1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
package bufio
import "core:io"
import "core:mem"
import "core:unicode/utf8"
import "core:bytes"
// Reader is a buffered wrapper for an io.Reader
Reader :: struct {
buf: []byte,
buf_allocator: mem.Allocator,
rd: io.Reader, // reader
r, w: int, // read and write positions for buf
err: io.Error,
last_byte: int, // last byte read, invalid is -1
last_rune_size: int, // size of last rune read, invalid is -1
max_consecutive_empty_reads: int,
}
DEFAULT_BUF_SIZE :: 4096;
@(private)
MIN_READ_BUFFER_SIZE :: 16;
@(private)
DEFAULT_MAX_CONSECUTIVE_EMPTY_READS :: 128;
reader_init :: proc(b: ^Reader, rd: io.Reader, size: int = DEFAULT_BUF_SIZE, allocator := context.allocator) {
size := size;
size = max(size, MIN_READ_BUFFER_SIZE);
reader_reset(b, rd);
b.buf_allocator = allocator;
b.buf = make([]byte, size, allocator);
}
reader_init_with_buf :: proc(b: ^Reader, rd: io.Reader, buf: []byte) {
reader_reset(b, rd);
b.buf_allocator = {};
b.buf = buf;
}
// reader_destroy destroys the underlying buffer with its associated allocator IFF that allocator has been set
reader_destroy :: proc(b: ^Reader) {
delete(b.buf, b.buf_allocator);
b^ = {};
}
reader_size :: proc(b: ^Reader) -> int {
return len(b.buf);
}
reader_reset :: proc(b: ^Reader, r: io.Reader) {
b.rd = r;
b.r, b.w = 0, 0;
b.err = nil;
b.last_byte = -1;
b.last_rune_size = -1;
}
@(private)
_reader_read_new_chunk :: proc(b: ^Reader) -> io.Error {
if b.r > 0 {
copy(b.buf, b.buf[b.r:b.w]);
b.w -= b.r;
b.r = 0;
}
if b.w >= len(b.buf) {
return .Buffer_Full;
}
if b.max_consecutive_empty_reads <= 0 {
b.max_consecutive_empty_reads = DEFAULT_MAX_CONSECUTIVE_EMPTY_READS;
}
// read new data, and try a limited number of times
for i := b.max_consecutive_empty_reads; i > 0; i -= 1 {
n, err := io.read(b.rd, b.buf[b.w:]);
if n < 0 {
return .Negative_Read;
}
b.w += n;
if err != nil {
b.err = err;
return nil;
}
if n > 0 {
return nil;
}
}
b.err = .No_Progress;
return nil;
}
@(private)
_reader_consume_err :: proc(b: ^Reader) -> io.Error {
err := b.err;
b.err = nil;
return err;
}
// reader_peek returns the next n bytes without advancing the reader
// The bytes stop being valid on the next read call
// If reader_peek returns fewer than n bytes, it also return an error
// explaining why the read is short
// The error will be .Buffer_Full if n is larger than the internal buffer size
reader_peek :: proc(b: ^Reader, n: int) -> (data: []byte, err: io.Error) {
n := n;
if n < 0 {
return nil, .Negative_Count;
}
b.last_byte = -1;
b.last_rune_size = -1;
for b.w-b.r < n && b.w-b.r < len(b.buf) && b.err == nil {
if fill_err := _reader_read_new_chunk(b); fill_err != nil {
return nil, fill_err;
}
}
if n > len(b.buf) {
return b.buf[b.r : b.w], .Buffer_Full;
}
if available := b.w - b.r; available < n {
n = available;
err = _reader_consume_err(b);
if err == nil {
err = .Buffer_Full;
}
}
return b.buf[b.r : b.r+n], err;
}
// reader_buffered returns the number of bytes that can be read from the current buffer
reader_buffered :: proc(b: ^Reader) -> int {
return b.w - b.r;
}
// reader_discard skips the next n bytes, and returns the number of bytes that were discarded
reader_discard :: proc(b: ^Reader, n: int) -> (discarded: int, err: io.Error) {
if n < 0 {
return 0, .Negative_Count;
}
if n == 0 {
return;
}
remaining := n;
for {
skip := reader_buffered(b);
if skip == 0 {
if fill_err := _reader_read_new_chunk(b); fill_err != nil {
return 0, fill_err;
}
skip = reader_buffered(b);
}
skip = min(skip, remaining);
b.r += skip;
remaining -= skip;
if remaining == 0 {
return n, nil;
}
if b.err != nil {
return n - remaining, _reader_consume_err(b);
}
}
return;
}
// reader_read reads data into p
// The bytes are taken from at most one read on the underlying Reader, which means n may be less than len(p)
reader_read :: proc(b: ^Reader, p: []byte) -> (n: int, err: io.Error) {
n = len(p);
if n == 0 {
if reader_buffered(b) > 0 {
return 0, nil;
}
return 0, _reader_consume_err(b);
}
if b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b);
}
if len(p) >= len(b.buf) {
n, b.err = io.read(b.rd, p);
if n < 0 {
return 0, .Negative_Read;
}
if n > 0 {
b.last_byte = int(p[n-1]);
b.last_rune_size = -1;
}
return n, _reader_consume_err(b);
}
b.r, b.w = 0, 0;
n, b.err = io.read(b.rd, b.buf);
if n < 0 {
return 0, .Negative_Read;
}
if n == 0 {
return 0, _reader_consume_err(b);
}
b.w += n;
}
n = copy(p, b.buf[b.r:b.w]);
b.r += n;
b.last_byte = int(b.buf[b.r-1]);
b.last_rune_size = -1;
return n, nil;
}
// reader_read_byte reads and returns a single byte
// If no byte is available, it return an error
reader_read_byte :: proc(b: ^Reader) -> (byte, io.Error) {
b.last_rune_size = -1;
for b.r == b.w {
if b.err != nil {
return 0, _reader_consume_err(b);
}
if err := _reader_read_new_chunk(b); err != nil {
return 0, err;
}
}
c := b.buf[b.r];
b.r += 1;
b.last_byte = int(c);
return c, nil;
}
// reader_unread_byte unreads the last byte. Only the most recently read byte can be unread
reader_unread_byte :: proc(b: ^Reader) -> io.Error {
if b.last_byte < 0 || b.r == 0 && b.w > 0 {
return .Invalid_Unread;
}
if b.r > 0 {
b.r -= 1;
} else {
// b.r == 0 && b.w == 0
b.w = 1;
}
b.buf[b.r] = byte(b.last_byte);
b.last_byte = -1;
b.last_rune_size = -1;
return nil;
}
// reader_read_rune reads a single UTF-8 encoded unicode character
// and returns the rune and its size in bytes
// If the encoded rune is invalid, it consumes one byte and returns utf8.RUNE_ERROR (U+FFFD) with a size of 1
reader_read_rune :: proc(b: ^Reader) -> (r: rune, size: int, err: io.Error) {
for b.r+utf8.UTF_MAX > b.w &&
!utf8.full_rune(b.buf[b.r:b.w]) &&
b.err == nil &&
b.w-b.w < len(b.buf) {
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
b.last_rune_size = -1;
if b.r == b.w {
err = _reader_consume_err(b);
return;
}
r, size = rune(b.buf[b.r]), 1;
if r >= utf8.RUNE_SELF {
r, size = utf8.decode_rune(b.buf[b.r : b.w]);
}
b.r += size;
b.last_byte = int(b.buf[b.r-1]);
b.last_rune_size = size;
return;
}
// reader_unread_rune unreads the last rune. Only the most recently read rune can be unread
reader_unread_rune :: proc(b: ^Reader) -> io.Error {
if b.last_rune_size < 0 || b.r < b.last_rune_size {
return .Invalid_Unread;
}
b.r -= b.last_rune_size;
b.last_byte = -1;
b.last_rune_size = -1;
return nil;
}
reader_write_to :: proc(b: ^Reader, w: io.Writer) -> (n: i64, err: io.Error) {
write_buf :: proc(b: ^Reader, w: io.Writer) -> (i64, io.Error) {
n, err := io.write(w, b.buf[b.r:b.w]);
if n < 0 {
return 0, .Negative_Write;
}
b.r += n;
return i64(n), err;
}
n, err = write_buf(b, w);
if err != nil {
return;
}
m: i64;
if nr, ok := io.to_writer_to(b.rd); ok {
m, err = io.write_to(nr, w);
n += m;
return n, err;
}
if nw, ok := io.to_reader_from(w); ok {
m, err = io.read_from(nw, b.rd);
n += m;
return n, err;
}
if b.w-b.r < len(b.buf) {
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
for b.r < b.w {
m, err = write_buf(b, w);
n += m;
if err != nil {
return;
}
if err = _reader_read_new_chunk(b); err != nil {
return;
}
}
if b.err == .EOF {
b.err = nil;
}
err = _reader_consume_err(b);
return;
}
// reader_to_stream converts a Reader into an io.Stream
reader_to_stream :: proc(b: ^Reader) -> (s: io.Stream) {
s.stream_data = b;
s.stream_vtable = _reader_vtable;
return;
}
@(private)
_reader_vtable := &io.Stream_VTable{
impl_destroy = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
reader_destroy(b);
return nil;
},
impl_read = proc(s: io.Stream, p: []byte) -> (n: int, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read(b, p);
},
impl_read_byte = proc(s: io.Stream) -> (c: byte, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read_byte(b);
},
impl_unread_byte = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
return reader_unread_byte(b);
},
impl_read_rune = proc(s: io.Stream) -> (r: rune, size: int, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_read_rune(b);
},
impl_unread_rune = proc(s: io.Stream) -> io.Error {
b := (^Reader)(s.stream_data);
return reader_unread_rune(b);
},
impl_write_to = proc(s: io.Stream, w: io.Writer) -> (n: i64, err: io.Error) {
b := (^Reader)(s.stream_data);
return reader_write_to(b, w);
},
};
//
// Utility procedures
//
// reader_read_slice reads until the first occurrence of delim from the reader
// It returns a slice pointing at the bytes in the buffer
// The bytes stop being valid at the next read
// If reader_read_slice encounters an error before finding a delimiter
// reader_read_slice fails with error .Buffer_Full if the buffer fills without a delim
// Because the data returned from reader_read_slice will be overwritten on the
// next IO operation, reader_read_bytes or reader_read_string is usually preferred
//
// reader_read_slice returns err != nil if and only if line does not end in delim
//
reader_read_slice :: proc(b: ^Reader, delim: byte) -> (line: []byte, err: io.Error) {
s := 0;
for {
if i := bytes.index_byte(b.buf[b.r+s : b.w], delim); i >= 0 {
i += s;
line = b.buf[b.r:][:i+1];
b.r += i + 1;
break;
}
if b.err != nil {
line = b.buf[b.r : b.w];
b.r = b.w;
err = _reader_consume_err(b);
break;
}
if reader_buffered(b) >= len(b.buf) {
b.r = b.w;
line = b.buf;
err = .Buffer_Full;
break;
}
s = b.w - b.r;
if err = _reader_read_new_chunk(b); err != nil {
break;
}
}
if i := len(line)-1; i >= 0 {
b.last_byte = int(line[i]);
b.last_rune_size = -1;
}
return;
}
// reader_read_bytes reads until the first occurrence of delim from the Reader
// It returns an allocated slice containing the data up to and including the delimiter
reader_read_bytes :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (buf: []byte, err: io.Error) {
full: [dynamic]byte;
full.allocator = allocator;
frag: []byte;
for {
e: io.Error;
frag, e = reader_read_slice(b, delim);
if e == nil {
break;
}
if e != .Buffer_Full {
err = e;
break;
}
append(&full, ..frag);
}
append(&full, ..frag);
return full[:], err;
}
// reader_read_string reads until the first occurrence of delim from the Reader
// It returns an allocated string containing the data up to and including the delimiter
reader_read_string :: proc(b: ^Reader, delim: byte, allocator := context.allocator) -> (string, io.Error) {
buf, err := reader_read_bytes(b, delim, allocator);
return string(buf), err;
}
|