aboutsummaryrefslogtreecommitdiff
path: root/base/runtime/dynamic_map_internal.odin
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2024-01-28 21:05:53 +0000
committergingerBill <bill@gingerbill.org>2024-01-28 21:05:53 +0000
commit09fa1c29cd014b4560b3c79c72db68af20ef8187 (patch)
tree45095630fb03a50df20e0249f98879cf27d94397 /base/runtime/dynamic_map_internal.odin
parentddcaa0de5395bfb1a2b004e6a6cb5e2ba1e2eed1 (diff)
Move `core:runtime` to `base:runtime`; keep alias around
Diffstat (limited to 'base/runtime/dynamic_map_internal.odin')
-rw-r--r--base/runtime/dynamic_map_internal.odin924
1 files changed, 924 insertions, 0 deletions
diff --git a/base/runtime/dynamic_map_internal.odin b/base/runtime/dynamic_map_internal.odin
new file mode 100644
index 000000000..491a7974d
--- /dev/null
+++ b/base/runtime/dynamic_map_internal.odin
@@ -0,0 +1,924 @@
+package runtime
+
+import "core:intrinsics"
+_ :: intrinsics
+
+// High performance, cache-friendly, open-addressed Robin Hood hashing hash map
+// data structure with various optimizations for Odin.
+//
+// Copyright 2022 (c) Dale Weiler
+//
+// The core of the hash map data structure is the Raw_Map struct which is a
+// type-erased representation of the map. This type-erased representation is
+// used in two ways: static and dynamic. When static type information is known,
+// the procedures suffixed with _static should be used instead of _dynamic. The
+// static procedures are optimized since they have type information. Hashing of
+// keys, comparison of keys, and data lookup are all optimized. When type
+// information is not known, the procedures suffixed with _dynamic should be
+// used. The representation of the map is the same for both static and dynamic,
+// and procedures of each can be mixed and matched. The purpose of the dynamic
+// representation is to enable reflection and runtime manipulation of the map.
+// The dynamic procedures all take an additional Map_Info structure parameter
+// which carries runtime values describing the size, alignment, and offset of
+// various traits of a given key and value type pair. The Map_Info value can
+// be created by calling map_info(K, V) with the key and value typeids.
+//
+// This map implementation makes extensive use of uintptr for representing
+// sizes, lengths, capacities, masks, pointers, offsets, and addresses to avoid
+// expensive sign extension and masking that would be generated if types were
+// casted all over. The only place regular ints show up is in the cap() and
+// len() implementations.
+//
+// To make this map cache-friendly it uses a novel strategy to ensure keys and
+// values of the map are always cache-line aligned and that no single key or
+// value of any type ever straddles a cache-line. This cache efficiency makes
+// for quick lookups because the linear-probe always addresses data in a cache
+// friendly way. This is enabled through the use of a special meta-type called
+// a Map_Cell which packs as many values of a given type into a local array adding
+// internal padding to round to MAP_CACHE_LINE_SIZE. One other benefit to storing
+// the internal data in this manner is false sharing no longer occurs when using
+// a map, enabling efficient concurrent access of the map data structure with
+// minimal locking if desired.
+
+// With Robin Hood hashing a maximum load factor of 75% is ideal.
+MAP_LOAD_FACTOR :: 75
+
+// Minimum log2 capacity.
+MAP_MIN_LOG2_CAPACITY :: 3 // 8 elements
+
+// Has to be less than 100% though.
+#assert(MAP_LOAD_FACTOR < 100)
+
+// This is safe to change. The log2 size of a cache-line. At minimum it has to
+// be six though. Higher cache line sizes are permitted.
+MAP_CACHE_LINE_LOG2 :: 6
+
+// The size of a cache-line.
+MAP_CACHE_LINE_SIZE :: 1 << MAP_CACHE_LINE_LOG2
+
+// The minimum cache-line size allowed by this implementation is 64 bytes since
+// we need 6 bits in the base pointer to store the integer log2 capacity, which
+// at maximum is 63. Odin uses signed integers to represent length and capacity,
+// so only 63 bits are needed in the maximum case.
+#assert(MAP_CACHE_LINE_SIZE >= 64)
+
+// Map_Cell type that packs multiple T in such a way to ensure that each T stays
+// aligned by align_of(T) and such that align_of(Map_Cell(T)) % MAP_CACHE_LINE_SIZE == 0
+//
+// This means a value of type T will never straddle a cache-line.
+//
+// When multiple Ts can fit in a single cache-line the data array will have more
+// than one element. When it cannot, the data array will have one element and
+// an array of Map_Cell(T) will be padded to stay a multiple of MAP_CACHE_LINE_SIZE.
+//
+// We rely on the type system to do all the arithmetic and padding for us here.
+//
+// The usual array[index] indexing for []T backed by a []Map_Cell(T) becomes a bit
+// more involved as there now may be internal padding. The indexing now becomes
+//
+// N :: len(Map_Cell(T){}.data)
+// i := index / N
+// j := index % N
+// cell[i].data[j]
+//
+// However, since len(Map_Cell(T){}.data) is a compile-time constant, there are some
+// optimizations we can do to eliminate the need for any divisions as N will
+// be bounded by [1, 64).
+//
+// In the optimal case, len(Map_Cell(T){}.data) = 1 so the cell array can be treated
+// as a regular array of T, which is the case for hashes.
+Map_Cell :: struct($T: typeid) #align(MAP_CACHE_LINE_SIZE) {
+ data: [MAP_CACHE_LINE_SIZE / size_of(T) when 0 < size_of(T) && size_of(T) < MAP_CACHE_LINE_SIZE else 1]T,
+}
+
+// So we can operate on a cell data structure at runtime without any type
+// information, we have a simple table that stores some traits about the cell.
+//
+// 32-bytes on 64-bit
+// 16-bytes on 32-bit
+Map_Cell_Info :: struct {
+ size_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
+ align_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
+ size_of_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
+ elements_per_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
+}
+
+// map_cell_info :: proc "contextless" ($T: typeid) -> ^Map_Cell_Info {...}
+map_cell_info :: intrinsics.type_map_cell_info
+
+// Same as the above procedure but at runtime with the cell Map_Cell_Info value.
+@(require_results)
+map_cell_index_dynamic :: #force_inline proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, index: uintptr) -> uintptr {
+ // Micro-optimize the common cases to save on integer division.
+ elements_per_cell := uintptr(info.elements_per_cell)
+ size_of_cell := uintptr(info.size_of_cell)
+ switch elements_per_cell {
+ case 1:
+ return base + (index * size_of_cell)
+ case 2:
+ cell_index := index >> 1
+ data_index := index & 1
+ size_of_type := uintptr(info.size_of_type)
+ return base + (cell_index * size_of_cell) + (data_index * size_of_type)
+ case:
+ cell_index := index / elements_per_cell
+ data_index := index % elements_per_cell
+ size_of_type := uintptr(info.size_of_type)
+ return base + (cell_index * size_of_cell) + (data_index * size_of_type)
+ }
+}
+
+// Same as above procedure but with compile-time constant index.
+@(require_results)
+map_cell_index_dynamic_const :: proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, $INDEX: uintptr) -> uintptr {
+ elements_per_cell := uintptr(info.elements_per_cell)
+ size_of_cell := uintptr(info.size_of_cell)
+ size_of_type := uintptr(info.size_of_type)
+ cell_index := INDEX / elements_per_cell
+ data_index := INDEX % elements_per_cell
+ return base + (cell_index * size_of_cell) + (data_index * size_of_type)
+}
+
+// We always round the capacity to a power of two so this becomes [16]Foo, which
+// works out to [4]Cell(Foo).
+//
+// The following compile-time procedure indexes such a [N]Cell(T) structure as
+// if it were a flat array accounting for the internal padding introduced by the
+// Cell structure.
+@(require_results)
+map_cell_index_static :: #force_inline proc "contextless" (cells: [^]Map_Cell($T), index: uintptr) -> ^T #no_bounds_check {
+ N :: size_of(Map_Cell(T){}.data) / size_of(T) when size_of(T) > 0 else 1
+
+ #assert(N <= MAP_CACHE_LINE_SIZE)
+
+ when size_of(Map_Cell(T)) == size_of([N]T) {
+ // No padding case, can treat as a regular array of []T.
+
+ return &([^]T)(cells)[index]
+ } else when (N & (N - 1)) == 0 && N <= 8*size_of(uintptr) {
+ // Likely case, N is a power of two because T is a power of two.
+
+ // Compute the integer log 2 of N, this is the shift amount to index the
+ // correct cell. Odin's intrinsics.count_leading_zeros does not produce a
+ // constant, hence this approach. We only need to check up to N = 64.
+ SHIFT :: 1 when N < 2 else
+ 2 when N < 4 else
+ 3 when N < 8 else
+ 4 when N < 16 else
+ 5 when N < 32 else 6
+ #assert(SHIFT <= MAP_CACHE_LINE_LOG2)
+ // Unique case, no need to index data here since only one element.
+ when N == 1 {
+ return &cells[index >> SHIFT].data[0]
+ } else {
+ return &cells[index >> SHIFT].data[index & (N - 1)]
+ }
+ } else {
+ // Least likely (and worst case), we pay for a division operation but we
+ // assume the compiler does not actually generate a division. N will be in the
+ // range [1, CACHE_LINE_SIZE) and not a power of two.
+ return &cells[index / N].data[index % N]
+ }
+}
+
+// len() for map
+@(require_results)
+map_len :: #force_inline proc "contextless" (m: Raw_Map) -> int {
+ return int(m.len)
+}
+
+// cap() for map
+@(require_results)
+map_cap :: #force_inline proc "contextless" (m: Raw_Map) -> int {
+ // The data uintptr stores the capacity in the lower six bits which gives the
+ // a maximum value of 2^6-1, or 63. We store the integer log2 of capacity
+ // since our capacity is always a power of two. We only need 63 bits as Odin
+ // represents length and capacity as a signed integer.
+ return 0 if m.data == 0 else 1 << map_log2_cap(m)
+}
+
+// Query the load factor of the map. This is not actually configurable, but
+// some math is needed to compute it. Compute it as a fixed point percentage to
+// avoid floating point operations. This division can be optimized out by
+// multiplying by the multiplicative inverse of 100.
+@(require_results)
+map_load_factor :: #force_inline proc "contextless" (log2_capacity: uintptr) -> uintptr {
+ return ((uintptr(1) << log2_capacity) * MAP_LOAD_FACTOR) / 100
+}
+
+@(require_results)
+map_resize_threshold :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
+ return map_load_factor(map_log2_cap(m))
+}
+
+// The data stores the log2 capacity in the lower six bits. This is primarily
+// used in the implementation rather than map_cap since the check for data = 0
+// isn't necessary in the implementation. cap() on the otherhand needs to work
+// when called on an empty map.
+@(require_results)
+map_log2_cap :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
+ return m.data & (64 - 1)
+}
+
+// Canonicalize the data by removing the tagged capacity stored in the lower six
+// bits of the data uintptr.
+@(require_results)
+map_data :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
+ return m.data &~ uintptr(64 - 1)
+}
+
+
+Map_Hash :: uintptr
+
+TOMBSTONE_MASK :: 1<<(size_of(Map_Hash)*8 - 1)
+
+// Procedure to check if a slot is empty for a given hash. This is represented
+// by the zero value to make the zero value useful. This is a procedure just
+// for prose reasons.
+@(require_results)
+map_hash_is_empty :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
+ return hash == 0
+}
+
+@(require_results)
+map_hash_is_deleted :: #force_no_inline proc "contextless" (hash: Map_Hash) -> bool {
+ // The MSB indicates a tombstone
+ return hash & TOMBSTONE_MASK != 0
+}
+@(require_results)
+map_hash_is_valid :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
+ // The MSB indicates a tombstone
+ return (hash != 0) & (hash & TOMBSTONE_MASK == 0)
+}
+
+@(require_results)
+map_seed :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
+ return map_seed_from_map_data(map_data(m))
+}
+
+// splitmix for uintptr
+@(require_results)
+map_seed_from_map_data :: #force_inline proc "contextless" (data: uintptr) -> uintptr {
+ when size_of(uintptr) == size_of(u64) {
+ mix := data + 0x9e3779b97f4a7c15
+ mix = (mix ~ (mix >> 30)) * 0xbf58476d1ce4e5b9
+ mix = (mix ~ (mix >> 27)) * 0x94d049bb133111eb
+ return mix ~ (mix >> 31)
+ } else {
+ mix := data + 0x9e3779b9
+ mix = (mix ~ (mix >> 16)) * 0x21f0aaad
+ mix = (mix ~ (mix >> 15)) * 0x735a2d97
+ return mix ~ (mix >> 15)
+ }
+}
+
+// Computes the desired position in the array. This is just index % capacity,
+// but a procedure as there's some math involved here to recover the capacity.
+@(require_results)
+map_desired_position :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash) -> uintptr {
+ // We do not use map_cap since we know the capacity will not be zero here.
+ capacity := uintptr(1) << map_log2_cap(m)
+ return uintptr(hash & Map_Hash(capacity - 1))
+}
+
+@(require_results)
+map_probe_distance :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash, slot: uintptr) -> uintptr {
+ // We do not use map_cap since we know the capacity will not be zero here.
+ capacity := uintptr(1) << map_log2_cap(m)
+ return (slot + capacity - map_desired_position(m, hash)) & (capacity - 1)
+}
+
+// When working with the type-erased structure at runtime we need information
+// about the map to make working with it possible. This info structure stores
+// that.
+//
+// `Map_Info` and `Map_Cell_Info` are read only data structures and cannot be
+// modified after creation
+//
+// 32-bytes on 64-bit
+// 16-bytes on 32-bit
+Map_Info :: struct {
+ ks: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
+ vs: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
+ key_hasher: proc "contextless" (key: rawptr, seed: Map_Hash) -> Map_Hash, // 8-bytes on 64-bit, 4-bytes on 32-bit
+ key_equal: proc "contextless" (lhs, rhs: rawptr) -> bool, // 8-bytes on 64-bit, 4-bytes on 32-bit
+}
+
+
+// The Map_Info structure is basically a pseudo-table of information for a given K and V pair.
+// map_info :: proc "contextless" ($T: typeid/map[$K]$V) -> ^Map_Info {...}
+map_info :: intrinsics.type_map_info
+
+@(require_results)
+map_kvh_data_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (ks: uintptr, vs: uintptr, hs: [^]Map_Hash, sk: uintptr, sv: uintptr) {
+ INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
+
+ capacity := uintptr(1) << map_log2_cap(m)
+ ks = map_data(m)
+ vs = map_cell_index_dynamic(ks, info.ks, capacity) // Skip past ks to get start of vs
+ hs_ := map_cell_index_dynamic(vs, info.vs, capacity) // Skip past vs to get start of hs
+ sk = map_cell_index_dynamic(hs_, INFO_HS, capacity) // Skip past hs to get start of sk
+ // Need to skip past two elements in the scratch key space to get to the start
+ // of the scratch value space, of which there's only two elements as well.
+ sv = map_cell_index_dynamic_const(sk, info.ks, 2)
+
+ hs = ([^]Map_Hash)(hs_)
+ return
+}
+
+@(require_results)
+map_kvh_data_values_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (vs: uintptr) {
+ capacity := uintptr(1) << map_log2_cap(m)
+ return map_cell_index_dynamic(map_data(m), info.ks, capacity) // Skip past ks to get start of vs
+}
+
+
+@(private, require_results)
+map_total_allocation_size :: #force_inline proc "contextless" (capacity: uintptr, info: ^Map_Info) -> uintptr {
+ round :: #force_inline proc "contextless" (value: uintptr) -> uintptr {
+ CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
+ return (value + CACHE_MASK) &~ CACHE_MASK
+ }
+ INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
+
+ size := uintptr(0)
+ size = round(map_cell_index_dynamic(size, info.ks, capacity))
+ size = round(map_cell_index_dynamic(size, info.vs, capacity))
+ size = round(map_cell_index_dynamic(size, INFO_HS, capacity))
+ size = round(map_cell_index_dynamic(size, info.ks, 2)) // Two additional ks for scratch storage
+ size = round(map_cell_index_dynamic(size, info.vs, 2)) // Two additional vs for scratch storage
+ return size
+}
+
+// The only procedure which needs access to the context is the one which allocates the map.
+@(require_results)
+map_alloc_dynamic :: proc "odin" (info: ^Map_Info, log2_capacity: uintptr, allocator := context.allocator, loc := #caller_location) -> (result: Raw_Map, err: Allocator_Error) {
+ result.allocator = allocator // set the allocator always
+ if log2_capacity == 0 {
+ return
+ }
+
+ if log2_capacity >= 64 {
+ // Overflowed, would be caused by log2_capacity > 64
+ return {}, .Out_Of_Memory
+ }
+
+ capacity := uintptr(1) << max(log2_capacity, MAP_MIN_LOG2_CAPACITY)
+
+ CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
+
+ size := map_total_allocation_size(capacity, info)
+
+ data := mem_alloc_non_zeroed(int(size), MAP_CACHE_LINE_SIZE, allocator, loc) or_return
+ data_ptr := uintptr(raw_data(data))
+ if data_ptr == 0 {
+ err = .Out_Of_Memory
+ return
+ }
+ if intrinsics.expect(data_ptr & CACHE_MASK != 0, false) {
+ panic("allocation not aligned to a cache line", loc)
+ } else {
+ result.data = data_ptr | log2_capacity // Tagged pointer representation for capacity.
+ result.len = 0
+
+ map_clear_dynamic(&result, info)
+ }
+ return
+}
+
+// This procedure has to stack allocate storage to store local keys during the
+// Robin Hood hashing technique where elements are swapped in the backing
+// arrays to reduce variance. This swapping can only be done with memcpy since
+// there is no type information.
+//
+// This procedure returns the address of the just inserted value.
+@(require_results)
+map_insert_hash_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (result: uintptr) {
+ h := h
+ pos := map_desired_position(m^, h)
+ distance := uintptr(0)
+ mask := (uintptr(1) << map_log2_cap(m^)) - 1
+
+ ks, vs, hs, sk, sv := map_kvh_data_dynamic(m^, info)
+
+ // Avoid redundant loads of these values
+ size_of_k := info.ks.size_of_type
+ size_of_v := info.vs.size_of_type
+
+ k := map_cell_index_dynamic(sk, info.ks, 0)
+ v := map_cell_index_dynamic(sv, info.vs, 0)
+ intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v)
+
+ // Temporary k and v dynamic storage for swap below
+ tk := map_cell_index_dynamic(sk, info.ks, 1)
+ tv := map_cell_index_dynamic(sv, info.vs, 1)
+
+ swap_loop: for {
+ element_hash := hs[pos]
+
+ if map_hash_is_empty(element_hash) {
+ k_dst := map_cell_index_dynamic(ks, info.ks, pos)
+ v_dst := map_cell_index_dynamic(vs, info.vs, pos)
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
+ hs[pos] = h
+
+ return result if result != 0 else v_dst
+ }
+
+ if map_hash_is_deleted(element_hash) {
+ break swap_loop
+ }
+
+ if probe_distance := map_probe_distance(m^, element_hash, pos); distance > probe_distance {
+ if result == 0 {
+ result = map_cell_index_dynamic(vs, info.vs, pos)
+ }
+
+ kp := map_cell_index_dynamic(ks, info.ks, pos)
+ vp := map_cell_index_dynamic(vs, info.vs, pos)
+
+ intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(k), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(kp), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(tk), size_of_k)
+
+ intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(v), size_of_v)
+ intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(vp), size_of_v)
+ intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(tv), size_of_v)
+
+ th := h
+ h = hs[pos]
+ hs[pos] = th
+
+ distance = probe_distance
+ }
+
+ pos = (pos + 1) & mask
+ distance += 1
+ }
+
+ // backward shift loop
+ hs[pos] = 0
+ look_ahead: uintptr = 1
+ for {
+ la_pos := (pos + look_ahead) & mask
+ element_hash := hs[la_pos]
+
+ if map_hash_is_deleted(element_hash) {
+ look_ahead += 1
+ hs[la_pos] = 0
+ continue
+ }
+
+ k_dst := map_cell_index_dynamic(ks, info.ks, pos)
+ v_dst := map_cell_index_dynamic(vs, info.vs, pos)
+
+ if map_hash_is_empty(element_hash) {
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
+ hs[pos] = h
+
+ return result if result != 0 else v_dst
+ }
+
+ k_src := map_cell_index_dynamic(ks, info.ks, la_pos)
+ v_src := map_cell_index_dynamic(vs, info.vs, la_pos)
+ probe_distance := map_probe_distance(m^, element_hash, la_pos)
+
+ if probe_distance < look_ahead {
+ // probed can be made ideal while placing saved (ending condition)
+ if result == 0 {
+ result = v_dst
+ }
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
+ hs[pos] = h
+
+ // This will be an ideal move
+ pos = (la_pos - probe_distance) & mask
+ look_ahead -= probe_distance
+
+ // shift until we hit ideal/empty
+ for probe_distance != 0 {
+ k_dst = map_cell_index_dynamic(ks, info.ks, pos)
+ v_dst = map_cell_index_dynamic(vs, info.vs, pos)
+
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
+ hs[pos] = element_hash
+ hs[la_pos] = 0
+
+ pos = (pos + 1) & mask
+ la_pos = (la_pos + 1) & mask
+ look_ahead = (la_pos - pos) & mask
+ element_hash = hs[la_pos]
+ if map_hash_is_empty(element_hash) {
+ return
+ }
+
+ probe_distance = map_probe_distance(m^, element_hash, la_pos)
+ if probe_distance == 0 {
+ return
+ }
+ // can be ideal?
+ if probe_distance < look_ahead {
+ pos = (la_pos - probe_distance) & mask
+ }
+ k_src = map_cell_index_dynamic(ks, info.ks, la_pos)
+ v_src = map_cell_index_dynamic(vs, info.vs, la_pos)
+ }
+ return
+ } else if distance < probe_distance - look_ahead {
+ // shift back probed
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
+ hs[pos] = element_hash
+ hs[la_pos] = 0
+ } else {
+ // place saved, save probed
+ if result == 0 {
+ result = v_dst
+ }
+ intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
+ hs[pos] = h
+
+ intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(k_src), size_of_k)
+ intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(v_src), size_of_v)
+ h = hs[la_pos]
+ hs[la_pos] = 0
+ distance = probe_distance - look_ahead
+ }
+
+ pos = (pos + 1) & mask
+ distance += 1
+ }
+}
+
+@(require_results)
+map_grow_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
+ log2_capacity := map_log2_cap(m^)
+ new_capacity := uintptr(1) << max(log2_capacity + 1, MAP_MIN_LOG2_CAPACITY)
+ return map_reserve_dynamic(m, info, new_capacity, loc)
+}
+
+
+@(require_results)
+map_reserve_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uintptr, loc := #caller_location) -> Allocator_Error {
+ @(require_results)
+ ceil_log2 :: #force_inline proc "contextless" (x: uintptr) -> uintptr {
+ z := intrinsics.count_leading_zeros(x)
+ if z > 0 && x & (x-1) != 0 {
+ z -= 1
+ }
+ return size_of(uintptr)*8 - 1 - z
+ }
+
+ if m.allocator.procedure == nil {
+ m.allocator = context.allocator
+ }
+
+ new_capacity := new_capacity
+ old_capacity := uintptr(map_cap(m^))
+
+ if old_capacity >= new_capacity {
+ return nil
+ }
+
+ // ceiling nearest power of two
+ log2_new_capacity := ceil_log2(new_capacity)
+
+ log2_min_cap := max(MAP_MIN_LOG2_CAPACITY, log2_new_capacity)
+
+ if m.data == 0 {
+ m^ = map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
+ return nil
+ }
+
+ resized := map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
+
+ ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
+
+ // Cache these loads to avoid hitting them in the for loop.
+ n := m.len
+ for i in 0..<old_capacity {
+ hash := hs[i]
+ if map_hash_is_empty(hash) {
+ continue
+ }
+ if map_hash_is_deleted(hash) {
+ continue
+ }
+ k := map_cell_index_dynamic(ks, info.ks, i)
+ v := map_cell_index_dynamic(vs, info.vs, i)
+ hash = info.key_hasher(rawptr(k), map_seed(resized))
+ _ = map_insert_hash_dynamic(&resized, info, hash, k, v)
+ // Only need to do this comparison on each actually added pair, so do not
+ // fold it into the for loop comparator as a micro-optimization.
+ n -= 1
+ if n == 0 {
+ break
+ }
+ }
+
+ map_free_dynamic(m^, info, loc) or_return
+ m.data = resized.data
+ return nil
+}
+
+
+@(require_results)
+map_shrink_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
+ if m.allocator.procedure == nil {
+ m.allocator = context.allocator
+ }
+
+ // Cannot shrink the capacity if the number of items in the map would exceed
+ // one minus the current log2 capacity's resize threshold. That is the shrunk
+ // map needs to be within the max load factor.
+ log2_capacity := map_log2_cap(m^)
+ if uintptr(m.len) >= map_load_factor(log2_capacity - 1) {
+ return false, nil
+ }
+
+ shrunk := map_alloc_dynamic(info, log2_capacity - 1, m.allocator) or_return
+
+ capacity := uintptr(1) << log2_capacity
+
+ ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
+
+ n := m.len
+ for i in 0..<capacity {
+ hash := hs[i]
+ if map_hash_is_empty(hash) {
+ continue
+ }
+ if map_hash_is_deleted(hash) {
+ continue
+ }
+
+ k := map_cell_index_dynamic(ks, info.ks, i)
+ v := map_cell_index_dynamic(vs, info.vs, i)
+ hash = info.key_hasher(rawptr(k), map_seed(shrunk))
+ _ = map_insert_hash_dynamic(&shrunk, info, hash, k, v)
+ // Only need to do this comparison on each actually added pair, so do not
+ // fold it into the for loop comparator as a micro-optimization.
+ n -= 1
+ if n == 0 {
+ break
+ }
+ }
+
+ map_free_dynamic(m^, info, loc) or_return
+ m.data = shrunk.data
+ return true, nil
+}
+
+@(require_results)
+map_free_dynamic :: proc "odin" (m: Raw_Map, info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
+ ptr := rawptr(map_data(m))
+ size := int(map_total_allocation_size(uintptr(map_cap(m)), info))
+ err := mem_free_with_size(ptr, size, m.allocator, loc)
+ #partial switch err {
+ case .None, .Mode_Not_Implemented:
+ return nil
+ }
+ return err
+}
+
+@(require_results)
+map_lookup_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (index: uintptr, ok: bool) {
+ if map_len(m) == 0 {
+ return 0, false
+ }
+ h := info.key_hasher(rawptr(k), map_seed(m))
+ p := map_desired_position(m, h)
+ d := uintptr(0)
+ c := (uintptr(1) << map_log2_cap(m)) - 1
+ ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
+ for {
+ element_hash := hs[p]
+ if map_hash_is_empty(element_hash) {
+ return 0, false
+ } else if d > map_probe_distance(m, element_hash, p) {
+ return 0, false
+ } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
+ return p, true
+ }
+ p = (p + 1) & c
+ d += 1
+ }
+}
+@(require_results)
+map_exists_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (ok: bool) {
+ if map_len(m) == 0 {
+ return false
+ }
+ h := info.key_hasher(rawptr(k), map_seed(m))
+ p := map_desired_position(m, h)
+ d := uintptr(0)
+ c := (uintptr(1) << map_log2_cap(m)) - 1
+ ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
+ for {
+ element_hash := hs[p]
+ if map_hash_is_empty(element_hash) {
+ return false
+ } else if d > map_probe_distance(m, element_hash, p) {
+ return false
+ } else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
+ return true
+ }
+ p = (p + 1) & c
+ d += 1
+ }
+}
+
+
+
+@(require_results)
+map_erase_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (old_k, old_v: uintptr, ok: bool) {
+ index := map_lookup_dynamic(m^, info, k) or_return
+ ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
+ hs[index] |= TOMBSTONE_MASK
+ old_k = map_cell_index_dynamic(ks, info.ks, index)
+ old_v = map_cell_index_dynamic(vs, info.vs, index)
+ m.len -= 1
+ ok = true
+
+ mask := (uintptr(1)<<map_log2_cap(m^)) - 1
+ curr_index := uintptr(index)
+ next_index := (curr_index + 1) & mask
+
+ // if the next element is empty or has zero probe distance, then any lookup
+ // will always fail on the next, so we can clear both of them
+ hash := hs[next_index]
+ if map_hash_is_empty(hash) || map_probe_distance(m^, hash, next_index) == 0 {
+ hs[curr_index] = 0
+ } else {
+ hs[curr_index] |= TOMBSTONE_MASK
+ }
+
+ return
+}
+
+map_clear_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) {
+ if m.data == 0 {
+ return
+ }
+ _, _, hs, _, _ := map_kvh_data_dynamic(m^, info)
+ intrinsics.mem_zero(rawptr(hs), map_cap(m^) * size_of(Map_Hash))
+ m.len = 0
+}
+
+
+@(require_results)
+map_kvh_data_static :: #force_inline proc "contextless" (m: $T/map[$K]$V) -> (ks: [^]Map_Cell(K), vs: [^]Map_Cell(V), hs: [^]Map_Hash) {
+ capacity := uintptr(cap(m))
+ ks = ([^]Map_Cell(K))(map_data(transmute(Raw_Map)m))
+ vs = ([^]Map_Cell(V))(map_cell_index_static(ks, capacity))
+ hs = ([^]Map_Hash)(map_cell_index_static(vs, capacity))
+ return
+}
+
+
+@(require_results)
+map_get :: proc "contextless" (m: $T/map[$K]$V, key: K) -> (stored_key: K, stored_value: V, ok: bool) {
+ rm := transmute(Raw_Map)m
+ if rm.len == 0 {
+ return
+ }
+ info := intrinsics.type_map_info(T)
+ key := key
+
+ h := info.key_hasher(&key, map_seed(rm))
+ pos := map_desired_position(rm, h)
+ distance := uintptr(0)
+ mask := (uintptr(1) << map_log2_cap(rm)) - 1
+ ks, vs, hs := map_kvh_data_static(m)
+ for {
+ element_hash := hs[pos]
+ if map_hash_is_empty(element_hash) {
+ return
+ } else if distance > map_probe_distance(rm, element_hash, pos) {
+ return
+ } else if element_hash == h {
+ element_key := map_cell_index_static(ks, pos)
+ if info.key_equal(&key, rawptr(element_key)) {
+ element_value := map_cell_index_static(vs, pos)
+ stored_key = (^K)(element_key)^
+ stored_value = (^V)(element_value)^
+ ok = true
+ return
+ }
+
+ }
+ pos = (pos + 1) & mask
+ distance += 1
+ }
+}
+
+// IMPORTANT: USED WITHIN THE COMPILER
+__dynamic_map_get :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (ptr: rawptr) {
+ if m.len == 0 {
+ return nil
+ }
+ pos := map_desired_position(m^, h)
+ distance := uintptr(0)
+ mask := (uintptr(1) << map_log2_cap(m^)) - 1
+ ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
+ for {
+ element_hash := hs[pos]
+ if map_hash_is_empty(element_hash) {
+ return nil
+ } else if distance > map_probe_distance(m^, element_hash, pos) {
+ return nil
+ } else if element_hash == h && info.key_equal(key, rawptr(map_cell_index_dynamic(ks, info.ks, pos))) {
+ return rawptr(map_cell_index_dynamic(vs, info.vs, pos))
+ }
+ pos = (pos + 1) & mask
+ distance += 1
+ }
+}
+
+// IMPORTANT: USED WITHIN THE COMPILER
+__dynamic_map_check_grow :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (err: Allocator_Error, has_grown: bool) {
+ if m.len >= map_resize_threshold(m^) {
+ return map_grow_dynamic(m, info, loc), true
+ }
+ return nil, false
+}
+
+__dynamic_map_set_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> rawptr {
+ return __dynamic_map_set(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
+}
+
+
+// IMPORTANT: USED WITHIN THE COMPILER
+__dynamic_map_set :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> rawptr {
+ if found := __dynamic_map_get(m, info, hash, key); found != nil {
+ intrinsics.mem_copy_non_overlapping(found, value, info.vs.size_of_type)
+ return found
+ }
+
+ hash := hash
+ err, has_grown := __dynamic_map_check_grow(m, info, loc)
+ if err != nil {
+ return nil
+ }
+ if has_grown {
+ hash = info.key_hasher(key, map_seed(m^))
+ }
+
+ result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
+ m.len += 1
+ return rawptr(result)
+}
+
+// IMPORTANT: USED WITHIN THE COMPILER
+@(private)
+__dynamic_map_reserve :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uint, loc := #caller_location) -> Allocator_Error {
+ return map_reserve_dynamic(m, info, uintptr(new_capacity), loc)
+}
+
+
+
+// NOTE: the default hashing algorithm derives from fnv64a, with some minor modifications to work for `map` type:
+//
+// * Convert a `0` result to `1`
+// * "empty entry"
+// * Prevent the top bit from being set
+// * "deleted entry"
+//
+// Both of these modification are necessary for the implementation of the `map`
+
+INITIAL_HASH_SEED :: 0xcbf29ce484222325
+
+HASH_MASK :: 1 << (8*size_of(uintptr) - 1) -1
+
+default_hasher :: #force_inline proc "contextless" (data: rawptr, seed: uintptr, N: int) -> uintptr {
+ h := u64(seed) + INITIAL_HASH_SEED
+ p := ([^]byte)(data)
+ for _ in 0..<N {
+ h = (h ~ u64(p[0])) * 0x100000001b3
+ p = p[1:]
+ }
+ h &= HASH_MASK
+ return uintptr(h) | uintptr(uintptr(h) == 0)
+}
+
+default_hasher_string :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
+ str := (^[]byte)(data)
+ return default_hasher(raw_data(str^), seed, len(str))
+}
+default_hasher_cstring :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
+ h := u64(seed) + INITIAL_HASH_SEED
+ if ptr := (^[^]byte)(data)^; ptr != nil {
+ for ptr[0] != 0 {
+ h = (h ~ u64(ptr[0])) * 0x100000001b3
+ ptr = ptr[1:]
+ }
+ }
+ h &= HASH_MASK
+ return uintptr(h) | uintptr(uintptr(h) == 0)
+}