aboutsummaryrefslogtreecommitdiff
path: root/core/math/math_basic.odin
blob: 2584df71f26f810662bd39c096dd50638a23da74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#+build !js
package math

import "base:intrinsics"

@(default_calling_convention="none", private="file")
foreign _ {
	@(link_name="llvm.sin.f16", require_results)
	_sin_f16 :: proc(θ: f16) -> f16 ---
	@(link_name="llvm.sin.f32", require_results)
	_sin_f32 :: proc(θ: f32) -> f32 ---
	@(link_name="llvm.sin.f64", require_results)
	_sin_f64 :: proc(θ: f64) -> f64 ---

	@(link_name="llvm.cos.f16", require_results)
	_cos_f16 :: proc(θ: f16) -> f16 ---
	@(link_name="llvm.cos.f32", require_results)
	_cos_f32 :: proc(θ: f32) -> f32 ---
	@(link_name="llvm.cos.f64", require_results)
	_cos_f64 :: proc(θ: f64) -> f64 ---

	@(link_name="llvm.pow.f16", require_results)
	_pow_f16 :: proc(x, power: f16) -> f16 ---
	@(link_name="llvm.pow.f32", require_results)
	_pow_f32 :: proc(x, power: f32) -> f32 ---
	@(link_name="llvm.pow.f64", require_results)
	_pow_f64 :: proc(x, power: f64) -> f64 ---

	@(link_name="llvm.fmuladd.f16", require_results)
	_fmuladd_f16 :: proc(a, b, c: f16) -> f16 ---
	@(link_name="llvm.fmuladd.f32", require_results)
	_fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---
	@(link_name="llvm.fmuladd.f64", require_results)
	_fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---

	@(link_name="llvm.exp.f16", require_results)
	_exp_f16 :: proc(x: f16) -> f16 ---
	@(link_name="llvm.exp.f32", require_results)
	_exp_f32 :: proc(x: f32) -> f32 ---
	@(link_name="llvm.exp.f64", require_results)
	_exp_f64 :: proc(x: f64) -> f64 ---
}

@(require_results)
sin_f16 :: proc "contextless" (θ: f16) -> f16 {
	return _sin_f16(θ)
}
@(require_results)
sin_f32 :: proc "contextless" (θ: f32) -> f32 {
	return _sin_f32(θ)
}
@(require_results)
sin_f64 :: proc "contextless" (θ: f64) -> f64 {
	return _sin_f64(θ)
}

@(require_results)
cos_f16 :: proc "contextless" (θ: f16) -> f16 {
	return _cos_f16(θ)
}
@(require_results)
cos_f32 :: proc "contextless" (θ: f32) -> f32 {
	return _cos_f32(θ)
}
@(require_results)
cos_f64 :: proc "contextless" (θ: f64) -> f64 {
	return _cos_f64(θ)
}

@(require_results)
pow_f16 :: proc "contextless" (x, power: f16) -> f16 {
	return _pow_f16(x, power)
}
@(require_results)
pow_f32 :: proc "contextless" (x, power: f32) -> f32 {
	return _pow_f32(x, power)
}
@(require_results)
pow_f64 :: proc "contextless" (x, power: f64) -> f64 {
	return _pow_f64(x, power)
}

@(require_results)
fmuladd_f16 :: proc "contextless" (a, b, c: f16) -> f16 {
	return _fmuladd_f16(a, b, c)
}
@(require_results)
fmuladd_f32 :: proc "contextless" (a, b, c: f32) -> f32 {
	return _fmuladd_f32(a, b, c)
}
@(require_results)
fmuladd_f64 :: proc "contextless" (a, b, c: f64) -> f64 {
	return _fmuladd_f64(a, b, c)
}

@(require_results)
exp_f16 :: proc "contextless" (x: f16) -> f16 {
	return _exp_f16(x)
}
@(require_results)
exp_f32 :: proc "contextless" (x: f32) -> f32 {
	return _exp_f32(x)
}
@(require_results)
exp_f64 :: proc "contextless" (x: f64) -> f64 {
	return _exp_f64(x)
}


@(require_results)
sqrt_f16 :: proc "contextless" (x: f16) -> f16 {
	return intrinsics.sqrt(x)
}
@(require_results)
sqrt_f32 :: proc "contextless" (x: f32) -> f32 {
	return intrinsics.sqrt(x)
}
@(require_results)
sqrt_f64 :: proc "contextless" (x: f64) -> f64 {
	return intrinsics.sqrt(x)
}



@(require_results)
ln_f64 :: proc "contextless" (x: f64) -> f64 {
	// The original C code, the long comment, and the constants
	// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
	// and came with this notice.
	//
	// ====================================================
	// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
	//
	// Developed at SunPro, a Sun Microsystems, Inc. business.
	// Permission to use, copy, modify, and distribute this
	// software is freely granted, provided that this notice
	// is preserved.
	// ====================================================
	//
	// __ieee754_log(x)
	// Return the logarithm of x
	//
	// Method :
	//   1. Argument Reduction: find k and f such that
	//			x = 2**k * (1+f),
	//	   where  sqrt(2)/2 < 1+f < sqrt(2) .
	//
	//   2. Approximation of log(1+f).
	//	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
	//		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
	//	     	 = 2s + s*R
	//      We use a special Reme algorithm on [0,0.1716] to generate
	//	a polynomial of degree 14 to approximate R.  The maximum error
	//	of this polynomial approximation is bounded by 2**-58.45. In
	//	other words,
	//		        2      4      6      8      10      12      14
	//	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
	//	(the values of L1 to L7 are listed in the program) and
	//	    |      2          14          |     -58.45
	//	    | L1*s +...+L7*s    -  R(z) | <= 2
	//	    |                             |
	//	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
	//	In order to guarantee error in log below 1ulp, we compute log by
	//		log(1+f) = f - s*(f - R)		(if f is not too large)
	//		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
	//
	//	3. Finally,  log(x) = k*Ln2 + log(1+f).
	//			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
	//	   Here Ln2 is split into two floating point number:
	//			Ln2_hi + Ln2_lo,
	//	   where n*Ln2_hi is always exact for |n| < 2000.
	//
	// Special cases:
	//	log(x) is NaN with signal if x < 0 (including -INF) ;
	//	log(+INF) is +INF; log(0) is -INF with signal;
	//	log(NaN) is that NaN with no signal.
	//
	// Accuracy:
	//	according to an error analysis, the error is always less than
	//	1 ulp (unit in the last place).
	//
	// Constants:
	// The hexadecimal values are the intended ones for the following
	// constants. The decimal values may be used, provided that the
	// compiler will convert from decimal to binary accurately enough
	// to produce the hexadecimal values shown.
	
	LN2_HI :: 0h3fe62e42_fee00000 // 6.93147180369123816490e-01
	LN2_LO :: 0h3dea39ef_35793c76 // 1.90821492927058770002e-10
	L1     :: 0h3fe55555_55555593 // 6.666666666666735130e-01
	L2     :: 0h3fd99999_9997fa04 // 3.999999999940941908e-01
	L3     :: 0h3fd24924_94229359 // 2.857142874366239149e-01
	L4     :: 0h3fcc71c5_1d8e78af // 2.222219843214978396e-01
	L5     :: 0h3fc74664_96cb03de // 1.818357216161805012e-01
	L6     :: 0h3fc39a09_d078c69f // 1.531383769920937332e-01
	L7     :: 0h3fc2f112_df3e5244 // 1.479819860511658591e-01
	
	switch {
	case is_nan(x) || is_inf(x, 1):
		return x
	case x < 0:
		return nan_f64()
	case x == 0:
		return inf_f64(-1)
	}

	// reduce
	f1, ki := frexp(x)
	if f1 < SQRT_TWO/2 {
		f1 *= 2
		ki -= 1
	}
	f := f1 - 1
	k := f64(ki)

	// compute
	s := f / (2 + f)
	s2 := s * s
	s4 := s2 * s2
	t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
	t2 := s4 * (L2 + s4*(L4+s4*L6))
	R := t1 + t2
	hfsq := 0.5 * f * f
	return k*LN2_HI - ((hfsq - (s*(hfsq+R) + k*LN2_LO)) - f)
}

@(require_results) ln_f16   :: proc "contextless" (x: f16)   -> f16   { return #force_inline f16(ln_f64(f64(x))) }
@(require_results) ln_f32   :: proc "contextless" (x: f32)   -> f32   { return #force_inline f32(ln_f64(f64(x))) }
@(require_results) ln_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(ln_f64(f64(x))) }
@(require_results) ln_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(ln_f64(f64(x))) }
@(require_results) ln_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(ln_f64(f64(x))) }
@(require_results) ln_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(ln_f64(f64(x))) }
@(require_results) ln_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(ln_f64(f64(x))) }
@(require_results) ln_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(ln_f64(f64(x))) }
ln :: proc{
	ln_f16, ln_f16le, ln_f16be,
	ln_f32, ln_f32le, ln_f32be,
	ln_f64, ln_f64le, ln_f64be,
}