1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// Tests issue #4584 https://github.com/odin-lang/Odin/issues/4584
package test_issues
import "core:testing"
import "core:log"
import "core:math/linalg"
import glm "core:math/linalg/glsl"
import hlm "core:math/linalg/hlsl"
@test
test_adjugate_2x2 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[2,2]int)
m := matrix[2,2]int {
-3, 2,
-1, 0,
}
expected := matrix[2,2]int {
0, -2,
1, -3,
}
testing.expect_value(t, linalg.adjugate(m), expected)
testing.expect_value(t, linalg.determinant(m), 2)
testing.expect_value(t, linalg.adjugate(m) * m, 2 * I)
testing.expect_value(t, m * linalg.adjugate(m), 2 * I)
testing.expect_value(t, glm.adjugate(m), expected)
testing.expect_value(t, glm.determinant(m), 2)
testing.expect_value(t, glm.adjugate(m) * m, 2 * I)
testing.expect_value(t, m * glm.adjugate(m), 2 * I)
testing.expect_value(t, hlm.adjugate(m), expected)
testing.expect_value(t, hlm.determinant(m), 2)
testing.expect_value(t, hlm.adjugate(m) * m, 2 * I)
testing.expect_value(t, m * hlm.adjugate(m), 2 * I)
}
@test
test_adjugate_3x3 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[3,3]int)
m := matrix[3,3]int {
-3, 2, -5,
-1, 0, -2,
3, -4, 1,
}
expected := matrix[3,3]int {
-8, 18, -4,
-5, 12, -1,
4, -6, 2,
}
testing.expect_value(t, linalg.adjugate(m), expected)
testing.expect_value(t, linalg.determinant(m), -6)
testing.expect_value(t, linalg.adjugate(m) * m, -6 * I)
testing.expect_value(t, m * linalg.adjugate(m), -6 * I)
testing.expect_value(t, glm.adjugate(m), expected)
testing.expect_value(t, glm.determinant(m), -6)
testing.expect_value(t, glm.adjugate(m) * m, -6 * I)
testing.expect_value(t, m * glm.adjugate(m), -6 * I)
testing.expect_value(t, hlm.adjugate(m), expected)
testing.expect_value(t, hlm.determinant(m), -6)
testing.expect_value(t, hlm.adjugate(m) * m, -6 * I)
testing.expect_value(t, m * hlm.adjugate(m), -6 * I)
}
@test
test_adjugate_4x4 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[4,4]int)
m := matrix[4,4]int {
-3, 2, -5, 1,
-1, 0, -2, 2,
3, -4, 1, 3,
4, 5, 6, 7,
}
expected := matrix[4,4]int {
-144, 266, -92, -16,
-57, 92, -5, -16,
105, -142, 55, 2,
33, -96, 9, -6,
}
testing.expect_value(t, linalg.adjugate(m), expected)
testing.expect_value(t, linalg.determinant(m), -174)
testing.expect_value(t, linalg.adjugate(m) * m, -174 * I)
testing.expect_value(t, m * linalg.adjugate(m), -174 * I)
testing.expect_value(t, glm.adjugate(m), expected)
testing.expect_value(t, glm.determinant(m), -174)
testing.expect_value(t, glm.adjugate(m) * m, -174 * I)
testing.expect_value(t, m * glm.adjugate(m), -174 * I)
testing.expect_value(t, hlm.adjugate(m), expected)
testing.expect_value(t, hlm.determinant(m), -174)
testing.expect_value(t, hlm.adjugate(m) * m, -174 * I)
testing.expect_value(t, m * hlm.adjugate(m), -174 * I)
}
@test
test_inverse_regression_2x2 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[2,2]f32)
m := matrix[2,2]f32 {
-3, 2,
-1, 0,
}
expected := matrix[2,2]f32 {
0.0, -1.0,
1.0/2.0, -3.0/2.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse_transpose(m), linalg.transpose(expected))
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse_transpose(m), glm.transpose(expected))
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse_transpose(m), hlm.transpose(expected))
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@test
test_inverse_regression_3x3 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[3,3]f32)
m := matrix[3,3]f32 {
-3, 2, -5,
-1, 0, -2,
3, -4, 1,
}
expected := matrix[3,3]f32 {
4.0/3.0, -3.0, 2.0/3.0,
5.0/6.0, -2.0, 1.0/6.0,
-2.0/3.0, 1.0, -1.0/3.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse_transpose(m), linalg.transpose(expected))
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse_transpose(m), glm.transpose(expected))
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse_transpose(m), hlm.transpose(expected))
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@test
test_inverse_regression_4x4 :: proc(t: ^testing.T) {
I := linalg.identity(matrix[4,4]f32)
m := matrix[4,4]f32 {
-3, 2, -5, 1,
-1, 0, -2, 2,
3, -4, 1, 3,
4, 5, 6, 7,
}
expected := matrix[4,4]f32 {
24.0/29.0, -133.0/87.0, 46.0/87.0, 8.0/87.0,
19.0/58.0, -46.0/87.0, 5.0/174.0, 8.0/87.0,
-35.0/58.0, 71.0/87.0, -55.0/174.0, -1.0/87.0,
-11.0/58.0, 16.0/29.0, -3.0/58.0, 1.0/29.0,
}
expect_float_matrix_value(t, linalg.inverse(m), expected)
expect_float_matrix_value(t, linalg.inverse_transpose(m), linalg.transpose(expected))
expect_float_matrix_value(t, linalg.inverse(m) * m, I)
expect_float_matrix_value(t, m * linalg.inverse(m), I)
expect_float_matrix_value(t, glm.inverse(m), expected)
expect_float_matrix_value(t, glm.inverse_transpose(m), glm.transpose(expected))
expect_float_matrix_value(t, glm.inverse(m) * m, I)
expect_float_matrix_value(t, m * glm.inverse(m), I)
expect_float_matrix_value(t, hlm.inverse(m), expected)
expect_float_matrix_value(t, hlm.inverse_transpose(m), hlm.transpose(expected))
expect_float_matrix_value(t, hlm.inverse(m) * m, I)
expect_float_matrix_value(t, m * hlm.inverse(m), I)
}
@(private="file")
expect_float_matrix_value :: proc(t: ^testing.T, value, expected: $M/matrix[$N, N]f32, loc := #caller_location, value_expr := #caller_expression(value)) -> bool {
ok := true
outer: for i in 0..<N {
for j in 0..<N {
diff := abs(value[i, j] - expected[i, j])
if diff > 1e-6 {
ok = false
break outer
}
}
}
if !ok do log.errorf("expected %v to be %v, got %v", value_expr, expected, value, location=loc)
return ok
}
|