aboutsummaryrefslogtreecommitdiff
path: root/core/bytes/bytes.odin
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2021-08-31 22:21:13 +0100
committergingerBill <bill@gingerbill.org>2021-08-31 22:21:13 +0100
commit251da264ed6e0f039931683c7b0d4b97e88c8d99 (patch)
treec7a9a088477d2452c2cf850458c62d994a211df6 /core/bytes/bytes.odin
parentb176af27427a6c39448a71a8023e4a9877f0a51c (diff)
Remove unneeded semicolons from the core library
Diffstat (limited to 'core/bytes/bytes.odin')
-rw-r--r--core/bytes/bytes.odin838
1 files changed, 419 insertions, 419 deletions
diff --git a/core/bytes/bytes.odin b/core/bytes/bytes.odin
index a7cf23d1b..cbc1e2506 100644
--- a/core/bytes/bytes.odin
+++ b/core/bytes/bytes.odin
@@ -5,272 +5,272 @@ import "core:unicode"
import "core:unicode/utf8"
clone :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> []byte {
- c := make([]byte, len(s)+1, allocator, loc);
- copy(c, s);
- c[len(s)] = 0;
- return c[:len(s)];
+ c := make([]byte, len(s)+1, allocator, loc)
+ copy(c, s)
+ c[len(s)] = 0
+ return c[:len(s)]
}
ptr_from_slice :: proc(str: []byte) -> ^byte {
- d := transmute(mem.Raw_String)str;
- return d.data;
+ d := transmute(mem.Raw_String)str
+ return d.data
}
truncate_to_byte :: proc(str: []byte, b: byte) -> []byte {
- n := index_byte(str, b);
+ n := index_byte(str, b)
if n < 0 {
- n = len(str);
+ n = len(str)
}
- return str[:n];
+ return str[:n]
}
truncate_to_rune :: proc(str: []byte, r: rune) -> []byte {
- n := index_rune(str, r);
+ n := index_rune(str, r)
if n < 0 {
- n = len(str);
+ n = len(str)
}
- return str[:n];
+ return str[:n]
}
// Compares two strings, returning a value representing which one comes first lexiographically.
// -1 for `a`; 1 for `b`, or 0 if they are equal.
compare :: proc(lhs, rhs: []byte) -> int {
- return mem.compare(lhs, rhs);
+ return mem.compare(lhs, rhs)
}
contains_rune :: proc(s: []byte, r: rune) -> int {
for c, offset in string(s) {
if c == r {
- return offset;
+ return offset
}
}
- return -1;
+ return -1
}
contains :: proc(s, substr: []byte) -> bool {
- return index(s, substr) >= 0;
+ return index(s, substr) >= 0
}
contains_any :: proc(s, chars: []byte) -> bool {
- return index_any(s, chars) >= 0;
+ return index_any(s, chars) >= 0
}
rune_count :: proc(s: []byte) -> int {
- return utf8.rune_count(s);
+ return utf8.rune_count(s)
}
equal :: proc(a, b: []byte) -> bool {
- return string(a) == string(b);
+ return string(a) == string(b)
}
equal_fold :: proc(u, v: []byte) -> bool {
- s, t := string(u), string(v);
+ s, t := string(u), string(v)
loop: for s != "" && t != "" {
- sr, tr: rune;
+ sr, tr: rune
if s[0] < utf8.RUNE_SELF {
- sr, s = rune(s[0]), s[1:];
+ sr, s = rune(s[0]), s[1:]
} else {
- r, size := utf8.decode_rune_in_string(s);
- sr, s = r, s[size:];
+ r, size := utf8.decode_rune_in_string(s)
+ sr, s = r, s[size:]
}
if t[0] < utf8.RUNE_SELF {
- tr, t = rune(t[0]), t[1:];
+ tr, t = rune(t[0]), t[1:]
} else {
- r, size := utf8.decode_rune_in_string(t);
- tr, t = r, t[size:];
+ r, size := utf8.decode_rune_in_string(t)
+ tr, t = r, t[size:]
}
if tr == sr { // easy case
- continue loop;
+ continue loop
}
if tr < sr {
- tr, sr = sr, tr;
+ tr, sr = sr, tr
}
if tr < utf8.RUNE_SELF {
switch sr {
case 'A'..='Z':
if tr == (sr+'a')-'A' {
- continue loop;
+ continue loop
}
}
- return false;
+ return false
}
// TODO(bill): Unicode folding
- return false;
+ return false
}
- return s == t;
+ return s == t
}
has_prefix :: proc(s, prefix: []byte) -> bool {
- return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix);
+ return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix)
}
has_suffix :: proc(s, suffix: []byte) -> bool {
- return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix);
+ return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix)
}
join :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> []byte {
if len(a) == 0 {
- return nil;
+ return nil
}
- n := len(sep) * (len(a) - 1);
+ n := len(sep) * (len(a) - 1)
for s in a {
- n += len(s);
+ n += len(s)
}
- b := make([]byte, n, allocator);
- i := copy(b, a[0]);
+ b := make([]byte, n, allocator)
+ i := copy(b, a[0])
for s in a[1:] {
- i += copy(b[i:], sep);
- i += copy(b[i:], s);
+ i += copy(b[i:], sep)
+ i += copy(b[i:], s)
}
- return b;
+ return b
}
concatenate :: proc(a: [][]byte, allocator := context.allocator) -> []byte {
if len(a) == 0 {
- return nil;
+ return nil
}
- n := 0;
+ n := 0
for s in a {
- n += len(s);
+ n += len(s)
}
- b := make([]byte, n, allocator);
- i := 0;
+ b := make([]byte, n, allocator)
+ i := 0
for s in a {
- i += copy(b[i:], s);
+ i += copy(b[i:], s)
}
- return b;
+ return b
}
@private
_split :: proc(s, sep: []byte, sep_save, n: int, allocator := context.allocator) -> [][]byte {
- s, n := s, n;
+ s, n := s, n
if n == 0 {
- return nil;
+ return nil
}
if sep == nil {
- l := utf8.rune_count(s);
+ l := utf8.rune_count(s)
if n < 0 || n > l {
- n = l;
+ n = l
}
- res := make([dynamic][]byte, n, allocator);
+ res := make([dynamic][]byte, n, allocator)
for i := 0; i < n-1; i += 1 {
- _, w := utf8.decode_rune(s);
- res[i] = s[:w];
- s = s[w:];
+ _, w := utf8.decode_rune(s)
+ res[i] = s[:w]
+ s = s[w:]
}
if n > 0 {
- res[n-1] = s;
+ res[n-1] = s
}
- return res[:];
+ return res[:]
}
if n < 0 {
- n = count(s, sep) + 1;
+ n = count(s, sep) + 1
}
- res := make([dynamic][]byte, n, allocator);
+ res := make([dynamic][]byte, n, allocator)
- n -= 1;
+ n -= 1
- i := 0;
+ i := 0
for ; i < n; i += 1 {
- m := index(s, sep);
+ m := index(s, sep)
if m < 0 {
- break;
+ break
}
- res[i] = s[:m+sep_save];
- s = s[m+len(sep):];
+ res[i] = s[:m+sep_save]
+ s = s[m+len(sep):]
}
- res[i] = s;
+ res[i] = s
- return res[:i+1];
+ return res[:i+1]
}
split :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte {
- return _split(s, sep, 0, -1, allocator);
+ return _split(s, sep, 0, -1, allocator)
}
split_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte {
- return _split(s, sep, 0, n, allocator);
+ return _split(s, sep, 0, n, allocator)
}
split_after :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte {
- return _split(s, sep, len(sep), -1, allocator);
+ return _split(s, sep, len(sep), -1, allocator)
}
split_after_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte {
- return _split(s, sep, len(sep), n, allocator);
+ return _split(s, sep, len(sep), n, allocator)
}
@private
_split_iterator :: proc(s: ^[]byte, sep: []byte, sep_save, n: int) -> (res: []byte, ok: bool) {
- s, n := s, n;
+ s, n := s, n
if n == 0 {
- return;
+ return
}
if sep == nil {
- res = s[:];
- ok = true;
- s^ = s[len(s):];
- return;
+ res = s[:]
+ ok = true
+ s^ = s[len(s):]
+ return
}
if n < 0 {
- n = count(s^, sep) + 1;
+ n = count(s^, sep) + 1
}
- n -= 1;
+ n -= 1
- i := 0;
+ i := 0
for ; i < n; i += 1 {
- m := index(s^, sep);
+ m := index(s^, sep)
if m < 0 {
- break;
+ break
}
- res = s[:m+sep_save];
- ok = true;
- s^ = s[m+len(sep):];
- return;
+ res = s[:m+sep_save]
+ ok = true
+ s^ = s[m+len(sep):]
+ return
}
- res = s[:];
- ok = res != nil;
- s^ = s[len(s):];
- return;
+ res = s[:]
+ ok = res != nil
+ s^ = s[len(s):]
+ return
}
split_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) {
- return _split_iterator(s, sep, 0, -1);
+ return _split_iterator(s, sep, 0, -1)
}
split_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool) {
- return _split_iterator(s, sep, 0, n);
+ return _split_iterator(s, sep, 0, n)
}
split_after_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) {
- return _split_iterator(s, sep, len(sep), -1);
+ return _split_iterator(s, sep, len(sep), -1)
}
split_after_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool) {
- return _split_iterator(s, sep, len(sep), n);
+ return _split_iterator(s, sep, len(sep), n)
}
@@ -278,599 +278,599 @@ split_after_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool
index_byte :: proc(s: []byte, c: byte) -> int {
for i := 0; i < len(s); i += 1 {
if s[i] == c {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
// Returns -1 if c is not present
last_index_byte :: proc(s: []byte, c: byte) -> int {
for i := len(s)-1; i >= 0; i -= 1 {
if s[i] == c {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
-@private PRIME_RABIN_KARP :: 16777619;
+@private PRIME_RABIN_KARP :: 16777619
index :: proc(s, substr: []byte) -> int {
hash_str_rabin_karp :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) {
for i := 0; i < len(s); i += 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i]);
+ hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
- sq := u32(PRIME_RABIN_KARP);
+ sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
- pow *= sq;
+ pow *= sq
}
- sq *= sq;
+ sq *= sq
}
- return;
+ return
}
- n := len(substr);
+ n := len(substr)
switch {
case n == 0:
- return 0;
+ return 0
case n == 1:
- return index_byte(s, substr[0]);
+ return index_byte(s, substr[0])
case n == len(s):
if string(s) == string(substr) {
- return 0;
+ return 0
}
- return -1;
+ return -1
case n > len(s):
- return -1;
+ return -1
}
- hash, pow := hash_str_rabin_karp(substr);
- h: u32;
+ hash, pow := hash_str_rabin_karp(substr)
+ h: u32
for i := 0; i < n; i += 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i]);
+ h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && string(s[:n]) == string(substr) {
- return 0;
+ return 0
}
for i := n; i < len(s); /**/ {
- h *= PRIME_RABIN_KARP;
- h += u32(s[i]);
- h -= pow * u32(s[i-n]);
- i += 1;
+ h *= PRIME_RABIN_KARP
+ h += u32(s[i])
+ h -= pow * u32(s[i-n])
+ i += 1
if h == hash && string(s[i-n:i]) == string(substr) {
- return i - n;
+ return i - n
}
}
- return -1;
+ return -1
}
last_index :: proc(s, substr: []byte) -> int {
hash_str_rabin_karp_reverse :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) {
for i := len(s) - 1; i >= 0; i -= 1 {
- hash = hash*PRIME_RABIN_KARP + u32(s[i]);
+ hash = hash*PRIME_RABIN_KARP + u32(s[i])
}
- sq := u32(PRIME_RABIN_KARP);
+ sq := u32(PRIME_RABIN_KARP)
for i := len(s); i > 0; i >>= 1 {
if (i & 1) != 0 {
- pow *= sq;
+ pow *= sq
}
- sq *= sq;
+ sq *= sq
}
- return;
+ return
}
- n := len(substr);
+ n := len(substr)
switch {
case n == 0:
- return len(s);
+ return len(s)
case n == 1:
- return last_index_byte(s, substr[0]);
+ return last_index_byte(s, substr[0])
case n == len(s):
- return 0 if string(substr) == string(s) else -1;
+ return 0 if string(substr) == string(s) else -1
case n > len(s):
- return -1;
+ return -1
}
- hash, pow := hash_str_rabin_karp_reverse(substr);
- last := len(s) - n;
- h: u32;
+ hash, pow := hash_str_rabin_karp_reverse(substr)
+ last := len(s) - n
+ h: u32
for i := len(s)-1; i >= last; i -= 1 {
- h = h*PRIME_RABIN_KARP + u32(s[i]);
+ h = h*PRIME_RABIN_KARP + u32(s[i])
}
if h == hash && string(s[last:]) == string(substr) {
- return last;
+ return last
}
for i := last-1; i >= 0; i -= 1 {
- h *= PRIME_RABIN_KARP;
- h += u32(s[i]);
- h -= pow * u32(s[i+n]);
+ h *= PRIME_RABIN_KARP
+ h += u32(s[i])
+ h -= pow * u32(s[i+n])
if h == hash && string(s[i:i+n]) == string(substr) {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
index_any :: proc(s, chars: []byte) -> int {
if chars == nil {
- return -1;
+ return -1
}
// TODO(bill): Optimize
for r, i in s {
for c in chars {
if r == c {
- return i;
+ return i
}
}
}
- return -1;
+ return -1
}
last_index_any :: proc(s, chars: []byte) -> int {
if chars == nil {
- return -1;
+ return -1
}
for i := len(s); i > 0; {
- r, w := utf8.decode_last_rune(s[:i]);
- i -= w;
+ r, w := utf8.decode_last_rune(s[:i])
+ i -= w
for c in string(chars) {
if r == c {
- return i;
+ return i
}
}
}
- return -1;
+ return -1
}
count :: proc(s, substr: []byte) -> int {
if len(substr) == 0 { // special case
- return rune_count(s) + 1;
+ return rune_count(s) + 1
}
if len(substr) == 1 {
- c := substr[0];
+ c := substr[0]
switch len(s) {
case 0:
- return 0;
+ return 0
case 1:
- return int(s[0] == c);
+ return int(s[0] == c)
}
- n := 0;
+ n := 0
for i := 0; i < len(s); i += 1 {
if s[i] == c {
- n += 1;
+ n += 1
}
}
- return n;
+ return n
}
// TODO(bill): Use a non-brute for approach
- n := 0;
- str := s;
+ n := 0
+ str := s
for {
- i := index(str, substr);
+ i := index(str, substr)
if i == -1 {
- return n;
+ return n
}
- n += 1;
- str = str[i+len(substr):];
+ n += 1
+ str = str[i+len(substr):]
}
- return n;
+ return n
}
repeat :: proc(s: []byte, count: int, allocator := context.allocator) -> []byte {
if count < 0 {
- panic("bytes: negative repeat count");
+ panic("bytes: negative repeat count")
} else if count > 0 && (len(s)*count)/count != len(s) {
- panic("bytes: repeat count will cause an overflow");
+ panic("bytes: repeat count will cause an overflow")
}
- b := make([]byte, len(s)*count, allocator);
- i := copy(b, s);
+ b := make([]byte, len(s)*count, allocator)
+ i := copy(b, s)
for i < len(b) { // 2^N trick to reduce the need to copy
- copy(b[i:], b[:i]);
- i *= 2;
+ copy(b[i:], b[:i])
+ i *= 2
}
- return b;
+ return b
}
replace_all :: proc(s, old, new: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
- return replace(s, old, new, -1, allocator);
+ return replace(s, old, new, -1, allocator)
}
// if n < 0, no limit on the number of replacements
replace :: proc(s, old, new: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
if string(old) == string(new) || n == 0 {
- was_allocation = false;
- output = s;
- return;
+ was_allocation = false
+ output = s
+ return
}
- byte_count := n;
+ byte_count := n
if m := count(s, old); m == 0 {
- was_allocation = false;
- output = s;
- return;
+ was_allocation = false
+ output = s
+ return
} else if n < 0 || m < n {
- byte_count = m;
+ byte_count = m
}
- t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator);
- was_allocation = true;
+ t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator)
+ was_allocation = true
- w := 0;
- start := 0;
+ w := 0
+ start := 0
for i := 0; i < byte_count; i += 1 {
- j := start;
+ j := start
if len(old) == 0 {
if i > 0 {
- _, width := utf8.decode_rune(s[start:]);
- j += width;
+ _, width := utf8.decode_rune(s[start:])
+ j += width
}
} else {
- j += index(s[start:], old);
+ j += index(s[start:], old)
}
- w += copy(t[w:], s[start:j]);
- w += copy(t[w:], new);
- start = j + len(old);
+ w += copy(t[w:], s[start:j])
+ w += copy(t[w:], new)
+ start = j + len(old)
}
- w += copy(t[w:], s[start:]);
- output = t[0:w];
- return;
+ w += copy(t[w:], s[start:])
+ output = t[0:w]
+ return
}
remove :: proc(s, key: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
- return replace(s, key, {}, n, allocator);
+ return replace(s, key, {}, n, allocator)
}
remove_all :: proc(s, key: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) {
- return remove(s, key, -1, allocator);
+ return remove(s, key, -1, allocator)
}
-@(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1};
+@(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1}
is_ascii_space :: proc(r: rune) -> bool {
if r < utf8.RUNE_SELF {
- return _ascii_space[u8(r)] != 0;
+ return _ascii_space[u8(r)] != 0
}
- return false;
+ return false
}
is_space :: proc(r: rune) -> bool {
if r < 0x2000 {
switch r {
case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680:
- return true;
+ return true
}
} else {
if r <= 0x200a {
- return true;
+ return true
}
switch r {
case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000:
- return true;
+ return true
}
}
- return false;
+ return false
}
is_null :: proc(r: rune) -> bool {
- return r == 0x0000;
+ return r == 0x0000
}
index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int {
for r, i in string(s) {
if p(r) == truth {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
for r, i in string(s) {
if p(state, r) == truth {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
last_index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune(s[:i]);
- i -= size;
+ r, size := utf8.decode_last_rune(s[:i])
+ i -= size
if p(r) == truth {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
last_index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int {
// TODO(bill): Probably use Rabin-Karp Search
for i := len(s); i > 0; {
- r, size := utf8.decode_last_rune(s[:i]);
- i -= size;
+ r, size := utf8.decode_last_rune(s[:i])
+ i -= size
if p(state, r) == truth {
- return i;
+ return i
}
}
- return -1;
+ return -1
}
trim_left_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte {
- i := index_proc(s, p, false);
+ i := index_proc(s, p, false)
if i == -1 {
- return nil;
+ return nil
}
- return s[i:];
+ return s[i:]
}
index_rune :: proc(s: []byte, r: rune) -> int {
switch {
case 0 <= r && r < utf8.RUNE_SELF:
- return index_byte(s, byte(r));
+ return index_byte(s, byte(r))
case r == utf8.RUNE_ERROR:
for c, i in string(s) {
if c == utf8.RUNE_ERROR {
- return i;
+ return i
}
}
- return -1;
+ return -1
case !utf8.valid_rune(r):
- return -1;
+ return -1
}
- b, w := utf8.encode_rune(r);
- return index(s, b[:w]);
+ b, w := utf8.encode_rune(r)
+ return index(s, b[:w])
}
trim_left_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte {
- i := index_proc_with_state(s, p, state, false);
+ i := index_proc_with_state(s, p, state, false)
if i == -1 {
- return nil;
+ return nil
}
- return s[i:];
+ return s[i:]
}
trim_right_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte {
- i := last_index_proc(s, p, false);
+ i := last_index_proc(s, p, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune(s[i:]);
- i += w;
+ _, w := utf8.decode_rune(s[i:])
+ i += w
} else {
- i += 1;
+ i += 1
}
- return s[0:i];
+ return s[0:i]
}
trim_right_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte {
- i := last_index_proc_with_state(s, p, state, false);
+ i := last_index_proc_with_state(s, p, state, false)
if i >= 0 && s[i] >= utf8.RUNE_SELF {
- _, w := utf8.decode_rune(s[i:]);
- i += w;
+ _, w := utf8.decode_rune(s[i:])
+ i += w
} else {
- i += 1;
+ i += 1
}
- return s[0:i];
+ return s[0:i]
}
is_in_cutset :: proc(state: rawptr, r: rune) -> bool {
if state == nil {
- return false;
+ return false
}
- cutset := (^string)(state)^;
+ cutset := (^string)(state)^
for c in cutset {
if r == c {
- return true;
+ return true
}
}
- return false;
+ return false
}
trim_left :: proc(s: []byte, cutset: []byte) -> []byte {
if s == nil || cutset == nil {
- return s;
+ return s
}
- state := cutset;
- return trim_left_proc_with_state(s, is_in_cutset, &state);
+ state := cutset
+ return trim_left_proc_with_state(s, is_in_cutset, &state)
}
trim_right :: proc(s: []byte, cutset: []byte) -> []byte {
if s == nil || cutset == nil {
- return s;
+ return s
}
- state := cutset;
- return trim_right_proc_with_state(s, is_in_cutset, &state);
+ state := cutset
+ return trim_right_proc_with_state(s, is_in_cutset, &state)
}
trim :: proc(s: []byte, cutset: []byte) -> []byte {
- return trim_right(trim_left(s, cutset), cutset);
+ return trim_right(trim_left(s, cutset), cutset)
}
trim_left_space :: proc(s: []byte) -> []byte {
- return trim_left_proc(s, is_space);
+ return trim_left_proc(s, is_space)
}
trim_right_space :: proc(s: []byte) -> []byte {
- return trim_right_proc(s, is_space);
+ return trim_right_proc(s, is_space)
}
trim_space :: proc(s: []byte) -> []byte {
- return trim_right_space(trim_left_space(s));
+ return trim_right_space(trim_left_space(s))
}
trim_left_null :: proc(s: []byte) -> []byte {
- return trim_left_proc(s, is_null);
+ return trim_left_proc(s, is_null)
}
trim_right_null :: proc(s: []byte) -> []byte {
- return trim_right_proc(s, is_null);
+ return trim_right_proc(s, is_null)
}
trim_null :: proc(s: []byte) -> []byte {
- return trim_right_null(trim_left_null(s));
+ return trim_right_null(trim_left_null(s))
}
trim_prefix :: proc(s, prefix: []byte) -> []byte {
if has_prefix(s, prefix) {
- return s[len(prefix):];
+ return s[len(prefix):]
}
- return s;
+ return s
}
trim_suffix :: proc(s, suffix: []byte) -> []byte {
if has_suffix(s, suffix) {
- return s[:len(s)-len(suffix)];
+ return s[:len(s)-len(suffix)]
}
- return s;
+ return s
}
split_multi :: proc(s: []byte, substrs: [][]byte, skip_empty := false, allocator := context.allocator) -> [][]byte #no_bounds_check {
if s == nil || len(substrs) <= 0 {
- return nil;
+ return nil
}
- sublen := len(substrs[0]);
+ sublen := len(substrs[0])
for substr in substrs[1:] {
- sublen = min(sublen, len(substr));
+ sublen = min(sublen, len(substr))
}
- shared := len(s) - sublen;
+ shared := len(s) - sublen
if shared <= 0 {
- return nil;
+ return nil
}
// number, index, last
- n, i, l := 0, 0, 0;
+ n, i, l := 0, 0, 0
// count results
first_pass: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
- n += 1;
+ n += 1
}
- i += sublen;
- l = i;
+ i += sublen
+ l = i
- continue first_pass;
+ continue first_pass
}
}
- _, skip := utf8.decode_rune(s[i:]);
- i += skip;
+ _, skip := utf8.decode_rune(s[i:])
+ i += skip
}
if !skip_empty || len(s) - l > 0 {
- n += 1;
+ n += 1
}
if n < 1 {
// no results
- return nil;
+ return nil
}
- buf := make([][]byte, n, allocator);
+ buf := make([][]byte, n, allocator)
- n, i, l = 0, 0, 0;
+ n, i, l = 0, 0, 0
// slice results
second_pass: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
- buf[n] = s[l:i];
- n += 1;
+ buf[n] = s[l:i]
+ n += 1
}
- i += sublen;
- l = i;
+ i += sublen
+ l = i
- continue second_pass;
+ continue second_pass
}
}
- _, skip := utf8.decode_rune(s[i:]);
- i += skip;
+ _, skip := utf8.decode_rune(s[i:])
+ i += skip
}
if !skip_empty || len(s) - l > 0 {
- buf[n] = s[l:];
+ buf[n] = s[l:]
}
- return buf;
+ return buf
}
split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false) -> ([]byte, bool) #no_bounds_check {
if s == nil || s^ == nil || len(substrs) <= 0 {
- return nil, false;
+ return nil, false
}
- sublen := len(substrs[0]);
+ sublen := len(substrs[0])
for substr in substrs[1:] {
- sublen = min(sublen, len(substr));
+ sublen = min(sublen, len(substr))
}
- shared := len(s) - sublen;
+ shared := len(s) - sublen
if shared <= 0 {
- return nil, false;
+ return nil, false
}
// index, last
- i, l := 0, 0;
+ i, l := 0, 0
loop: for i <= shared {
for substr in substrs {
if string(s[i:i+sublen]) == string(substr) {
if !skip_empty || i - l > 0 {
- res := s[l:i];
- s^ = s[i:];
- return res, true;
+ res := s[l:i]
+ s^ = s[i:]
+ return res, true
}
- i += sublen;
- l = i;
+ i += sublen
+ l = i
- continue loop;
+ continue loop
}
}
- _, skip := utf8.decode_rune(s[i:]);
- i += skip;
+ _, skip := utf8.decode_rune(s[i:])
+ i += skip
}
if !skip_empty || len(s) - l > 0 {
- res := s[l:];
- s^ = s[len(s):];
- return res, true;
+ res := s[l:]
+ s^ = s[len(s):]
+ return res, true
}
- return nil, false;
+ return nil, false
}
@@ -879,167 +879,167 @@ split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false)
// scrub scruvs invalid utf-8 characters and replaces them with the replacement string
// Adjacent invalid bytes are only replaced once
scrub :: proc(s: []byte, replacement: []byte, allocator := context.allocator) -> []byte {
- str := s;
- b: Buffer;
- buffer_init_allocator(&b, 0, len(s), allocator);
+ str := s
+ b: Buffer
+ buffer_init_allocator(&b, 0, len(s), allocator)
- has_error := false;
- cursor := 0;
- origin := str;
+ has_error := false
+ cursor := 0
+ origin := str
for len(str) > 0 {
- r, w := utf8.decode_rune(str);
+ r, w := utf8.decode_rune(str)
if r == utf8.RUNE_ERROR {
if !has_error {
- has_error = true;
- buffer_write(&b, origin[:cursor]);
+ has_error = true
+ buffer_write(&b, origin[:cursor])
}
} else if has_error {
- has_error = false;
- buffer_write(&b, replacement);
+ has_error = false
+ buffer_write(&b, replacement)
- origin = origin[cursor:];
- cursor = 0;
+ origin = origin[cursor:]
+ cursor = 0
}
- cursor += w;
- str = str[w:];
+ cursor += w
+ str = str[w:]
}
- return buffer_to_bytes(&b);
+ return buffer_to_bytes(&b)
}
reverse :: proc(s: []byte, allocator := context.allocator) -> []byte {
- str := s;
- n := len(str);
- buf := make([]byte, n);
- i := n;
+ str := s
+ n := len(str)
+ buf := make([]byte, n)
+ i := n
for len(str) > 0 {
- _, w := utf8.decode_rune(str);
- i -= w;
- copy(buf[i:], str[:w]);
- str = str[w:];
+ _, w := utf8.decode_rune(str)
+ i -= w
+ copy(buf[i:], str[:w])
+ str = str[w:]
}
- return buf;
+ return buf
}
expand_tabs :: proc(s: []byte, tab_size: int, allocator := context.allocator) -> []byte {
if tab_size <= 0 {
- panic("tab size must be positive");
+ panic("tab size must be positive")
}
if s == nil {
- return nil;
+ return nil
}
- b: Buffer;
- buffer_init_allocator(&b, 0, len(s), allocator);
+ b: Buffer
+ buffer_init_allocator(&b, 0, len(s), allocator)
- str := s;
- column: int;
+ str := s
+ column: int
for len(str) > 0 {
- r, w := utf8.decode_rune(str);
+ r, w := utf8.decode_rune(str)
if r == '\t' {
- expand := tab_size - column%tab_size;
+ expand := tab_size - column%tab_size
for i := 0; i < expand; i += 1 {
- buffer_write_byte(&b, ' ');
+ buffer_write_byte(&b, ' ')
}
- column += expand;
+ column += expand
} else {
if r == '\n' {
- column = 0;
+ column = 0
} else {
- column += w;
+ column += w
}
- buffer_write_rune(&b, r);
+ buffer_write_rune(&b, r)
}
- str = str[w:];
+ str = str[w:]
}
- return buffer_to_bytes(&b);
+ return buffer_to_bytes(&b)
}
partition :: proc(str, sep: []byte) -> (head, match, tail: []byte) {
- i := index(str, sep);
+ i := index(str, sep)
if i == -1 {
- head = str;
- return;
+ head = str
+ return
}
- head = str[:i];
- match = str[i:i+len(sep)];
- tail = str[i+len(sep):];
- return;
+ head = str[:i]
+ match = str[i:i+len(sep)]
+ tail = str[i+len(sep):]
+ return
}
-center_justify :: centre_justify; // NOTE(bill): Because Americans exist
+center_justify :: centre_justify // NOTE(bill): Because Americans exist
// centre_justify returns a byte slice with a pad byte slice at boths sides if the str's rune length is smaller than length
centre_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
- n := rune_count(str);
+ n := rune_count(str)
if n >= length || pad == nil {
- return clone(str, allocator);
+ return clone(str, allocator)
}
- remains := length-1;
- pad_len := rune_count(pad);
+ remains := length-1
+ pad_len := rune_count(pad)
- b: Buffer;
- buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator);
+ b: Buffer
+ buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
- write_pad_string(&b, pad, pad_len, remains/2);
- buffer_write(&b, str);
- write_pad_string(&b, pad, pad_len, (remains+1)/2);
+ write_pad_string(&b, pad, pad_len, remains/2)
+ buffer_write(&b, str)
+ write_pad_string(&b, pad, pad_len, (remains+1)/2)
- return buffer_to_bytes(&b);
+ return buffer_to_bytes(&b)
}
// left_justify returns a byte slice with a pad byte slice at left side if the str's rune length is smaller than length
left_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
- n := rune_count(str);
+ n := rune_count(str)
if n >= length || pad == nil {
- return clone(str, allocator);
+ return clone(str, allocator)
}
- remains := length-1;
- pad_len := rune_count(pad);
+ remains := length-1
+ pad_len := rune_count(pad)
- b: Buffer;
- buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator);
+ b: Buffer
+ buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
- buffer_write(&b, str);
- write_pad_string(&b, pad, pad_len, remains);
+ buffer_write(&b, str)
+ write_pad_string(&b, pad, pad_len, remains)
- return buffer_to_bytes(&b);
+ return buffer_to_bytes(&b)
}
// right_justify returns a byte slice with a pad byte slice at right side if the str's rune length is smaller than length
right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte {
- n := rune_count(str);
+ n := rune_count(str)
if n >= length || pad == nil {
- return clone(str, allocator);
+ return clone(str, allocator)
}
- remains := length-1;
- pad_len := rune_count(pad);
+ remains := length-1
+ pad_len := rune_count(pad)
- b: Buffer;
- buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator);
+ b: Buffer
+ buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator)
- write_pad_string(&b, pad, pad_len, remains);
- buffer_write(&b, str);
+ write_pad_string(&b, pad, pad_len, remains)
+ buffer_write(&b, str)
- return buffer_to_bytes(&b);
+ return buffer_to_bytes(&b)
}
@@ -1047,19 +1047,19 @@ right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := contex
@private
write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) {
- repeats := remains / pad_len;
+ repeats := remains / pad_len
for i := 0; i < repeats; i += 1 {
- buffer_write(b, pad);
+ buffer_write(b, pad)
}
- n := remains % pad_len;
- p := pad;
+ n := remains % pad_len
+ p := pad
for i := 0; i < n; i += 1 {
- r, width := utf8.decode_rune(p);
- buffer_write_rune(b, r);
- p = p[width:];
+ r, width := utf8.decode_rune(p)
+ buffer_write_rune(b, r)
+ p = p[width:]
}
}
@@ -1067,52 +1067,52 @@ write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) {
// fields splits the byte slice s around each instance of one or more consecutive white space character, defined by unicode.is_space
// returning a slice of subslices of s or an empty slice if s only contains white space
fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds_check {
- n := 0;
- was_space := 1;
- set_bits := u8(0);
+ n := 0
+ was_space := 1
+ set_bits := u8(0)
// check to see
for i in 0..<len(s) {
- r := s[i];
- set_bits |= r;
- is_space := int(_ascii_space[r]);
- n += was_space & ~is_space;
- was_space = is_space;
+ r := s[i]
+ set_bits |= r
+ is_space := int(_ascii_space[r])
+ n += was_space & ~is_space
+ was_space = is_space
}
if set_bits >= utf8.RUNE_SELF {
- return fields_proc(s, unicode.is_space, allocator);
+ return fields_proc(s, unicode.is_space, allocator)
}
if n == 0 {
- return nil;
+ return nil
}
- a := make([][]byte, n, allocator);
- na := 0;
- field_start := 0;
- i := 0;
+ a := make([][]byte, n, allocator)
+ na := 0
+ field_start := 0
+ i := 0
for i < len(s) && _ascii_space[s[i]] != 0 {
- i += 1;
+ i += 1
}
- field_start = i;
+ field_start = i
for i < len(s) {
if _ascii_space[s[i]] == 0 {
- i += 1;
- continue;
+ i += 1
+ continue
}
- a[na] = s[field_start : i];
- na += 1;
- i += 1;
+ a[na] = s[field_start : i]
+ na += 1
+ i += 1
for i < len(s) && _ascii_space[s[i]] != 0 {
- i += 1;
+ i += 1
}
- field_start = i;
+ field_start = i
}
if field_start < len(s) {
- a[na] = s[field_start:];
+ a[na] = s[field_start:]
}
- return a;
+ return a
}
@@ -1123,28 +1123,28 @@ fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds
// fields_proc makes no guarantee about the order in which it calls f(ch)
// it assumes that `f` always returns the same value for a given ch
fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.allocator) -> [][]byte #no_bounds_check {
- subslices := make([dynamic][]byte, 0, 32, allocator);
+ subslices := make([dynamic][]byte, 0, 32, allocator)
- start, end := -1, -1;
+ start, end := -1, -1
for r, offset in string(s) {
- end = offset;
+ end = offset
if f(r) {
if start >= 0 {
- append(&subslices, s[start : end]);
+ append(&subslices, s[start : end])
// -1 could be used, but just speed it up through bitwise not
// gotta love 2's complement
- start = ~start;
+ start = ~start
}
} else {
if start < 0 {
- start = end;
+ start = end
}
}
}
if start >= 0 {
- append(&subslices, s[start : end]);
+ append(&subslices, s[start : end])
}
- return subslices[:];
+ return subslices[:]
}