiltinProc_max: { Type *t = type_of_expr(expr); if (ce->args.count == 2) { return lb_emit_max(p, t, lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1])); } else { lbValue x = lb_build_expr(p, ce->args[0]); for (isize i = 1; i < ce->args.count; i++) { x = lb_emit_max(p, t, x, lb_build_expr(p, ce->args[i])); } return x; } } case BuiltinProc_abs: { gbAllocator a = heap_allocator(); lbValue x = lb_build_expr(p, ce->args[0]); Type *t = x.type; if (is_type_unsigned(t)) { return x; } if (is_type_quaternion(t)) { i64 sz = 8*type_size_of(t); auto args = array_make(heap_allocator(), 1); args[0] = x; switch (sz) { case 128: return lb_emit_runtime_call(p, "abs_quaternion128", args); case 256: return lb_emit_runtime_call(p, "abs_quaternion256", args); } GB_PANIC("Unknown complex type"); } else if (is_type_complex(t)) { i64 sz = 8*type_size_of(t); auto args = array_make(heap_allocator(), 1); args[0] = x; switch (sz) { case 64: return lb_emit_runtime_call(p, "abs_complex64", args); case 128: return lb_emit_runtime_call(p, "abs_complex128", args); } GB_PANIC("Unknown complex type"); } else if (is_type_float(t)) { i64 sz = 8*type_size_of(t); auto args = array_make(heap_allocator(), 1); args[0] = x; switch (sz) { case 32: return lb_emit_runtime_call(p, "abs_f32", args); case 64: return lb_emit_runtime_call(p, "abs_f64", args); } GB_PANIC("Unknown float type"); } lbValue zero = lb_const_nil(p->module, t); lbValue cond = lb_emit_comp(p, Token_Lt, x, zero); lbValue neg = lb_emit_unary_arith(p, Token_Sub, x, t); return lb_emit_select(p, cond, neg, x); } case BuiltinProc_clamp: return lb_emit_clamp(p, type_of_expr(expr), lb_build_expr(p, ce->args[0]), lb_build_expr(p, ce->args[1]), lb_build_expr(p, ce->args[2])); #if 0 // "Intrinsics" case BuiltinProc_atomic_fence: case BuiltinProc_atomic_fence_acq: case BuiltinProc_atomic_fence_rel: case BuiltinProc_atomic_fence_acqrel: return lb_emit(p, lb_instr_atomic_fence(p, id)); case BuiltinProc_atomic_store: case BuiltinProc_atomic_store_rel: case BuiltinProc_atomic_store_relaxed: case BuiltinProc_atomic_store_unordered: { lbValue dst = lb_build_expr(p, ce->args[0]); lbValue val = lb_build_expr(p, ce->args[1]); val = lb_emit_conv(p, val, type_deref(ir_type(dst))); return lb_emit(p, lb_instr_atomic_store(p, dst, val, id)); } case BuiltinProc_atomic_load: case BuiltinProc_atomic_load_acq: case BuiltinProc_atomic_load_relaxed: case BuiltinProc_atomic_load_unordered: { lbValue dst = lb_build_expr(p, ce->args[0]); return lb_emit(p, lb_instr_atomic_load(p, dst, id)); } case BuiltinProc_atomic_add: case BuiltinProc_atomic_add_acq: case BuiltinProc_atomic_add_rel: case BuiltinProc_atomic_add_acqrel: case BuiltinProc_atomic_add_relaxed: case BuiltinProc_atomic_sub: case BuiltinProc_atomic_sub_acq: case BuiltinProc_atomic_sub_rel: case BuiltinProc_atomic_sub_acqrel: case BuiltinProc_atomic_sub_relaxed: case BuiltinProc_atomic_and: case BuiltinProc_atomic_and_acq: case BuiltinProc_atomic_and_rel: case BuiltinProc_atomic_and_acqrel: case BuiltinProc_atomic_and_relaxed: case BuiltinProc_atomic_nand: case BuiltinProc_atomic_nand_acq: case BuiltinProc_atomic_nand_rel: case BuiltinProc_atomic_nand_acqrel: case BuiltinProc_atomic_nand_relaxed: case BuiltinProc_atomic_or: case BuiltinProc_atomic_or_acq: case BuiltinProc_atomic_or_rel: case BuiltinProc_atomic_or_acqrel: case BuiltinProc_atomic_or_relaxed: case BuiltinProc_atomic_xor: case BuiltinProc_atomic_xor_acq: case BuiltinProc_atomic_xor_rel: case BuiltinProc_atomic_xor_acqrel: case BuiltinProc_atomic_xor_relaxed: case BuiltinProc_atomic_xchg: case BuiltinProc_atomic_xchg_acq: case BuiltinProc_atomic_xchg_rel: case BuiltinProc_atomic_xchg_acqrel: case BuiltinProc_atomic_xchg_relaxed: { lbValue dst = lb_build_expr(p, ce->args[0]); lbValue val = lb_build_expr(p, ce->args[1]); val = lb_emit_conv(p, val, type_deref(ir_type(dst))); return lb_emit(p, lb_instr_atomic_rmw(p, dst, val, id)); } case BuiltinProc_atomic_cxchg: case BuiltinProc_atomic_cxchg_acq: case BuiltinProc_atomic_cxchg_rel: case BuiltinProc_atomic_cxchg_acqrel: case BuiltinProc_atomic_cxchg_relaxed: case BuiltinProc_atomic_cxchg_failrelaxed: case BuiltinProc_atomic_cxchg_failacq: case BuiltinProc_atomic_cxchg_acq_failrelaxed: case BuiltinProc_atomic_cxchg_acqrel_failrelaxed: case BuiltinProc_atomic_cxchgweak: case BuiltinProc_atomic_cxchgweak_acq: case BuiltinProc_atomic_cxchgweak_rel: case BuiltinProc_atomic_cxchgweak_acqrel: case BuiltinProc_atomic_cxchgweak_relaxed: case BuiltinProc_atomic_cxchgweak_failrelaxed: case BuiltinProc_atomic_cxchgweak_failacq: case BuiltinProc_atomic_cxchgweak_acq_failrelaxed: case BuiltinProc_atomic_cxchgweak_acqrel_failrelaxed: { Type *type = expr->tav.type; lbValue address = lb_build_expr(p, ce->args[0]); Type *elem = type_deref(ir_type(address)); lbValue old_value = lb_build_expr(p, ce->args[1]); lbValue new_value = lb_build_expr(p, ce->args[2]); old_value = lb_emit_conv(p, old_value, elem); new_value = lb_emit_conv(p, new_value, elem); return lb_emit(p, lb_instr_atomic_cxchg(p, type, address, old_value, new_value, id)); } #endif } GB_PANIC("Unhandled built-in procedure"); return {}; } lbValue lb_build_call_expr(lbProcedure *p, Ast *expr) { lbModule *m = p->module; TypeAndValue tv = type_and_value_of_expr(expr); ast_node(ce, CallExpr, expr); TypeAndValue proc_tv = type_and_value_of_expr(ce->proc); AddressingMode proc_mode = proc_tv.mode; if (proc_mode == Addressing_Type) { GB_ASSERT(ce->args.count == 1); lbValue x = lb_build_expr(p, ce->args[0]); lbValue y = lb_emit_conv(p, x, tv.type); return y; } Ast *pexpr = unparen_expr(ce->proc); if (proc_mode == Addressing_Builtin) { Entity *e = entity_of_node(pexpr); BuiltinProcId id = BuiltinProc_Invalid; if (e != nullptr) { id = cast(BuiltinProcId)e->Builtin.id; } else { id = BuiltinProc_DIRECTIVE; } return lb_build_builtin_proc(p, expr, tv, id); } // NOTE(bill): Regular call lbValue value = {}; Ast *proc_expr = unparen_expr(ce->proc); if (proc_expr->tav.mode == Addressing_Constant) { ExactValue v = proc_expr->tav.value; switch (v.kind) { case ExactValue_Integer: { u64 u = big_int_to_u64(&v.value_integer); lbValue x = {}; x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false); x.type = t_uintptr; x = lb_emit_conv(p, x, t_rawptr); value = lb_emit_conv(p, x, proc_expr->tav.type); break; } case ExactValue_Pointer: { u64 u = cast(u64)v.value_pointer; lbValue x = {}; x.value = LLVMConstInt(lb_type(m, t_uintptr), u, false); x.type = t_uintptr; x = lb_emit_conv(p, x, t_rawptr); value = lb_emit_conv(p, x, proc_expr->tav.type); break; } } } if (value.value == nullptr) { value = lb_build_expr(p, proc_expr); } GB_ASSERT(value.value != nullptr); Type *proc_type_ = base_type(value.type); GB_ASSERT(proc_type_->kind == Type_Proc); TypeProc *pt = &proc_type_->Proc; set_procedure_abi_types(heap_allocator(), proc_type_); if (is_call_expr_field_value(ce)) { auto args = array_make(heap_allocator(), pt->param_count); for_array(arg_index, ce->args) { Ast *arg = ce->args[arg_index]; ast_node(fv, FieldValue, arg); GB_ASSERT(fv->field->kind == Ast_Ident); String name = fv->field->Ident.token.string; isize index = lookup_procedure_parameter(pt, name); GB_ASSERT(index >= 0); TypeAndValue tav = type_and_value_of_expr(fv->value); if (tav.mode == Addressing_Type) { args[index] = lb_const_nil(m, tav.type); } else { args[index] = lb_build_expr(p, fv->value); } } TypeTuple *params = &pt->params->Tuple; for (isize i = 0; i < args.count; i++) { Entity *e = params->variables[i]; if (e->kind == Entity_TypeName) { args[i] = lb_const_nil(m, e->type); } else if (e->kind == Entity_Constant) { continue; } else { GB_ASSERT(e->kind == Entity_Variable); if (args[i].value == nullptr) { switch (e->Variable.param_value.kind) { case ParameterValue_Constant: args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value); break; case ParameterValue_Nil: args[i] = lb_const_nil(m, e->type); break; case ParameterValue_Location: args[i] = lb_emit_source_code_location(p, p->entity->token.string, ast_token(expr).pos); break; case ParameterValue_Value: args[i] = lb_build_expr(p, e->Variable.param_value.ast_value); break; } } else { args[i] = lb_emit_conv(p, args[i], e->type); } } } return lb_emit_call(p, value, args, ce->inlining, p->return_ptr_hint_ast == expr); } isize arg_index = 0; isize arg_count = 0; for_array(i, ce->args) { Ast *arg = ce->args[i]; TypeAndValue tav = type_and_value_of_expr(arg); GB_ASSERT_MSG(tav.mode != Addressing_Invalid, "%s %s", expr_to_string(arg), expr_to_string(expr)); GB_ASSERT_MSG(tav.mode != Addressing_ProcGroup, "%s", expr_to_string(arg)); Type *at = tav.type; if (at->kind == Type_Tuple) { arg_count += at->Tuple.variables.count; } else { arg_count++; } } isize param_count = 0; if (pt->params) { GB_ASSERT(pt->params->kind == Type_Tuple); param_count = pt->params->Tuple.variables.count; } auto args = array_make(heap_allocator(), cast(isize)gb_max(param_count, arg_count)); isize variadic_index = pt->variadic_index; bool variadic = pt->variadic && variadic_index >= 0; bool vari_expand = ce->ellipsis.pos.line != 0; bool is_c_vararg = pt->c_vararg; String proc_name = {}; if (p->entity != nullptr) { proc_name = p->entity->token.string; } TokenPos pos = ast_token(ce->proc).pos; TypeTuple *param_tuple = nullptr; if (pt->params) { GB_ASSERT(pt->params->kind == Type_Tuple); param_tuple = &pt->params->Tuple; } for_array(i, ce->args) { Ast *arg = ce->args[i]; TypeAndValue arg_tv = type_and_value_of_expr(arg); if (arg_tv.mode == Addressing_Type) { args[arg_index++] = lb_const_nil(m, arg_tv.type); } else { lbValue a = lb_build_expr(p, arg); Type *at = a.type; if (at->kind == Type_Tuple) { for_array(i, at->Tuple.variables) { Entity *e = at->Tuple.variables[i]; lbValue v = lb_emit_struct_ev(p, a, cast(i32)i); args[arg_index++] = v; } } else { args[arg_index++] = a; } } } if (param_count > 0) { GB_ASSERT_MSG(pt->params != nullptr, "%s %td", expr_to_string(expr), pt->param_count); GB_ASSERT(param_count < 1000000); if (arg_count < param_count) { isize end = cast(isize)param_count; if (variadic) { end = variadic_index; } while (arg_index < end) { Entity *e = param_tuple->variables[arg_index]; GB_ASSERT(e->kind == Entity_Variable); switch (e->Variable.param_value.kind) { case ParameterValue_Constant: args[arg_index++] = lb_const_value(p->module, e->type, e->Variable.param_value.value); break; case ParameterValue_Nil: args[arg_index++] = lb_const_nil(m, e->type); break; case ParameterValue_Location: args[arg_index++] = lb_emit_source_code_location(p, proc_name, pos); break; case ParameterValue_Value: args[arg_index++] = lb_build_expr(p, e->Variable.param_value.ast_value); break; } } } if (is_c_vararg) { GB_ASSERT(variadic); GB_ASSERT(!vari_expand); isize i = 0; for (; i < variadic_index; i++) { Entity *e = param_tuple->variables[i]; if (e->kind == Entity_Variable) { args[i] = lb_emit_conv(p, args[i], e->type); } } Type *variadic_type = param_tuple->variables[i]->type; GB_ASSERT(is_type_slice(variadic_type)); variadic_type = base_type(variadic_type)->Slice.elem; if (!is_type_any(variadic_type)) { for (; i < arg_count; i++) { args[i] = lb_emit_conv(p, args[i], variadic_type); } } else { for (; i < arg_count; i++) { args[i] = lb_emit_conv(p, args[i], default_type(args[i].type)); } } } else if (variadic) { isize i = 0; for (; i < variadic_index; i++) { Entity *e = param_tuple->variables[i]; if (e->kind == Entity_Variable) { args[i] = lb_emit_conv(p, args[i], e->type); } } if (!vari_expand) { Type *variadic_type = param_tuple->variables[i]->type; GB_ASSERT(is_type_slice(variadic_type)); variadic_type = base_type(variadic_type)->Slice.elem; for (; i < arg_count; i++) { args[i] = lb_emit_conv(p, args[i], variadic_type); } } } else { for (isize i = 0; i < param_count; i++) { Entity *e = param_tuple->variables[i]; if (e->kind == Entity_Variable) { if (args[i].value == nullptr) { continue; } GB_ASSERT_MSG(args[i].value != nullptr, "%.*s", LIT(e->token.string)); args[i] = lb_emit_conv(p, args[i], e->type); } } } if (variadic && !vari_expand && !is_c_vararg) { // variadic call argument generation gbAllocator allocator = heap_allocator(); Type *slice_type = param_tuple->variables[variadic_index]->type; Type *elem_type = base_type(slice_type)->Slice.elem; lbAddr slice = lb_add_local_generated(p, slice_type, true); isize slice_len = arg_count+1 - (variadic_index+1); if (slice_len > 0) { lbAddr base_array = lb_add_local_generated(p, alloc_type_array(elem_type, slice_len), true); for (isize i = variadic_index, j = 0; i < arg_count; i++, j++) { lbValue addr = lb_emit_array_epi(p, base_array.addr, cast(i32)j); lb_emit_store(p, addr, args[i]); } lbValue base_elem = lb_emit_array_epi(p, base_array.addr, 0); lbValue len = lb_const_int(m, t_int, slice_len); lb_fill_slice(p, slice, base_elem, len); } arg_count = param_count; args[variadic_index] = lb_addr_load(p, slice); } } if (variadic && variadic_index+1 < param_count) { for (isize i = variadic_index+1; i < param_count; i++) { Entity *e = param_tuple->variables[i]; switch (e->Variable.param_value.kind) { case ParameterValue_Constant: args[i] = lb_const_value(p->module, e->type, e->Variable.param_value.value); break; case ParameterValue_Nil: args[i] = lb_const_nil(m, e->type); break; case ParameterValue_Location: args[i] = lb_emit_source_code_location(p, proc_name, pos); break; case ParameterValue_Value: args[i] = lb_build_expr(p, e->Variable.param_value.ast_value); break; } } } isize final_count = param_count; if (is_c_vararg) { final_count = arg_count; } auto call_args = array_slice(args, 0, final_count); return lb_emit_call(p, value, call_args, ce->inlining, p->return_ptr_hint_ast == expr); } bool lb_is_const(lbValue value) { LLVMValueRef v = value.value; if (is_type_untyped_nil(value.type) || is_type_untyped_undef(value.type)) { // TODO(bill): Is this correct behaviour? return true; } if (LLVMIsConstant(v)) { return true; } return false; } bool lb_is_const_nil(lbValue value) { LLVMValueRef v = value.value; if (LLVMIsConstant(v)) { if (LLVMIsAConstantAggregateZero(v)) { return true; } else if (LLVMIsAConstantPointerNull(v)) { return true; } } return false; } void lb_emit_increment(lbProcedure *p, lbValue addr) { GB_ASSERT(is_type_pointer(addr.type)); Type *type = type_deref(addr.type); lbValue v_one = lb_const_value(p->module, type, exact_value_i64(1)); lb_emit_store(p, addr, lb_emit_arith(p, Token_Add, lb_emit_load(p, addr), v_one, type)); } lbValue lb_emit_byte_swap(lbProcedure *p, lbValue value, Type *platform_type) { Type *vt = core_type(value.type); GB_ASSERT(type_size_of(vt) == type_size_of(platform_type)); // TODO(bill): lb_emit_byte_swap lbValue res = {}; res.type = platform_type; res.value = value.value; return res; } lbLoopData lb_loop_start(lbProcedure *p, isize count, Type *index_type) { lbLoopData data = {}; lbValue max = lb_const_int(p->module, t_int, count); data.idx_addr = lb_add_local_generated(p, index_type, true); data.body = lb_create_block(p, "loop.body"); data.done = lb_create_block(p, "loop.done"); data.loop = lb_create_block(p, "loop.loop"); lb_emit_jump(p, data.loop); lb_start_block(p, data.loop); data.idx = lb_addr_load(p, data.idx_addr); lbValue cond = lb_emit_comp(p, Token_Lt, data.idx, max); lb_emit_if(p, cond, data.body, data.done); lb_start_block(p, data.body); return data; } void lb_loop_end(lbProcedure *p, lbLoopData const &data) { if (data.idx_addr.addr.value != nullptr) { lb_emit_increment(p, data.idx_addr.addr); lb_emit_jump(p, data.loop); lb_start_block(p, data.done); } } lbValue lb_emit_comp_against_nil(lbProcedure *p, TokenKind op_kind, lbValue x) { lbValue res = {}; res.type = t_llvm_bool; Type *t = x.type; if (is_type_pointer(t)) { if (op_kind == Token_CmpEq) { res.value = LLVMBuildIsNull(p->builder, x.value, ""); } else if (op_kind == Token_NotEq) { res.value = LLVMBuildIsNotNull(p->builder, x.value, ""); } return res; } else if (is_type_cstring(t)) { lbValue ptr = lb_emit_conv(p, x, t_u8_ptr); if (op_kind == Token_CmpEq) { res.value = LLVMBuildIsNull(p->builder, ptr.value, ""); } else if (op_kind == Token_NotEq) { res.value = LLVMBuildIsNotNull(p->builder, ptr.value, ""); } return res; } else if (is_type_any(t)) { lbValue data = lb_emit_struct_ev(p, x, 0); lbValue ti = lb_emit_struct_ev(p, x, 1); if (op_kind == Token_CmpEq) { LLVMValueRef a = LLVMBuildIsNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNull(p->builder, ti.value, ""); res.value = LLVMBuildOr(p->builder, a, b, ""); return res; } else if (op_kind == Token_NotEq) { LLVMValueRef a = LLVMBuildIsNotNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNotNull(p->builder, ti.value, ""); res.value = LLVMBuildAnd(p->builder, a, b, ""); return res; } } else if (is_type_slice(t)) { lbValue data = lb_emit_struct_ev(p, x, 0); lbValue cap = lb_emit_struct_ev(p, x, 1); if (op_kind == Token_CmpEq) { LLVMValueRef a = LLVMBuildIsNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNull(p->builder, cap.value, ""); res.value = LLVMBuildOr(p->builder, a, b, ""); return res; } else if (op_kind == Token_NotEq) { LLVMValueRef a = LLVMBuildIsNotNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNotNull(p->builder, cap.value, ""); res.value = LLVMBuildAnd(p->builder, a, b, ""); return res; } } else if (is_type_dynamic_array(t)) { lbValue data = lb_emit_struct_ev(p, x, 0); lbValue cap = lb_emit_struct_ev(p, x, 2); if (op_kind == Token_CmpEq) { LLVMValueRef a = LLVMBuildIsNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNull(p->builder, cap.value, ""); res.value = LLVMBuildOr(p->builder, a, b, ""); return res; } else if (op_kind == Token_NotEq) { LLVMValueRef a = LLVMBuildIsNotNull(p->builder, data.value, ""); LLVMValueRef b = LLVMBuildIsNotNull(p->builder, cap.value, ""); res.value = LLVMBuildAnd(p->builder, a, b, ""); return res; } } else if (is_type_map(t)) { GB_PANIC("map nil comparison"); // lbValue len = lb_map_len(p, x); // return lb_emit_comp(p, op_kind, len, v_zero); } else if (is_type_union(t)) { if (type_size_of(t) == 0) { if (op_kind == Token_CmpEq) { return lb_const_bool(p->module, t_llvm_bool, true); } else if (op_kind == Token_NotEq) { return lb_const_bool(p->module, t_llvm_bool, false); } } else { GB_PANIC("lb_emit_union_tag_value"); // lbValue tag = lb_emit_union_tag_value(p, x); // return lb_emit_comp(p, op_kind, tag, v_zero); } } else if (is_type_typeid(t)) { lbValue invalid_typeid = lb_const_value(p->module, t_typeid, exact_value_i64(0)); return lb_emit_comp(p, op_kind, x, invalid_typeid); } else if (is_type_bit_field(t)) { auto args = array_make(heap_allocator(), 2); lbValue lhs = lb_address_from_load_or_generate_local(p, x); args[0] = lb_emit_conv(p, lhs, t_rawptr); args[1] = lb_const_int(p->module, t_int, type_size_of(t)); lbValue val = lb_emit_runtime_call(p, "memory_compare_zero", args); lbValue res = lb_emit_comp(p, op_kind, val, lb_const_int(p->module, t_int, 0)); return res; } else if (is_type_soa_struct(t)) { GB_PANIC("#soa struct nil comparison"); // Type *bt = base_type(t); // if (bt->Struct.soa_kind == StructSoa_Slice) { // lbValue len = lb_soa_struct_len(p, x); // if (bt->Struct.fields.count > 1) { // lbValue data = lb_emit_struct_ev(p, x, 0); // if (op_kind == Token_CmpEq) { // lbValue a = lb_emit_comp(p, Token_CmpEq, data, v_raw_nil); // lbValue b = lb_emit_comp(p, Token_CmpEq, len, v_zero); // return lb_emit_arith(p, Token_Or, a, b, t_bool); // } else if (op_kind == Token_NotEq) { // lbValue a = lb_emit_comp(p, Token_NotEq, data, v_raw_nil); // lbValue b = lb_emit_comp(p, Token_NotEq, len, v_zero); // return lb_emit_arith(p, Token_And, a, b, t_bool); // } // } else { // return lb_emit_comp(p, op_kind, len, v_zero); // } // } else if (bt->Struct.soa_kind == StructSoa_Dynamic) { // lbValue cap = lb_soa_struct_len(p, x); // if (bt->Struct.fields.count > 1) { // lbValue data = lb_emit_struct_ev(p, x, 0); // if (op_kind == Token_CmpEq) { // lbValue a = lb_emit_comp(p, Token_CmpEq, data, v_raw_nil); // lbValue b = lb_emit_comp(p, Token_CmpEq, cap, v_zero); // return lb_emit_arith(p, Token_Or, a, b, t_bool); // } else if (op_kind == Token_NotEq) { // lbValue a = lb_emit_comp(p, Token_NotEq, data, v_raw_nil); // lbValue b = lb_emit_comp(p, Token_NotEq, cap, v_zero); // return lb_emit_arith(p, Token_And, a, b, t_bool); // } // } else { // return lb_emit_comp(p, op_kind, cap, v_zero); // } // } } return {}; } lbValue lb_emit_comp(lbProcedure *p, TokenKind op_kind, lbValue left, lbValue right) { Type *a = base_type(left.type); Type *b = base_type(right.type); GB_ASSERT(gb_is_between(op_kind, Token__ComparisonBegin+1, Token__ComparisonEnd-1)); lbValue nil_check = {}; if (is_type_untyped_nil(left.type)) { nil_check = lb_emit_comp_against_nil(p, op_kind, right); } else if (is_type_untyped_nil(right.type)) { nil_check = lb_emit_comp_against_nil(p, op_kind, left); } if (nil_check.value != nullptr) { return nil_check; } if (are_types_identical(a, b)) { // NOTE(bill): No need for a conversion } else if (lb_is_const(left) || lb_is_const_nil(left)) { left = lb_emit_conv(p, left, right.type); } else if (lb_is_const(right) || lb_is_const_nil(right)) { right = lb_emit_conv(p, right, left.type); } else { gbAllocator a = heap_allocator(); Type *lt = left.type; Type *rt = right.type; if (is_type_bit_set(lt) && is_type_bit_set(rt)) { Type *blt = base_type(lt); Type *brt = base_type(rt); GB_ASSERT(is_type_bit_field_value(blt)); GB_ASSERT(is_type_bit_field_value(brt)); i64 bits = gb_max(blt->BitFieldValue.bits, brt->BitFieldValue.bits); i64 bytes = bits / 8; switch (bytes) { case 1: left = lb_emit_conv(p, left, t_u8); right = lb_emit_conv(p, right, t_u8); break; case 2: left = lb_emit_conv(p, left, t_u16); right = lb_emit_conv(p, right, t_u16); break; case 4: left = lb_emit_conv(p, left, t_u32); right = lb_emit_conv(p, right, t_u32); break; case 8: left = lb_emit_conv(p, left, t_u64); right = lb_emit_conv(p, right, t_u64); break; default: GB_PANIC("Unknown integer size"); break; } } lt = left.type; rt = right.type; i64 ls = type_size_of(lt); i64 rs = type_size_of(rt); if (ls < rs) { left = lb_emit_conv(p, left, rt); } else if (ls > rs) { right = lb_emit_conv(p, right, lt); } else { right = lb_emit_conv(p, right, lt); } } if (is_type_array(a)) { Type *tl = base_type(a); lbValue lhs = lb_address_from_load_or_generate_local(p, left); lbValue rhs = lb_address_from_load_or_generate_local(p, right); TokenKind cmp_op = Token_And; lbValue res = lb_const_bool(p->module, t_llvm_bool, true); if (op_kind == Token_NotEq) { res = lb_const_bool(p->module, t_llvm_bool, false); cmp_op = Token_Or; } else if (op_kind == Token_CmpEq) { res = lb_const_bool(p->module, t_llvm_bool, true); cmp_op = Token_And; } bool inline_array_arith = type_size_of(tl) <= build_context.max_align; i32 count = cast(i32)tl->Array.count; if (inline_array_arith) { // inline lbAddr val = lb_add_local_generated(p, t_bool, false); lb_addr_store(p, val, res); for (i32 i = 0; i < count; i++) { lbValue x = lb_emit_load(p, lb_emit_array_epi(p, lhs, i)); lbValue y = lb_emit_load(p, lb_emit_array_epi(p, rhs, i)); lbValue cmp = lb_emit_comp(p, op_kind, x, y); lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool); lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool)); } return lb_addr_load(p, val); } else { if (is_type_simple_compare(tl) && (op_kind == Token_CmpEq || op_kind == Token_NotEq)) { // TODO(bill): Test to see if this is actually faster!!!! auto args = array_make(heap_allocator(), 3); args[0] = lb_emit_conv(p, lhs, t_rawptr); args[1] = lb_emit_conv(p, rhs, t_rawptr); args[2] = lb_const_int(p->module, t_int, type_size_of(tl)); lbValue val = lb_emit_runtime_call(p, "memory_compare", args); lbValue res = lb_emit_comp(p, op_kind, val, lb_const_nil(p->module, val.type)); return lb_emit_conv(p, res, t_bool); } else { lbAddr val = lb_add_local_generated(p, t_bool, false); lb_addr_store(p, val, res); auto loop_data = lb_loop_start(p, count, t_i32); { lbValue i = loop_data.idx; lbValue x = lb_emit_load(p, lb_emit_array_ep(p, lhs, i)); lbValue y = lb_emit_load(p, lb_emit_array_ep(p, rhs, i)); lbValue cmp = lb_emit_comp(p, op_kind, x, y); lbValue new_res = lb_emit_arith(p, cmp_op, lb_addr_load(p, val), cmp, t_bool); lb_addr_store(p, val, lb_emit_conv(p, new_res, t_bool)); } lb_loop_end(p, loop_data); return lb_addr_load(p, val); } } } if (is_type_string(a)) { if (is_type_cstring(a)) { left = lb_emit_conv(p, left, t_string); right = lb_emit_conv(p, right, t_string); } char const *runtime_proc = nullptr; switch (op_kind) { case Token_CmpEq: runtime_proc = "string_eq"; break; case Token_NotEq: runtime_proc = "string_ne"; break; case Token_Lt: runtime_proc = "string_lt"; break; case Token_Gt: runtime_proc = "string_gt"; break; case Token_LtEq: runtime_proc = "string_le"; break; case Token_GtEq: runtime_proc = "string_gt"; break; } GB_ASSERT(runtime_proc != nullptr); auto args = array_make(heap_allocator(), 2); args[0] = left; args[1] = right; return lb_emit_runtime_call(p, runtime_proc, args); } if (is_type_complex(a)) { char const *runtime_proc = ""; i64 sz = 8*type_size_of(a); switch (sz) { case 64: switch (op_kind) { case Token_CmpEq: runtime_proc = "complex64_eq"; break; case Token_NotEq: runtime_proc = "complex64_ne"; break; } break; case 128: switch (op_kind) { case Token_CmpEq: runtime_proc = "complex128_eq"; break; case Token_NotEq: runtime_proc = "complex128_ne"; break; } break; } GB_ASSERT(runtime_proc != nullptr); auto args = array_make(heap_allocator(), 2); args[0] = left; args[1] = right; return lb_emit_runtime_call(p, runtime_proc, args); } if (is_type_quaternion(a)) { char const *runtime_proc = ""; i64 sz = 8*type_size_of(a); switch (sz) { case 128: switch (op_kind) { case Token_CmpEq: runtime_proc = "quaternion128_eq"; break; case Token_NotEq: runtime_proc = "quaternion128_ne"; break; } break; case 256: switch (op_kind) { case Token_CmpEq: runtime_proc = "quaternion256_eq"; break; case Token_NotEq: runtime_proc = "quaternion256_ne"; break; } break; } GB_ASSERT(runtime_proc != nullptr); auto args = array_make(heap_allocator(), 2); args[0] = left; args[1] = right; return lb_emit_runtime_call(p, runtime_proc, args); } if (is_type_bit_set(a)) { switch (op_kind) { case Token_Lt: case Token_LtEq: case Token_Gt: case Token_GtEq: { Type *it = bit_set_to_int(a); lbValue lhs = lb_emit_transmute(p, left, it); lbValue rhs = lb_emit_transmute(p, right, it); lbValue res = lb_emit_arith(p, Token_And, lhs, rhs, it); if (op_kind == Token_Lt || op_kind == Token_LtEq) { // (lhs & rhs) == lhs res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, lhs.value, ""); res.type = t_llvm_bool; } else if (op_kind == Token_Gt || op_kind == Token_GtEq) { // (lhs & rhs) == rhs res.value = LLVMBuildICmp(p->builder, LLVMIntEQ, res.value, rhs.value, ""); res.type = t_llvm_bool; } // NOTE(bill): Strict subsets if (op_kind == Token_Lt || op_kind == Token_Gt) { // res &~ (lhs == rhs) lbValue eq = {}; eq.value = LLVMBuildICmp(p->builder, LLVMIntEQ, lhs.value, rhs.value, ""); eq.type = t_llvm_bool; res = lb_emit_arith(p, Token_AndNot, res, eq, t_llvm_bool); } return res; } } } if (op_kind != Token_CmpEq && op_kind != Token_NotEq) { Type *t = left.type; if (is_type_integer(t) && is_type_different_to_arch_endianness(t)) { Type *platform_type = integer_endian_type_to_platform_type(t); lbValue x = lb_emit_byte_swap(p, left, platform_type); lbValue y = lb_emit_byte_swap(p, right, platform_type); left = x; right = y; } } lbValue res = {}; res.type = t_llvm_bool; if (is_type_integer(left.type) || is_type_boolean(left.type) || is_type_pointer(left.type) || is_type_proc(left.type) || is_type_enum(left.type)) { LLVMIntPredicate pred = {}; if (is_type_unsigned(left.type)) { switch (op_kind) { case Token_Gt: pred = LLVMIntUGT; break; case Token_GtEq: pred = LLVMIntUGE; break; case Token_Lt: pred = LLVMIntULT; break; case Token_LtEq: pred = LLVMIntULE; break; } } else { switch (op_kind) { case Token_Gt: pred = LLVMIntSGT; break; case Token_GtEq: pred = LLVMIntSGE; break; case Token_Lt: pred = LLVMIntSLT; break; case Token_LtEq: pred = LLVMIntSLE; break; } } switch (op_kind) { case Token_CmpEq: pred = LLVMIntEQ; break; case Token_NotEq: pred = LLVMIntNE; break; } res.value = LLVMBuildICmp(p->builder, pred, left.value, right.value, ""); } else if (is_type_float(left.type)) { LLVMRealPredicate pred = {}; switch (op_kind) { case Token_CmpEq: pred = LLVMRealOEQ; break; case Token_Gt: pred = LLVMRealOGT; break; case Token_GtEq: pred = LLVMRealOGE; break; case Token_Lt: pred = LLVMRealOLT; break; case Token_LtEq: pred = LLVMRealOLE; break; case Token_NotEq: pred = LLVMRealONE; break; } res.value = LLVMBuildFCmp(p->builder, pred, left.value, right.value, ""); } else { GB_PANIC("Unhandled comparison kind %s %.*s %s", type_to_string(left.type), LIT(token_strings[op_kind]), type_to_string(right.type)); } return res; } lbValue lb_generate_anonymous_proc_lit(lbModule *m, String const &prefix_name, Ast *expr, lbProcedure *parent = nullptr) { ast_node(pl, ProcLit, expr); // NOTE(bill): Generate a new name // parent$count isize name_len = prefix_name.len + 1 + 8 + 1; char *name_text = gb_alloc_array(heap_allocator(), char, name_len); i32 name_id = cast(i32)m->anonymous_proc_lits.entries.count; name_len = gb_snprintf(name_text, name_len, "%.*s$anon-%d", LIT(prefix_name), name_id); String name = make_string((u8 *)name_text, name_len-1); Type *type = type_of_expr(expr); set_procedure_abi_types(heap_allocator(), type); Token token = {}; token.pos = ast_token(expr).pos; token.kind = Token_Ident; token.string = name; Entity *e = alloc_entity_procedure(nullptr, token, type, pl->tags); e->decl_info = pl->decl; lbProcedure *p = lb_create_procedure(m, e); lbValue value = {}; value.value = p->value; value.type = p->type; array_add(&m->procedures_to_generate, p); if (parent != nullptr) { array_add(&parent->children, p); } else { map_set(&m->members, hash_string(name), value); } map_set(&m->anonymous_proc_lits, hash_pointer(expr), p); return value; } lbValue lb_build_expr(lbProcedure *p, Ast *expr) { lbModule *m = p->module; expr = unparen_expr(expr); TypeAndValue tv = type_and_value_of_expr(expr); GB_ASSERT(tv.mode != Addressing_Invalid); GB_ASSERT(tv.mode != Addressing_Type); if (tv.value.kind != ExactValue_Invalid) { // NOTE(bill): Short on constant values return lb_const_value(p->module, tv.type, tv.value); } switch (expr->kind) { case_ast_node(bl, BasicLit, expr); TokenPos pos = bl->token.pos; GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(token_strings[bl->token.kind])); case_end; case_ast_node(bd, BasicDirective, expr); TokenPos pos = bd->token.pos; GB_PANIC("Non-constant basic literal %.*s(%td:%td) - %.*s", LIT(pos.file), pos.line, pos.column, LIT(bd->name)); case_end; case_ast_node(i, Implicit, expr); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; case_ast_node(u, Undef, expr) lbValue res = {}; if (is_type_untyped(tv.type)) { res.value = nullptr; res.type = t_untyped_undef; } else { res.value = LLVMGetUndef(lb_type(m, tv.type)); res.type = tv.type; } return res; case_end; case_ast_node(i, Ident, expr); Entity *e = entity_of_ident(expr); GB_ASSERT_MSG(e != nullptr, "%s", expr_to_string(expr)); if (e->kind == Entity_Builtin) { Token token = ast_token(expr); GB_PANIC("TODO(bill): lb_build_expr Entity_Builtin '%.*s'\n" "\t at %.*s(%td:%td)", LIT(builtin_procs[e->Builtin.id].name), LIT(token.pos.file), token.pos.line, token.pos.column); return {}; } else if (e->kind == Entity_Nil) { lbValue res = {}; res.value = nullptr; res.type = e->type; return res; } GB_ASSERT(e->kind != Entity_ProcGroup); auto *found = map_get(&p->module->values, hash_entity(e)); if (found) { auto v = *found; // NOTE(bill): This is because pointers are already pointers in LLVM if (is_type_proc(v.type)) { return v; } return lb_emit_load(p, v); } else if (e != nullptr && e->kind == Entity_Variable) { return lb_addr_load(p, lb_build_addr(p, expr)); } gb_printf_err("Error in: %.*s(%td:%td)\n", LIT(p->name), i->token.pos.line, i->token.pos.column); GB_PANIC("nullptr value for expression from identifier: %.*s.%.*s (%p) : %s @ %p", LIT(e->pkg->name), LIT(e->token.string), e, type_to_string(e->type), expr); return {}; case_end; case_ast_node(de, DerefExpr, expr); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; case_ast_node(se, SelectorExpr, expr); TypeAndValue tav = type_and_value_of_expr(expr); GB_ASSERT(tav.mode != Addressing_Invalid); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; case_ast_node(ise, ImplicitSelectorExpr, expr); TypeAndValue tav = type_and_value_of_expr(expr); GB_ASSERT(tav.mode == Addressing_Constant); return lb_const_value(p->module, tv.type, tv.value); case_end; case_ast_node(te, TernaryExpr, expr); LLVMValueRef incoming_values[2] = {}; LLVMBasicBlockRef incoming_blocks[2] = {}; GB_ASSERT(te->y != nullptr); lbBlock *then = lb_create_block(p, "if.then"); lbBlock *done = lb_create_block(p, "if.done"); // NOTE(bill): Append later lbBlock *else_ = lb_create_block(p, "if.else"); lbValue cond = lb_build_cond(p, te->cond, then, else_); lb_start_block(p, then); Type *type = type_of_expr(expr); lb_open_scope(p); incoming_values[0] = lb_emit_conv(p, lb_build_expr(p, te->x), type).value; lb_close_scope(p, lbDeferExit_Default, nullptr); lb_emit_jump(p, done); lb_start_block(p, else_); lb_open_scope(p); incoming_values[1] = lb_emit_conv(p, lb_build_expr(p, te->y), type).value; lb_close_scope(p, lbDeferExit_Default, nullptr); lb_emit_jump(p, done); lb_start_block(p, done); lbValue res = {}; res.value = LLVMBuildPhi(p->builder, lb_type(p->module, type), ""); res.type = type; GB_ASSERT(p->curr_block->preds.count >= 2); incoming_blocks[0] = p->curr_block->preds[0]->block; incoming_blocks[1] = p->curr_block->preds[1]->block; LLVMAddIncoming(res.value, incoming_values, incoming_blocks, 2); return res; case_end; case_ast_node(ta, TypeAssertion, expr); TokenPos pos = ast_token(expr).pos; Type *type = tv.type; lbValue e = lb_build_expr(p, ta->expr); Type *t = type_deref(e.type); if (is_type_union(t)) { GB_PANIC("cast - union_cast"); // return lb_emit_union_cast(p, e, type, pos); } else if (is_type_any(t)) { GB_PANIC("cast - any_cast"); // return lb_emit_any_cast(p, e, type, pos); } else { GB_PANIC("TODO(bill): type assertion %s", type_to_string(e.type)); } case_end; case_ast_node(tc, TypeCast, expr); lbValue e = lb_build_expr(p, tc->expr); switch (tc->token.kind) { case Token_cast: return lb_emit_conv(p, e, tv.type); case Token_transmute: return lb_emit_transmute(p, e, tv.type); } GB_PANIC("Invalid AST TypeCast"); case_end; case_ast_node(ac, AutoCast, expr); return lb_build_expr(p, ac->expr); case_end; case_ast_node(ue, UnaryExpr, expr); switch (ue->op.kind) { case Token_And: { Ast *ue_expr = unparen_expr(ue->expr); // if (ue_expr->kind == Ast_TypeAssertion) { // gbAllocator a = heap_allocator(); // GB_ASSERT(is_type_pointer(tv.type)); // ast_node(ta, TypeAssertion, ue_expr); // TokenPos pos = ast_token(expr).pos; // Type *type = type_of_expr(ue_expr); // GB_ASSERT(!is_type_tuple(type)); // lbValue e = lb_build_expr(p, ta->expr); // Type *t = type_deref(e.type); // if (is_type_union(t)) { // lbValue v = e; // if (!is_type_pointer(v.type)) { // v = lb_address_from_load_or_generate_local(p, v); // } // Type *src_type = type_deref(v.type); // Type *dst_type = type; // lbValue src_tag = lb_emit_load(p, lb_emit_union_tag_ptr(p, v)); // lbValue dst_tag = lb_const_union_tag(src_type, dst_type); // lbValue ok = lb_emit_comp(p, Token_CmpEq, src_tag, dst_tag); // auto args = array_make(heap_allocator(), 6); // args[0] = ok; // args[1] = lb_find_or_add_entity_string(p->module, pos.file); // args[2] = lb_const_int(pos.line); // args[3] = lb_const_int(pos.column); // args[4] = lb_typeid(p->module, src_type); // args[5] = lb_typeid(p->module, dst_type); // lb_emit_runtime_call(p, "type_assertion_check", args); // lbValue data_ptr = v; // return lb_emit_conv(p, data_ptr, tv.type); // } else if (is_type_any(t)) { // lbValue v = e; // if (is_type_pointer(ir_type(v))) { // v = lb_emit_load(p, v); // } // lbValue data_ptr = lb_emit_struct_ev(p, v, 0); // lbValue any_id = lb_emit_struct_ev(p, v, 1); // lbValue id = lb_typeid(p->module, type); // lbValue ok = lb_emit_comp(p, Token_CmpEq, any_id, id); // auto args = array_make(heap_allocator(), 6); // args[0] = ok; // args[1] = lb_find_or_add_entity_string(p->module, pos.file); // args[2] = lb_const_int(pos.line); // args[3] = lb_const_int(pos.column); // args[4] = any_id; // args[5] = id; // lb_emit_runtime_call(p, "type_assertion_check", args); // return lb_emit_conv(p, data_ptr, tv.type); // } else { // GB_PANIC("TODO(bill): type assertion %s", type_to_string(type)); // } // } return lb_build_addr_ptr(p, ue->expr); } default: { lbValue v = lb_build_expr(p, ue->expr); return lb_emit_unary_arith(p, ue->op.kind, v, tv.type); } } case_end; case_ast_node(be, BinaryExpr, expr); return lb_build_binary_expr(p, expr); case_end; case_ast_node(pl, ProcLit, expr); return lb_generate_anonymous_proc_lit(p->module, p->name, expr, p); case_end; case_ast_node(cl, CompoundLit, expr); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; case_ast_node(ce, CallExpr, expr); return lb_build_call_expr(p, expr); case_end; case_ast_node(se, SliceExpr, expr); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; case_ast_node(ie, IndexExpr, expr); return lb_addr_load(p, lb_build_addr(p, expr)); case_end; } GB_PANIC("lb_build_expr: %.*s", LIT(ast_strings[expr->kind])); return {}; } lbValue lb_get_using_variable(lbProcedure *p, Entity *e) { GB_ASSERT(e->kind == Entity_Variable && e->flags & EntityFlag_Using); String name = e->token.string; Entity *parent = e->using_parent; Selection sel = lookup_field(parent->type, name, false); GB_ASSERT(sel.entity != nullptr); lbValue *pv = map_get(&p->module->values, hash_entity(parent)); lbValue v = {}; if (pv != nullptr) { v = *pv; } else { GB_ASSERT_MSG(e->using_expr != nullptr, "%.*s", LIT(name)); v = lb_build_addr_ptr(p, e->using_expr); } GB_ASSERT(v.value != nullptr); GB_ASSERT(parent->type == type_deref(v.type)); return lb_emit_deep_field_gep(p, v, sel); } lbAddr lb_build_addr_from_entity(lbProcedure *p, Entity *e, Ast *expr) { GB_ASSERT(e != nullptr); if (e->kind == Entity_Constant) { Type *t = default_type(type_of_expr(expr)); lbValue v = lb_const_value(p->module, t, e->Constant.value); lbAddr g = lb_add_global_generated(p->module, t, v); return g; } lbValue v = {}; lbValue *found = map_get(&p->module->values, hash_entity(e)); if (found) { v = *found; } else if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) { // NOTE(bill): Calculate the using variable every time v = lb_get_using_variable(p, e); } if (v.value == nullptr) { error(expr, "%.*s Unknown value: %.*s, entity: %p %.*s", LIT(p->name), LIT(e->token.string), e, LIT(entity_strings[e->kind])); GB_PANIC("Unknown value"); } return lb_addr(v); } lbAddr lb_build_addr(lbProcedure *p, Ast *expr) { expr = unparen_expr(expr); switch (expr->kind) { case_ast_node(i, Implicit, expr); lbAddr v = {}; switch (i->kind) { case Token_context: v = lb_find_or_generate_context_ptr(p); break; } GB_ASSERT(v.addr.value != nullptr); return v; case_end; case_ast_node(i, Ident, expr); if (is_blank_ident(expr)) { lbAddr val = {}; return val; } String name = i->token.string; Entity *e = entity_of_ident(expr); return lb_build_addr_from_entity(p, e, expr); case_end; case_ast_node(se, SelectorExpr, expr); Ast *sel = unparen_expr(se->selector); if (sel->kind == Ast_Ident) { String selector = sel->Ident.token.string; TypeAndValue tav = type_and_value_of_expr(se->expr); if (tav.mode == Addressing_Invalid) { // NOTE(bill): Imports Entity *imp = entity_of_ident(se->expr); if (imp != nullptr) { GB_ASSERT(imp->kind == Entity_ImportName); } return lb_build_addr(p, unparen_expr(se->selector)); } Type *type = base_type(tav.type); if (tav.mode == Addressing_Type) { // Addressing_Type Selection sel = lookup_field(type, selector, true); Entity *e = sel.entity; GB_ASSERT(e->kind == Entity_Variable); GB_ASSERT(e->flags & EntityFlag_TypeField); String name = e->token.string; /*if (name == "names") { lbValue ti_ptr = lb_type_info(p, type); lbValue variant = ir_emit_struct_ep(p, ti_ptr, 2); lbValue names_ptr = nullptr; if (is_type_enum(type)) { lbValue enum_info = lb_emit_conv(p, variant, t_type_info_enum_ptr); names_ptr = ir_emit_struct_ep(p, enum_info, 1); } else if (type->kind == Type_Struct) { lbValue struct_info = lb_emit_conv(p, variant, t_type_info_struct_ptr); names_ptr = ir_emit_struct_ep(p, struct_info, 1); } return ir_addr(names_ptr); } else */{ GB_PANIC("Unhandled TypeField %.*s", LIT(name)); } GB_PANIC("Unreachable"); } Selection sel = lookup_field(type, selector, false); GB_ASSERT(sel.entity != nullptr); if (sel.entity->type->kind == Type_BitFieldValue) { lbAddr addr = lb_build_addr(p, se->expr); Type *bft = type_deref(lb_addr_type(addr)); if (sel.index.count == 1) { GB_ASSERT(is_type_bit_field(bft)); i32 index = sel.index[0]; return lb_addr_bit_field(lb_addr_get_ptr(p, addr), index); } else { Selection s = sel; s.index.count--; i32 index = s.index[s.index.count-1]; lbValue a = lb_addr_get_ptr(p, addr); a = lb_emit_deep_field_gep(p, a, s); return lb_addr_bit_field(a, index); } } else { lbAddr addr = lb_build_addr(p, se->expr); if (addr.kind == lbAddr_Context) { GB_ASSERT(sel.index.count > 0); if (addr.ctx.sel.index.count >= 0) { sel = selection_combine(addr.ctx.sel, sel); } addr.ctx.sel = sel; return addr; } else if (addr.kind == lbAddr_SoaVariable) { lbValue index = addr.soa.index; i32 first_index = sel.index[0]; Selection sub_sel = sel; sub_sel.index.data += 1; sub_sel.index.count -= 1; lbValue arr = lb_emit_struct_ep(p, addr.addr, first_index); Type *t = base_type(type_deref(addr.addr.type)); GB_ASSERT(is_type_soa_struct(t)); // TODO(bill): Bounds check // if (addr.soa.index->kind != irValue_Constant || t->Struct.soa_kind != StructSoa_Fixed) { // lbValue len = ir_soa_struct_len(p, addr.addr); // ir_emit_bounds_check(p, ast_token(addr.soa.index_expr), addr.soa.index, len); // } lbValue item = {}; if (t->Struct.soa_kind == StructSoa_Fixed) { item = lb_emit_array_ep(p, arr, index); } else { item = lb_emit_load(p, lb_emit_ptr_offset(p, arr, index)); } if (sub_sel.index.count > 0) { item = lb_emit_deep_field_gep(p, item, sub_sel); } return lb_addr(item); } lbValue a = lb_addr_get_ptr(p, addr); a = lb_emit_deep_field_gep(p, a, sel); return lb_addr(a); } } else { GB_PANIC("Unsupported selector expression"); } case_end; #if 0 case_ast_node(ta, TypeAssertion, expr); gbAllocator a = heap_allocator(); TokenPos pos = ast_token(expr).pos; lbValue e = lb_build_expr(proc, ta->expr); Type *t = type_deref(ir_type(e)); if (is_type_union(t)) { Type *type = type_of_expr(expr); lbValue v = lb_add_local_generated(proc, type, false); ir_emit_comment(proc, str_lit("cast - union_cast")); lb_emit_store(proc, v, ir_emit_union_cast(proc, lb_build_expr(proc, ta->expr), type, pos)); return ir_addr(v); } else if (is_type_any(t)) { ir_emit_comment(proc, str_lit("cast - any_cast")); Type *type = type_of_expr(expr); return ir_emit_any_cast_addr(proc, lb_build_expr(proc, ta->expr), type, pos); } else { GB_PANIC("TODO(bill): type assertion %s", type_to_string(ir_type(e))); } case_end; #endif case_ast_node(ue, UnaryExpr, expr); switch (ue->op.kind) { case Token_And: { return lb_build_addr(p, ue->expr); } default: GB_PANIC("Invalid unary expression for lb_build_addr"); } case_end; case_ast_node(be, BinaryExpr, expr); lbValue v = lb_build_expr(p, expr); Type *t = v.type; if (is_type_pointer(t)) { return lb_addr(v); } return lb_addr(lb_address_from_load_or_generate_local(p, v)); case_end; case_ast_node(ie, IndexExpr, expr); Type *t = base_type(type_of_expr(ie->expr)); gbAllocator a = heap_allocator(); bool deref = is_type_pointer(t); t = base_type(type_deref(t)); if (is_type_soa_struct(t)) { // SOA STRUCTURES!!!! GB_PANIC("SOA STRUCTURES!!!!"); // lbValue val = lb_build_addr_ptr(p, ie->expr); // if (deref) { // val = lb_emit_load(p, val); // } // lbValue index = lb_build_expr(p, ie->index); // return lb_addr_soa_variable(val, index, ie->index); } if (ie->expr->tav.mode == Addressing_SoaVariable) { // SOA Structures for slices/dynamic arrays GB_ASSERT(is_type_pointer(type_of_expr(ie->expr))); lbValue field = lb_build_expr(p, ie->expr); lbValue index = lb_build_expr(p, ie->index); if (!build_context.no_bounds_check) { GB_PANIC("HERE"); // // TODO HACK(bill): Clean up this hack to get the length for bounds checking // GB_ASSERT(LLVMIsALoadInst(field.value)); // lbValue a = {}; // a.value = LLVMGetOperand(field.value, 0); // a.type = alloc_type_pointer(field.type); // irInstr *b = &a->Instr; // GB_ASSERT(b->kind == irInstr_StructElementPtr); // lbValue base_struct = b->StructElementPtr.address; // GB_ASSERT(is_type_soa_struct(type_deref(ir_type(base_struct)))); // lbValue len = ir_soa_struct_len(p, base_struct); // ir_emit_bounds_check(p, ast_token(ie->index), index, len); } lbValue val = lb_emit_ptr_offset(p, field, index); return lb_addr(val); } GB_ASSERT_MSG(is_type_indexable(t), "%s %s", type_to_string(t), expr_to_string(expr)); if (is_type_map(t)) { GB_PANIC("map index"); // lbValue map_val = lb_build_addr_ptr(p, ie->expr); // if (deref) { // map_val = lb_emit_load(p, map_val); // } // lbValue key = lb_build_expr(p, ie->index); // key = lb_emit_conv(p, key, t->Map.key); // Type *result_type = type_of_expr(expr); // return lb_addr_map(map_val, key, t, result_type); } lbValue using_addr = {}; switch (t->kind) { case Type_Array: { lbValue array = {}; if (using_addr.value != nullptr) { array = using_addr; } else { array = lb_build_addr_ptr(p, ie->expr); if (deref) { array = lb_emit_load(p, array); } } lbValue index = lb_build_expr(p, ie->index); index = lb_emit_conv(p, index, t_int); lbValue elem = lb_emit_array_ep(p, array, index); auto index_tv = type_and_value_of_expr(ie->index); if (index_tv.mode != Addressing_Constant) { // lbValue len = lb_const_int(p->module, t_int, t->Array.count); // ir_emit_bounds_check(p, ast_token(ie->index), index, len); } return lb_addr(elem); } case Type_EnumeratedArray: { lbValue array = {}; if (using_addr.value != nullptr) { array = using_addr; } else { array = lb_build_addr_ptr(p, ie->expr); if (deref) { array = lb_emit_load(p, array); } } Type *index_type = t->EnumeratedArray.index; auto index_tv = type_and_value_of_expr(ie->index); lbValue index = {}; if (compare_exact_values(Token_NotEq, t->EnumeratedArray.min_value, exact_value_i64(0))) { if (index_tv.mode == Addressing_Constant) { ExactValue idx = exact_value_sub(index_tv.value, t->EnumeratedArray.min_value); index = lb_const_value(p->module, index_type, idx); } else { index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int); index = lb_emit_arith(p, Token_Sub, index, lb_const_value(p->module, index_type, t->EnumeratedArray.min_value), index_type); } } else { index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int); } lbValue elem = lb_emit_array_ep(p, array, index); if (index_tv.mode != Addressing_Constant) { // lbValue len = ir_const_int(t->EnumeratedArray.count); // ir_emit_bounds_check(p, ast_token(ie->index), index, len); } return lb_addr(elem); } case Type_Slice: { lbValue slice = {}; if (using_addr.value != nullptr) { slice = lb_emit_load(p, using_addr); } else { slice = lb_build_expr(p, ie->expr); if (deref) { slice = lb_emit_load(p, slice); } } lbValue elem = lb_slice_elem(p, slice); lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int); lbValue len = lb_slice_len(p, slice); // ir_emit_bounds_check(p, ast_token(ie->index), index, len); lbValue v = lb_emit_ptr_offset(p, elem, index); return lb_addr(v); } case Type_DynamicArray: { lbValue dynamic_array = {}; if (using_addr.value != nullptr) { dynamic_array = lb_emit_load(p, using_addr); } else { dynamic_array = lb_build_expr(p, ie->expr); if (deref) { dynamic_array = lb_emit_load(p, dynamic_array); } } lbValue elem = lb_dynamic_array_elem(p, dynamic_array); lbValue len = lb_dynamic_array_len(p, dynamic_array); lbValue index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int); // lb_emit_bounds_check(p, ast_token(ie->index), index, len); lbValue v = lb_emit_ptr_offset(p, elem, index); return lb_addr(v); } case Type_Basic: { // Basic_string lbValue str; lbValue elem; lbValue len; lbValue index; if (using_addr.value != nullptr) { str = lb_emit_load(p, using_addr); } else { str = lb_build_expr(p, ie->expr); if (deref) { str = lb_emit_load(p, str); } } elem = lb_string_elem(p, str); len = lb_string_len(p, str); index = lb_emit_conv(p, lb_build_expr(p, ie->index), t_int); // lb_emit_bounds_check(p, ast_token(ie->index), index, len); return lb_addr(lb_emit_ptr_offset(p, elem, index)); } } case_end; case_ast_node(se, SliceExpr, expr); gbAllocator a = heap_allocator(); lbValue low = lb_const_int(p->module, t_int, 0); lbValue high = {}; if (se->low != nullptr) low = lb_build_expr(p, se->low); if (se->high != nullptr) high = lb_build_expr(p, se->high); bool no_indices = se->low == nullptr && se->high == nullptr; lbValue addr = lb_build_addr_ptr(p, se->expr); lbValue base = lb_emit_load(p, addr); Type *type = base_type(base.type); if (is_type_pointer(type)) { type = base_type(type_deref(type)); addr = base; base = lb_emit_load(p, base); } // TODO(bill): Cleanup like mad! switch (type->kind) { case Type_Slice: { Type *slice_type = type; lbValue len = lb_slice_len(p, base); if (high.value == nullptr) high = len; if (!no_indices) { // ir_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr); } lbValue elem = lb_emit_ptr_offset(p, lb_slice_elem(p, base), low); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lbAddr slice = lb_add_local_generated(p, slice_type, false); lb_fill_slice(p, slice, elem, new_len); return slice; } case Type_DynamicArray: { Type *elem_type = type->DynamicArray.elem; Type *slice_type = alloc_type_slice(elem_type); lbValue len = lb_dynamic_array_len(p, base); if (high.value == nullptr) high = len; if (!no_indices) { // lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr); } lbValue elem = lb_emit_ptr_offset(p, lb_dynamic_array_elem(p, base), low); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lbAddr slice = lb_add_local_generated(p, slice_type, false); lb_fill_slice(p, slice, elem, new_len); return slice; } case Type_Array: { Type *slice_type = alloc_type_slice(type->Array.elem); lbValue len = lb_const_int(p->module, t_int, type->Array.count); if (high.value == nullptr) high = len; bool low_const = type_and_value_of_expr(se->low).mode == Addressing_Constant; bool high_const = type_and_value_of_expr(se->high).mode == Addressing_Constant; if (!low_const || !high_const) { if (!no_indices) { // lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr); } } lbValue elem = lb_emit_ptr_offset(p, lb_array_elem(p, addr), low); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lbAddr slice = lb_add_local_generated(p, slice_type, false); lb_fill_slice(p, slice, elem, new_len); return slice; } case Type_Basic: { GB_ASSERT(type == t_string); lbValue len = lb_string_len(p, base); if (high.value == nullptr) high = len; if (!no_indices) { // lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr); } lbValue elem = lb_emit_ptr_offset(p, lb_string_elem(p, base), low); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lbAddr str = lb_add_local_generated(p, t_string, false); lb_fill_string(p, str, elem, new_len); return str; } case Type_Struct: if (is_type_soa_struct(type)) { lbValue len = lb_soa_struct_len(p, addr); if (high.value == nullptr) high = len; if (!no_indices) { // lb_emit_slice_bounds_check(p, se->open, low, high, len, se->low != nullptr); } GB_PANIC("#soa struct slice"); #if 0 lbAddr dst = lb_add_local_generated(p, type_of_expr(expr), true); if (type->Struct.soa_kind == StructSoa_Fixed) { i32 field_count = cast(i32)type->Struct.fields.count; for (i32 i = 0; i < field_count; i++) { lbValue field_dst = lb_emit_struct_ep(p, dst, i); lbValue field_src = lb_emit_struct_ep(p, addr, i); field_src = lb_emit_array_ep(p, field_src, low); lb_emit_store(p, field_dst, field_src); } lbValue len_dst = lb_emit_struct_ep(p, dst, field_count); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lb_emit_store(p, len_dst, new_len); } else if (type->Struct.soa_kind == StructSoa_Slice) { if (no_indices) { lb_emit_store(p, dst, base); } else { i32 field_count = cast(i32)type->Struct.fields.count - 1; for (i32 i = 0; i < field_count; i++) { lbValue field_dst = lb_emit_struct_ep(p, dst, i); lbValue field_src = lb_emit_struct_ev(p, base, i); field_src = lb_emit_ptr_offset(p, field_src, low); lb_emit_store(p, field_dst, field_src); } lbValue len_dst = lb_emit_struct_ep(p, dst, field_count); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lb_emit_store(p, len_dst, new_len); } } else if (type->Struct.soa_kind == StructSoa_Dynamic) { i32 field_count = cast(i32)type->Struct.fields.count - 3; for (i32 i = 0; i < field_count; i++) { lbValue field_dst = lb_emit_struct_ep(p, dst, i); lbValue field_src = lb_emit_struct_ev(p, base, i); field_src = lb_emit_ptr_offset(p, field_src, low); lb_emit_store(p, field_dst, field_src); } lbValue len_dst = lb_emit_struct_ep(p, dst, field_count); lbValue new_len = lb_emit_arith(p, Token_Sub, high, low, t_int); lb_emit_store(p, len_dst, new_len); } return dst; #endif } break; } GB_PANIC("Unknown slicable type"); case_end; case_ast_node(de, DerefExpr, expr); // TODO(bill): Is a ptr copy needed? lbValue addr = lb_build_expr(p, de->expr); return lb_addr(addr); case_end; case_ast_node(ce, CallExpr, expr); // NOTE(bill): This is make sure you never need to have an 'array_ev' lbValue e = lb_build_expr(p, expr); lbAddr v = lb_add_local_generated(p, e.type, false); lb_addr_store(p, v, e); return v; case_end; case_ast_node(cl, CompoundLit, expr); Type *type = type_of_expr(expr); Type *bt = base_type(type); lbAddr v = lb_add_local_generated(p, type, true); Type *et = nullptr; switch (bt->kind) { case Type_Array: et = bt->Array.elem; break; case Type_EnumeratedArray: et = bt->EnumeratedArray.elem; break; case Type_Slice: et = bt->Slice.elem; break; case Type_BitSet: et = bt->BitSet.elem; break; case Type_SimdVector: et = bt->SimdVector.elem; break; } String proc_name = {}; if (p->entity) { proc_name = p->entity->token.string; } TokenPos pos = ast_token(expr).pos; switch (bt->kind) { default: GB_PANIC("Unknown CompoundLit type: %s", type_to_string(type)); break; case Type_Struct: { // TODO(bill): "constant" '#raw_union's are not initialized constantly at the moment. // NOTE(bill): This is due to the layout of the unions when printed to LLVM-IR bool is_raw_union = is_type_raw_union(bt); GB_ASSERT(is_type_struct(bt) || is_raw_union); TypeStruct *st = &bt->Struct; if (cl->elems.count > 0) { lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr))); for_array(field_index, cl->elems) { Ast *elem = cl->elems[field_index]; lbValue field_expr = {}; Entity *field = nullptr; isize index = field_index; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); String name = fv->field->Ident.token.string; Selection sel = lookup_field(bt, name, false); index = sel.index[0]; elem = fv->value; TypeAndValue tav = type_and_value_of_expr(elem); } else { TypeAndValue tav = type_and_value_of_expr(elem); Selection sel = lookup_field_from_index(bt, st->fields[field_index]->Variable.field_src_index); index = sel.index[0]; } field = st->fields[index]; Type *ft = field->type; if (!is_raw_union && !is_type_typeid(ft) && lb_is_elem_const(elem, ft)) { continue; } field_expr = lb_build_expr(p, elem); Type *fet = field_expr.type; GB_ASSERT(fet->kind != Type_Tuple); // HACK TODO(bill): THIS IS A MASSIVE HACK!!!! if (is_type_union(ft) && !are_types_identical(fet, ft) && !is_type_untyped(fet)) { GB_ASSERT_MSG(union_variant_index(ft, fet) > 0, "%s", type_to_string(fet)); lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index); // TODO(bill): lb_emit_store_union_variant // lb_emit_store_union_variant(p, gep, field_expr, fet); } else { lbValue fv = lb_emit_conv(p, field_expr, ft); lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index); lb_emit_store(p, gep, fv); } } } break; } case Type_Map: { if (cl->elems.count == 0) { break; } // TODO(bill): Map CompoundLit // gbAllocator a = heap_allocator(); // { // auto args = array_make(a, 3); // args[0] = ir_gen_map_header(proc, v, type); // args[1] = ir_const_int(2*cl->elems.count); // args[2] = ir_emit_source_code_location(proc, proc_name, pos); // lb_emit_runtime_call(proc, "__dynamic_map_reserve", args); // } // for_array(field_index, cl->elems) { // Ast *elem = cl->elems[field_index]; // ast_node(fv, FieldValue, elem); // lbValue key = lb_build_expr(proc, fv->field); // lbValue value = lb_build_expr(proc, fv->value); // ir_insert_dynamic_map_key_and_value(proc, v, type, key, value); // } break; } case Type_Array: { if (cl->elems.count > 0) { lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr))); auto temp_data = array_make(heap_allocator(), 0, cl->elems.count); defer (array_free(&temp_data)); // NOTE(bill): Separate value, gep, store into their own chunks for_array(i, cl->elems) { Ast *elem = cl->elems[i]; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); if (lb_is_elem_const(fv->value, et)) { continue; } if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } lbValue value = lb_build_expr(p, fv->value); for (i64 k = lo; k < hi; k++) { lbCompoundLitElemTempData data = {}; data.value = value; data.elem_index = cast(i32)k; array_add(&temp_data, data); } } else { auto tav = fv->field->tav; GB_ASSERT(tav.mode == Addressing_Constant); i64 index = exact_value_to_i64(tav.value); lbValue value = lb_build_expr(p, fv->value); lbCompoundLitElemTempData data = {}; data.value = lb_emit_conv(p, value, et); data.expr = fv->value; data.elem_index = cast(i32)index; array_add(&temp_data, data); } } else { if (lb_is_elem_const(elem, et)) { continue; } lbCompoundLitElemTempData data = {}; data.expr = elem; data.elem_index = cast(i32)i; array_add(&temp_data, data); } } for_array(i, temp_data) { temp_data[i].gep = lb_emit_array_epi(p, lb_addr_get_ptr(p, v), temp_data[i].elem_index); } for_array(i, temp_data) { auto return_ptr_hint_ast = p->return_ptr_hint_ast; auto return_ptr_hint_value = p->return_ptr_hint_value; auto return_ptr_hint_used = p->return_ptr_hint_used; defer (p->return_ptr_hint_ast = return_ptr_hint_ast); defer (p->return_ptr_hint_value = return_ptr_hint_value); defer (p->return_ptr_hint_used = return_ptr_hint_used); lbValue field_expr = temp_data[i].value; Ast *expr = temp_data[i].expr; p->return_ptr_hint_value = temp_data[i].gep; p->return_ptr_hint_ast = unparen_expr(expr); if (field_expr.value == nullptr) { field_expr = lb_build_expr(p, expr); } Type *t = field_expr.type; GB_ASSERT(t->kind != Type_Tuple); lbValue ev = lb_emit_conv(p, field_expr, et); if (!p->return_ptr_hint_used) { temp_data[i].value = ev; } } for_array(i, temp_data) { if (temp_data[i].value.value != nullptr) { lb_emit_store(p, temp_data[i].gep, temp_data[i].value); } } } break; } case Type_EnumeratedArray: { if (cl->elems.count > 0) { lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr))); auto temp_data = array_make(heap_allocator(), 0, cl->elems.count); defer (array_free(&temp_data)); // NOTE(bill): Separate value, gep, store into their own chunks for_array(i, cl->elems) { Ast *elem = cl->elems[i]; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); if (lb_is_elem_const(fv->value, et)) { continue; } if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } lbValue value = lb_build_expr(p, fv->value); for (i64 k = lo; k < hi; k++) { lbCompoundLitElemTempData data = {}; data.value = value; data.elem_index = cast(i32)k; array_add(&temp_data, data); } } else { auto tav = fv->field->tav; GB_ASSERT(tav.mode == Addressing_Constant); i64 index = exact_value_to_i64(tav.value); lbValue value = lb_build_expr(p, fv->value); lbCompoundLitElemTempData data = {}; data.value = lb_emit_conv(p, value, et); data.expr = fv->value; data.elem_index = cast(i32)index; array_add(&temp_data, data); } } else { if (lb_is_elem_const(elem, et)) { continue; } lbCompoundLitElemTempData data = {}; data.expr = elem; data.elem_index = cast(i32)i; array_add(&temp_data, data); } } i32 index_offset = cast(i32)exact_value_to_i64(bt->EnumeratedArray.min_value); for_array(i, temp_data) { i32 index = temp_data[i].elem_index - index_offset; temp_data[i].gep = lb_emit_array_epi(p, lb_addr_get_ptr(p, v), index); } for_array(i, temp_data) { auto return_ptr_hint_ast = p->return_ptr_hint_ast; auto return_ptr_hint_value = p->return_ptr_hint_value; auto return_ptr_hint_used = p->return_ptr_hint_used; defer (p->return_ptr_hint_ast = return_ptr_hint_ast); defer (p->return_ptr_hint_value = return_ptr_hint_value); defer (p->return_ptr_hint_used = return_ptr_hint_used); lbValue field_expr = temp_data[i].value; Ast *expr = temp_data[i].expr; p->return_ptr_hint_value = temp_data[i].gep; p->return_ptr_hint_ast = unparen_expr(expr); if (field_expr.value == nullptr) { field_expr = lb_build_expr(p, expr); } Type *t = field_expr.type; GB_ASSERT(t->kind != Type_Tuple); lbValue ev = lb_emit_conv(p, field_expr, et); if (!p->return_ptr_hint_used) { temp_data[i].value = ev; } } for_array(i, temp_data) { if (temp_data[i].value.value != nullptr) { lb_emit_store(p, temp_data[i].gep, temp_data[i].value); } } } break; } case Type_Slice: { if (cl->elems.count > 0) { Type *elem_type = bt->Slice.elem; Type *elem_ptr_type = alloc_type_pointer(elem_type); Type *elem_ptr_ptr_type = alloc_type_pointer(elem_ptr_type); lbValue slice = lb_const_value(p->module, type, exact_value_compound(expr)); lbValue data = lb_slice_elem(p, slice); auto temp_data = array_make(heap_allocator(), 0, cl->elems.count); defer (array_free(&temp_data)); for_array(i, cl->elems) { Ast *elem = cl->elems[i]; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); if (lb_is_elem_const(fv->value, et)) { continue; } if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et); for (i64 k = lo; k < hi; k++) { lbCompoundLitElemTempData data = {}; data.value = value; data.elem_index = cast(i32)k; array_add(&temp_data, data); } } else { GB_ASSERT(fv->field->tav.mode == Addressing_Constant); i64 index = exact_value_to_i64(fv->field->tav.value); lbValue field_expr = lb_build_expr(p, fv->value); GB_ASSERT(!is_type_tuple(field_expr.type)); lbValue ev = lb_emit_conv(p, field_expr, et); lbCompoundLitElemTempData data = {}; data.value = ev; data.elem_index = cast(i32)index; array_add(&temp_data, data); } } else { if (lb_is_elem_const(elem, et)) { continue; } lbValue field_expr = lb_build_expr(p, elem); GB_ASSERT(!is_type_tuple(field_expr.type)); lbValue ev = lb_emit_conv(p, field_expr, et); lbCompoundLitElemTempData data = {}; data.value = ev; data.elem_index = cast(i32)i; array_add(&temp_data, data); } } for_array(i, temp_data) { temp_data[i].gep = lb_emit_ptr_offset(p, data, lb_const_int(p->module, t_int, temp_data[i].elem_index)); } for_array(i, temp_data) { lb_emit_store(p, temp_data[i].gep, temp_data[i].value); } // lbValue count = lb_const_int(p->module, t_int, slice->ConstantSlice.count); // ir_fill_slice(p, v, data, count); } break; } case Type_DynamicArray: { if (cl->elems.count == 0) { break; } // TODO(bill): Type_DynamicArray #if 0 Type *et = bt->DynamicArray.elem; gbAllocator a = heap_allocator(); lbValue size = lb_const_int(p->module, t_int, type_size_of(et)); lbValue align = lb_const_int(p->module, t_int, type_align_of(et)); i64 item_count = gb_max(cl->max_count, cl->elems.count); { auto args = array_make(a, 5); args[0] = lb_emit_conv(p, lb_addr_get_ptr(p, v), t_rawptr); args[1] = size; args[2] = align; args[3] = lb_const_int(p->module, t_int, 2*item_count); // TODO(bill): Is this too much waste? args[4] = lb_emit_source_code_location(p, proc_name, pos); lb_emit_runtime_call(p, "__dynamic_array_reserve", args); } lbValue items = lb_generate_array(p->module, et, item_count, str_lit("dacl$"), cast(i64)cast(intptr)expr); for_array(i, cl->elems) { Ast *elem = cl->elems[i]; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); if (is_ast_range(fv->field)) { ast_node(ie, BinaryExpr, fv->field); TypeAndValue lo_tav = ie->left->tav; TypeAndValue hi_tav = ie->right->tav; GB_ASSERT(lo_tav.mode == Addressing_Constant); GB_ASSERT(hi_tav.mode == Addressing_Constant); TokenKind op = ie->op.kind; i64 lo = exact_value_to_i64(lo_tav.value); i64 hi = exact_value_to_i64(hi_tav.value); if (op == Token_Ellipsis) { hi += 1; } lbValue value = lb_emit_conv(p, lb_build_expr(p, fv->value), et); for (i64 k = lo; k < hi; k++) { lbValue ep = ir_emit_array_epi(p, items, cast(i32)k); lb_emit_store(p, ep, value); } } else { GB_ASSERT(fv->field->tav.mode == Addressing_Constant); i64 field_index = exact_value_to_i64(fv->field->tav.value); lbValue ev = lb_build_expr(p, fv->value); lbValue value = lb_emit_conv(p, ev, et); lbValue ep = ir_emit_array_epi(p, items, cast(i32)field_index); lb_emit_store(p, ep, value); } } else { lbValue value = lb_emit_conv(p, lb_build_expr(p, elem), et); lbValue ep = ir_emit_array_epi(p, items, cast(i32)i); lb_emit_store(p, ep, value); } } { auto args = array_make(a, 6); args[0] = lb_emit_conv(proc, v, t_rawptr); args[1] = size; args[2] = align; args[3] = lb_emit_conv(proc, items, t_rawptr); args[4] = ir_const_int(item_count); args[5] = ir_emit_source_code_location(proc, proc_name, pos); lb_emit_runtime_call(proc, "__dynamic_array_append", args); } #endif break; } case Type_Basic: { GB_ASSERT(is_type_any(bt)); if (cl->elems.count > 0) { lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr))); String field_names[2] = { str_lit("data"), str_lit("id"), }; Type *field_types[2] = { t_rawptr, t_typeid, }; for_array(field_index, cl->elems) { Ast *elem = cl->elems[field_index]; lbValue field_expr = {}; isize index = field_index; if (elem->kind == Ast_FieldValue) { ast_node(fv, FieldValue, elem); Selection sel = lookup_field(bt, fv->field->Ident.token.string, false); index = sel.index[0]; elem = fv->value; } else { TypeAndValue tav = type_and_value_of_expr(elem); Selection sel = lookup_field(bt, field_names[field_index], false); index = sel.index[0]; } field_expr = lb_build_expr(p, elem); GB_ASSERT(field_expr.type->kind != Type_Tuple); Type *ft = field_types[index]; lbValue fv = lb_emit_conv(p, field_expr, ft); lbValue gep = lb_emit_struct_ep(p, lb_addr_get_ptr(p, v), cast(i32)index); lb_emit_store(p, gep, fv); } } break; } case Type_BitSet: { i64 sz = type_size_of(type); if (cl->elems.count > 0 && sz > 0) { lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr))); lbValue lower = lb_const_value(p->module, t_int, exact_value_i64(bt->BitSet.lower)); for_array(i, cl->elems) { Ast *elem = cl->elems[i]; GB_ASSERT(elem->kind != Ast_FieldValue); if (lb_is_elem_const(elem, et)) { continue; } lbValue expr = lb_build_expr(p, elem); GB_ASSERT(expr.type->kind != Type_Tuple); Type *it = bit_set_to_int(bt); lbValue one = lb_const_value(p->module, it, exact_value_i64(1)); lbValue e = lb_emit_conv(p, expr, it); e = lb_emit_arith(p, Token_Sub, e, lower, it); e = lb_emit_arith(p, Token_Shl, one, e, it); lbValue old_value = lb_emit_transmute(p, lb_addr_load(p, v), it); lbValue new_value = lb_emit_arith(p, Token_Or, old_value, e, it); new_value = lb_emit_transmute(p, new_value, type); lb_addr_store(p, v, new_value); } } break; } } return v; case_end; case_ast_node(tc, TypeCast, expr); Type *type = type_of_expr(expr); lbValue x = lb_build_expr(p, tc->expr); lbValue e = {}; switch (tc->token.kind) { case Token_cast: e = lb_emit_conv(p, x, type); break; case Token_transmute: e = lb_emit_transmute(p, x, type); break; default: GB_PANIC("Invalid AST TypeCast"); } lbAddr v = lb_add_local_generated(p, type, false); lb_addr_store(p, v, e); return v; case_end; case_ast_node(ac, AutoCast, expr); return lb_build_addr(p, ac->expr); case_end; } TokenPos token_pos = ast_token(expr).pos; GB_PANIC("Unexpected address expression\n" "\tAst: %.*s @ " "%.*s(%td:%td)\n", LIT(ast_strings[expr->kind]), LIT(token_pos.file), token_pos.line, token_pos.column); return {}; } bool lb_init_generator(lbGenerator *gen, Checker *c) { if (global_error_collector.count != 0) { return false; } isize tc = c->parser->total_token_count; if (tc < 2) { return false; } String init_fullpath = c->parser->init_fullpath; if (build_context.out_filepath.len == 0) { gen->output_name = remove_directory_from_path(init_fullpath); gen->output_name = remove_extension_from_path(gen->output_name); gen->output_base = gen->output_name; } else { gen->output_name = build_context.out_filepath; isize pos = string_extension_position(gen->output_name); if (pos < 0) { gen->output_base = gen->output_name; } else { gen->output_base = substring(gen->output_name, 0, pos); } } gbAllocator ha = heap_allocator(); gen->output_base = path_to_full_path(ha, gen->output_base); gbString output_file_path = gb_string_make_length(ha, gen->output_base.text, gen->output_base.len); output_file_path = gb_string_appendc(output_file_path, ".obj"); defer (gb_string_free(output_file_path)); gbFileError err = gb_file_create(&gen->output_file, output_file_path); if (err != gbFileError_None) { gb_printf_err("Failed to create file %s\n", output_file_path); return false; } gen->info = &c->info; gen->module.info = &c->info; // gen->ctx = LLVMContextCreate(); gen->module.ctx = LLVMGetGlobalContext(); gen->module.mod = LLVMModuleCreateWithNameInContext("odin_module", gen->module.ctx); gb_mutex_init(&gen->module.mutex); gbAllocator a = heap_allocator(); map_init(&gen->module.types, a); map_init(&gen->module.values, a); map_init(&gen->module.members, a); map_init(&gen->module.procedure_values, a); map_init(&gen->module.const_strings, a); map_init(&gen->module.const_string_byte_slices, a); map_init(&gen->module.anonymous_proc_lits, a); array_init(&gen->module.procedures_to_generate, a); return true; } lbAddr lb_add_global_generated(lbModule *m, Type *type, lbValue value) { GB_ASSERT(type != nullptr); type = default_type(type); isize max_len = 7+8+1; u8 *str = cast(u8 *)gb_alloc_array(heap_allocator(), u8, max_len); isize len = gb_snprintf(cast(char *)str, max_len, "ggv$%x", m->global_generated_index); m->global_generated_index++; String name = make_string(str, len-1); Scope *scope = nullptr; Entity *e = alloc_entity_variable(scope, make_token_ident(name), type); lbValue g = {}; g.type = alloc_type_pointer(type); g.value = LLVMAddGlobal(m->mod, lb_type(m, type), cast(char const *)str); if (value.value != nullptr) { GB_ASSERT(LLVMIsConstant(value.value)); LLVMSetInitializer(g.value, value.value); } else { LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, type))); } lb_add_entity(m, e, g); lb_add_member(m, name, g); return lb_addr(g); } void lb_generate_code(lbGenerator *gen) { lbModule *m = &gen->module; LLVMModuleRef mod = gen->module.mod; CheckerInfo *info = gen->info; Arena temp_arena = {}; arena_init(&temp_arena, heap_allocator()); gbAllocator temp_allocator = arena_allocator(&temp_arena); gen->module.global_default_context = lb_add_global_generated(m, t_context, {}); auto *min_dep_set = &info->minimum_dependency_set; isize global_variable_max_count = 0; Entity *entry_point = info->entry_point; bool has_dll_main = false; bool has_win_main = false; for_array(i, info->entities) { Entity *e = info->entities[i]; String name = e->token.string; bool is_global = e->pkg != nullptr; if (e->kind == Entity_Variable) { global_variable_max_count++; } else if (e->kind == Entity_Procedure && !is_global) { if ((e->scope->flags&ScopeFlag_Init) && name == "main") { GB_ASSERT(e == entry_point); // entry_point = e; } if (e->Procedure.is_export || (e->Procedure.link_name.len > 0) || ((e->scope->flags&ScopeFlag_File) && e->Procedure.link_name.len > 0)) { if (!has_dll_main && name == "DllMain") { has_dll_main = true; } else if (!has_win_main && name == "WinMain") { has_win_main = true; } } } } struct GlobalVariable { lbValue var; lbValue init; DeclInfo *decl; }; auto global_variables = array_make(heap_allocator(), 0, global_variable_max_count); for_array(i, info->variable_init_order) { DeclInfo *d = info->variable_init_order[i]; Entity *e = d->entity; if ((e->scope->flags & ScopeFlag_File) == 0) { continue; } if (!ptr_set_exists(min_dep_set, e)) { continue; } DeclInfo *decl = decl_info_of_entity(e); if (decl == nullptr) { continue; } GB_ASSERT(e->kind == Entity_Variable); bool is_foreign = e->Variable.is_foreign; bool is_export = e->Variable.is_export; String name = lb_get_entity_name(m, e); lbValue g = {}; g.value = LLVMAddGlobal(m->mod, lb_type(m, e->type), alloc_cstring(heap_allocator(), name)); g.type = alloc_type_pointer(e->type); if (e->Variable.thread_local_model != "") { LLVMSetThreadLocal(g.value, true); String m = e->Variable.thread_local_model; LLVMThreadLocalMode mode = LLVMGeneralDynamicTLSModel; if (m == "default") { mode = LLVMGeneralDynamicTLSModel; } else if (m == "localdynamic") { mode = LLVMLocalDynamicTLSModel; } else if (m == "initialexec") { mode = LLVMInitialExecTLSModel; } else if (m == "localexec") { mode = LLVMLocalExecTLSModel; } else { GB_PANIC("Unhandled thread local mode %.*s", LIT(m)); } LLVMSetThreadLocalMode(g.value, mode); } if (is_foreign) { LLVMSetExternallyInitialized(g.value, true); } else { LLVMSetInitializer(g.value, LLVMConstNull(lb_type(m, e->type))); } if (is_export) { LLVMSetLinkage(g.value, LLVMDLLExportLinkage); } GlobalVariable var = {}; var.var = g; var.decl = decl; if (decl->init_expr != nullptr && !is_type_any(e->type)) { TypeAndValue tav = type_and_value_of_expr(decl->init_expr); if (tav.mode != Addressing_Invalid) { if (tav.value.kind != ExactValue_Invalid) { ExactValue v = tav.value; lbValue init = lb_const_value(m, tav.type, v); LLVMSetInitializer(g.value, init.value); } } } array_add(&global_variables, var); lb_add_entity(m, e, g); lb_add_member(m, name, g); } for_array(i, info->entities) { // arena_free_all(&temp_arena); // gbAllocator a = temp_allocator; Entity *e = info->entities[i]; String name = e->token.string; DeclInfo *decl = e->decl_info; Scope * scope = e->scope; if ((scope->flags & ScopeFlag_File) == 0) { continue; } Scope *package_scope = scope->parent; GB_ASSERT(package_scope->flags & ScopeFlag_Pkg); switch (e->kind) { case Entity_Variable: // NOTE(bill): Handled above as it requires a specific load order continue; case Entity_ProcGroup: continue; case Entity_TypeName: case Entity_Procedure: break; } if (e->token.string == "RtlFillMemory") { gb_printf_err("%.*s\n", LIT(e->token.string)); } bool polymorphic_struct = false; if (e->type != nullptr && e->kind == Entity_TypeName) { Type *bt = base_type(e->type); if (bt->kind == Type_Struct) { polymorphic_struct = is_type_polymorphic(bt); } } if (!polymorphic_struct && !ptr_set_exists(min_dep_set, e)) { // NOTE(bill): Nothing depends upon it so doesn't need to be built continue; } String mangled_name = lb_get_entity_name(m, e); switch (e->kind) { case Entity_TypeName: lb_type(m, e->type); break; case Entity_Procedure: { if (e->pkg->name == "demo") { // } else if (e->pkg->name == "runtime") { // } else if (e->pkg->name == "os") { } else { // continue; } lbProcedure *p = lb_create_procedure(m, e); array_add(&m->procedures_to_generate, p); } break; } } for_array(i, m->procedures_to_generate) { lbProcedure *p = m->procedures_to_generate[i]; if (p->body != nullptr) { // Build Procedure lb_begin_procedure_body(p); lb_build_stmt(p, p->body); lb_end_procedure_body(p); } lb_end_procedure(p); if (LLVMVerifyFunction(p->value, LLVMReturnStatusAction)) { gb_printf_err("FAILED FOR: %.*s\n", LIT(p->name)); LLVMDumpValue(p->value); gb_printf_err("\n\n\n\n"); LLVMVerifyFunction(p->value, LLVMAbortProcessAction); } } char *llvm_error = nullptr; defer (LLVMDisposeMessage(llvm_error)); LLVMDumpModule(mod); // LLVMVerifyModule(mod, LLVMAbortProcessAction, &llvm_error); // char const *target_triple = "x86_64-pc-windows-msvc"; // char const *target_data_layout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"; // LLVMSetTarget(mod, target_triple); // LLVMTargetRef target = {}; // LLVMGetTargetFromTriple(target_triple, &target, &llvm_error); // GB_ASSERT(target != nullptr); // LLVMTargetMachineRef target_machine = LLVMCreateTargetMachine(target, target_triple, "generic", "", LLVMCodeGenLevelNone, LLVMRelocDefault, LLVMCodeModelDefault); // defer (LLVMDisposeTargetMachine(target_machine)); // LLVMBool ok = LLVMTargetMachineEmitToFile(target_machine, mod, "llvm_demo.obj", LLVMObjectFile, &llvm_error); // if (ok) { // gb_printf_err("LLVM Error: %s\n", llvm_error); // return; // } }