diff options
| author | gingerBill <bill@gingerbill.org> | 2021-08-31 22:21:13 +0100 |
|---|---|---|
| committer | gingerBill <bill@gingerbill.org> | 2021-08-31 22:21:13 +0100 |
| commit | 251da264ed6e0f039931683c7b0d4b97e88c8d99 (patch) | |
| tree | c7a9a088477d2452c2cf850458c62d994a211df6 /core/bytes/bytes.odin | |
| parent | b176af27427a6c39448a71a8023e4a9877f0a51c (diff) | |
Remove unneeded semicolons from the core library
Diffstat (limited to 'core/bytes/bytes.odin')
| -rw-r--r-- | core/bytes/bytes.odin | 838 |
1 files changed, 419 insertions, 419 deletions
diff --git a/core/bytes/bytes.odin b/core/bytes/bytes.odin index a7cf23d1b..cbc1e2506 100644 --- a/core/bytes/bytes.odin +++ b/core/bytes/bytes.odin @@ -5,272 +5,272 @@ import "core:unicode" import "core:unicode/utf8" clone :: proc(s: []byte, allocator := context.allocator, loc := #caller_location) -> []byte { - c := make([]byte, len(s)+1, allocator, loc); - copy(c, s); - c[len(s)] = 0; - return c[:len(s)]; + c := make([]byte, len(s)+1, allocator, loc) + copy(c, s) + c[len(s)] = 0 + return c[:len(s)] } ptr_from_slice :: proc(str: []byte) -> ^byte { - d := transmute(mem.Raw_String)str; - return d.data; + d := transmute(mem.Raw_String)str + return d.data } truncate_to_byte :: proc(str: []byte, b: byte) -> []byte { - n := index_byte(str, b); + n := index_byte(str, b) if n < 0 { - n = len(str); + n = len(str) } - return str[:n]; + return str[:n] } truncate_to_rune :: proc(str: []byte, r: rune) -> []byte { - n := index_rune(str, r); + n := index_rune(str, r) if n < 0 { - n = len(str); + n = len(str) } - return str[:n]; + return str[:n] } // Compares two strings, returning a value representing which one comes first lexiographically. // -1 for `a`; 1 for `b`, or 0 if they are equal. compare :: proc(lhs, rhs: []byte) -> int { - return mem.compare(lhs, rhs); + return mem.compare(lhs, rhs) } contains_rune :: proc(s: []byte, r: rune) -> int { for c, offset in string(s) { if c == r { - return offset; + return offset } } - return -1; + return -1 } contains :: proc(s, substr: []byte) -> bool { - return index(s, substr) >= 0; + return index(s, substr) >= 0 } contains_any :: proc(s, chars: []byte) -> bool { - return index_any(s, chars) >= 0; + return index_any(s, chars) >= 0 } rune_count :: proc(s: []byte) -> int { - return utf8.rune_count(s); + return utf8.rune_count(s) } equal :: proc(a, b: []byte) -> bool { - return string(a) == string(b); + return string(a) == string(b) } equal_fold :: proc(u, v: []byte) -> bool { - s, t := string(u), string(v); + s, t := string(u), string(v) loop: for s != "" && t != "" { - sr, tr: rune; + sr, tr: rune if s[0] < utf8.RUNE_SELF { - sr, s = rune(s[0]), s[1:]; + sr, s = rune(s[0]), s[1:] } else { - r, size := utf8.decode_rune_in_string(s); - sr, s = r, s[size:]; + r, size := utf8.decode_rune_in_string(s) + sr, s = r, s[size:] } if t[0] < utf8.RUNE_SELF { - tr, t = rune(t[0]), t[1:]; + tr, t = rune(t[0]), t[1:] } else { - r, size := utf8.decode_rune_in_string(t); - tr, t = r, t[size:]; + r, size := utf8.decode_rune_in_string(t) + tr, t = r, t[size:] } if tr == sr { // easy case - continue loop; + continue loop } if tr < sr { - tr, sr = sr, tr; + tr, sr = sr, tr } if tr < utf8.RUNE_SELF { switch sr { case 'A'..='Z': if tr == (sr+'a')-'A' { - continue loop; + continue loop } } - return false; + return false } // TODO(bill): Unicode folding - return false; + return false } - return s == t; + return s == t } has_prefix :: proc(s, prefix: []byte) -> bool { - return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix); + return len(s) >= len(prefix) && string(s[0:len(prefix)]) == string(prefix) } has_suffix :: proc(s, suffix: []byte) -> bool { - return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix); + return len(s) >= len(suffix) && string(s[len(s)-len(suffix):]) == string(suffix) } join :: proc(a: [][]byte, sep: []byte, allocator := context.allocator) -> []byte { if len(a) == 0 { - return nil; + return nil } - n := len(sep) * (len(a) - 1); + n := len(sep) * (len(a) - 1) for s in a { - n += len(s); + n += len(s) } - b := make([]byte, n, allocator); - i := copy(b, a[0]); + b := make([]byte, n, allocator) + i := copy(b, a[0]) for s in a[1:] { - i += copy(b[i:], sep); - i += copy(b[i:], s); + i += copy(b[i:], sep) + i += copy(b[i:], s) } - return b; + return b } concatenate :: proc(a: [][]byte, allocator := context.allocator) -> []byte { if len(a) == 0 { - return nil; + return nil } - n := 0; + n := 0 for s in a { - n += len(s); + n += len(s) } - b := make([]byte, n, allocator); - i := 0; + b := make([]byte, n, allocator) + i := 0 for s in a { - i += copy(b[i:], s); + i += copy(b[i:], s) } - return b; + return b } @private _split :: proc(s, sep: []byte, sep_save, n: int, allocator := context.allocator) -> [][]byte { - s, n := s, n; + s, n := s, n if n == 0 { - return nil; + return nil } if sep == nil { - l := utf8.rune_count(s); + l := utf8.rune_count(s) if n < 0 || n > l { - n = l; + n = l } - res := make([dynamic][]byte, n, allocator); + res := make([dynamic][]byte, n, allocator) for i := 0; i < n-1; i += 1 { - _, w := utf8.decode_rune(s); - res[i] = s[:w]; - s = s[w:]; + _, w := utf8.decode_rune(s) + res[i] = s[:w] + s = s[w:] } if n > 0 { - res[n-1] = s; + res[n-1] = s } - return res[:]; + return res[:] } if n < 0 { - n = count(s, sep) + 1; + n = count(s, sep) + 1 } - res := make([dynamic][]byte, n, allocator); + res := make([dynamic][]byte, n, allocator) - n -= 1; + n -= 1 - i := 0; + i := 0 for ; i < n; i += 1 { - m := index(s, sep); + m := index(s, sep) if m < 0 { - break; + break } - res[i] = s[:m+sep_save]; - s = s[m+len(sep):]; + res[i] = s[:m+sep_save] + s = s[m+len(sep):] } - res[i] = s; + res[i] = s - return res[:i+1]; + return res[:i+1] } split :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte { - return _split(s, sep, 0, -1, allocator); + return _split(s, sep, 0, -1, allocator) } split_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte { - return _split(s, sep, 0, n, allocator); + return _split(s, sep, 0, n, allocator) } split_after :: proc(s, sep: []byte, allocator := context.allocator) -> [][]byte { - return _split(s, sep, len(sep), -1, allocator); + return _split(s, sep, len(sep), -1, allocator) } split_after_n :: proc(s, sep: []byte, n: int, allocator := context.allocator) -> [][]byte { - return _split(s, sep, len(sep), n, allocator); + return _split(s, sep, len(sep), n, allocator) } @private _split_iterator :: proc(s: ^[]byte, sep: []byte, sep_save, n: int) -> (res: []byte, ok: bool) { - s, n := s, n; + s, n := s, n if n == 0 { - return; + return } if sep == nil { - res = s[:]; - ok = true; - s^ = s[len(s):]; - return; + res = s[:] + ok = true + s^ = s[len(s):] + return } if n < 0 { - n = count(s^, sep) + 1; + n = count(s^, sep) + 1 } - n -= 1; + n -= 1 - i := 0; + i := 0 for ; i < n; i += 1 { - m := index(s^, sep); + m := index(s^, sep) if m < 0 { - break; + break } - res = s[:m+sep_save]; - ok = true; - s^ = s[m+len(sep):]; - return; + res = s[:m+sep_save] + ok = true + s^ = s[m+len(sep):] + return } - res = s[:]; - ok = res != nil; - s^ = s[len(s):]; - return; + res = s[:] + ok = res != nil + s^ = s[len(s):] + return } split_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) { - return _split_iterator(s, sep, 0, -1); + return _split_iterator(s, sep, 0, -1) } split_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool) { - return _split_iterator(s, sep, 0, n); + return _split_iterator(s, sep, 0, n) } split_after_iterator :: proc(s: ^[]byte, sep: []byte) -> ([]byte, bool) { - return _split_iterator(s, sep, len(sep), -1); + return _split_iterator(s, sep, len(sep), -1) } split_after_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool) { - return _split_iterator(s, sep, len(sep), n); + return _split_iterator(s, sep, len(sep), n) } @@ -278,599 +278,599 @@ split_after_n_iterator :: proc(s: ^[]byte, sep: []byte, n: int) -> ([]byte, bool index_byte :: proc(s: []byte, c: byte) -> int { for i := 0; i < len(s); i += 1 { if s[i] == c { - return i; + return i } } - return -1; + return -1 } // Returns -1 if c is not present last_index_byte :: proc(s: []byte, c: byte) -> int { for i := len(s)-1; i >= 0; i -= 1 { if s[i] == c { - return i; + return i } } - return -1; + return -1 } -@private PRIME_RABIN_KARP :: 16777619; +@private PRIME_RABIN_KARP :: 16777619 index :: proc(s, substr: []byte) -> int { hash_str_rabin_karp :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) { for i := 0; i < len(s); i += 1 { - hash = hash*PRIME_RABIN_KARP + u32(s[i]); + hash = hash*PRIME_RABIN_KARP + u32(s[i]) } - sq := u32(PRIME_RABIN_KARP); + sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { - pow *= sq; + pow *= sq } - sq *= sq; + sq *= sq } - return; + return } - n := len(substr); + n := len(substr) switch { case n == 0: - return 0; + return 0 case n == 1: - return index_byte(s, substr[0]); + return index_byte(s, substr[0]) case n == len(s): if string(s) == string(substr) { - return 0; + return 0 } - return -1; + return -1 case n > len(s): - return -1; + return -1 } - hash, pow := hash_str_rabin_karp(substr); - h: u32; + hash, pow := hash_str_rabin_karp(substr) + h: u32 for i := 0; i < n; i += 1 { - h = h*PRIME_RABIN_KARP + u32(s[i]); + h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && string(s[:n]) == string(substr) { - return 0; + return 0 } for i := n; i < len(s); /**/ { - h *= PRIME_RABIN_KARP; - h += u32(s[i]); - h -= pow * u32(s[i-n]); - i += 1; + h *= PRIME_RABIN_KARP + h += u32(s[i]) + h -= pow * u32(s[i-n]) + i += 1 if h == hash && string(s[i-n:i]) == string(substr) { - return i - n; + return i - n } } - return -1; + return -1 } last_index :: proc(s, substr: []byte) -> int { hash_str_rabin_karp_reverse :: proc(s: []byte) -> (hash: u32 = 0, pow: u32 = 1) { for i := len(s) - 1; i >= 0; i -= 1 { - hash = hash*PRIME_RABIN_KARP + u32(s[i]); + hash = hash*PRIME_RABIN_KARP + u32(s[i]) } - sq := u32(PRIME_RABIN_KARP); + sq := u32(PRIME_RABIN_KARP) for i := len(s); i > 0; i >>= 1 { if (i & 1) != 0 { - pow *= sq; + pow *= sq } - sq *= sq; + sq *= sq } - return; + return } - n := len(substr); + n := len(substr) switch { case n == 0: - return len(s); + return len(s) case n == 1: - return last_index_byte(s, substr[0]); + return last_index_byte(s, substr[0]) case n == len(s): - return 0 if string(substr) == string(s) else -1; + return 0 if string(substr) == string(s) else -1 case n > len(s): - return -1; + return -1 } - hash, pow := hash_str_rabin_karp_reverse(substr); - last := len(s) - n; - h: u32; + hash, pow := hash_str_rabin_karp_reverse(substr) + last := len(s) - n + h: u32 for i := len(s)-1; i >= last; i -= 1 { - h = h*PRIME_RABIN_KARP + u32(s[i]); + h = h*PRIME_RABIN_KARP + u32(s[i]) } if h == hash && string(s[last:]) == string(substr) { - return last; + return last } for i := last-1; i >= 0; i -= 1 { - h *= PRIME_RABIN_KARP; - h += u32(s[i]); - h -= pow * u32(s[i+n]); + h *= PRIME_RABIN_KARP + h += u32(s[i]) + h -= pow * u32(s[i+n]) if h == hash && string(s[i:i+n]) == string(substr) { - return i; + return i } } - return -1; + return -1 } index_any :: proc(s, chars: []byte) -> int { if chars == nil { - return -1; + return -1 } // TODO(bill): Optimize for r, i in s { for c in chars { if r == c { - return i; + return i } } } - return -1; + return -1 } last_index_any :: proc(s, chars: []byte) -> int { if chars == nil { - return -1; + return -1 } for i := len(s); i > 0; { - r, w := utf8.decode_last_rune(s[:i]); - i -= w; + r, w := utf8.decode_last_rune(s[:i]) + i -= w for c in string(chars) { if r == c { - return i; + return i } } } - return -1; + return -1 } count :: proc(s, substr: []byte) -> int { if len(substr) == 0 { // special case - return rune_count(s) + 1; + return rune_count(s) + 1 } if len(substr) == 1 { - c := substr[0]; + c := substr[0] switch len(s) { case 0: - return 0; + return 0 case 1: - return int(s[0] == c); + return int(s[0] == c) } - n := 0; + n := 0 for i := 0; i < len(s); i += 1 { if s[i] == c { - n += 1; + n += 1 } } - return n; + return n } // TODO(bill): Use a non-brute for approach - n := 0; - str := s; + n := 0 + str := s for { - i := index(str, substr); + i := index(str, substr) if i == -1 { - return n; + return n } - n += 1; - str = str[i+len(substr):]; + n += 1 + str = str[i+len(substr):] } - return n; + return n } repeat :: proc(s: []byte, count: int, allocator := context.allocator) -> []byte { if count < 0 { - panic("bytes: negative repeat count"); + panic("bytes: negative repeat count") } else if count > 0 && (len(s)*count)/count != len(s) { - panic("bytes: repeat count will cause an overflow"); + panic("bytes: repeat count will cause an overflow") } - b := make([]byte, len(s)*count, allocator); - i := copy(b, s); + b := make([]byte, len(s)*count, allocator) + i := copy(b, s) for i < len(b) { // 2^N trick to reduce the need to copy - copy(b[i:], b[:i]); - i *= 2; + copy(b[i:], b[:i]) + i *= 2 } - return b; + return b } replace_all :: proc(s, old, new: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { - return replace(s, old, new, -1, allocator); + return replace(s, old, new, -1, allocator) } // if n < 0, no limit on the number of replacements replace :: proc(s, old, new: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { if string(old) == string(new) || n == 0 { - was_allocation = false; - output = s; - return; + was_allocation = false + output = s + return } - byte_count := n; + byte_count := n if m := count(s, old); m == 0 { - was_allocation = false; - output = s; - return; + was_allocation = false + output = s + return } else if n < 0 || m < n { - byte_count = m; + byte_count = m } - t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator); - was_allocation = true; + t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator) + was_allocation = true - w := 0; - start := 0; + w := 0 + start := 0 for i := 0; i < byte_count; i += 1 { - j := start; + j := start if len(old) == 0 { if i > 0 { - _, width := utf8.decode_rune(s[start:]); - j += width; + _, width := utf8.decode_rune(s[start:]) + j += width } } else { - j += index(s[start:], old); + j += index(s[start:], old) } - w += copy(t[w:], s[start:j]); - w += copy(t[w:], new); - start = j + len(old); + w += copy(t[w:], s[start:j]) + w += copy(t[w:], new) + start = j + len(old) } - w += copy(t[w:], s[start:]); - output = t[0:w]; - return; + w += copy(t[w:], s[start:]) + output = t[0:w] + return } remove :: proc(s, key: []byte, n: int, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { - return replace(s, key, {}, n, allocator); + return replace(s, key, {}, n, allocator) } remove_all :: proc(s, key: []byte, allocator := context.allocator) -> (output: []byte, was_allocation: bool) { - return remove(s, key, -1, allocator); + return remove(s, key, -1, allocator) } -@(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1}; +@(private) _ascii_space := [256]u8{'\t' = 1, '\n' = 1, '\v' = 1, '\f' = 1, '\r' = 1, ' ' = 1} is_ascii_space :: proc(r: rune) -> bool { if r < utf8.RUNE_SELF { - return _ascii_space[u8(r)] != 0; + return _ascii_space[u8(r)] != 0 } - return false; + return false } is_space :: proc(r: rune) -> bool { if r < 0x2000 { switch r { case '\t', '\n', '\v', '\f', '\r', ' ', 0x85, 0xa0, 0x1680: - return true; + return true } } else { if r <= 0x200a { - return true; + return true } switch r { case 0x2028, 0x2029, 0x202f, 0x205f, 0x3000: - return true; + return true } } - return false; + return false } is_null :: proc(r: rune) -> bool { - return r == 0x0000; + return r == 0x0000 } index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int { for r, i in string(s) { if p(r) == truth { - return i; + return i } } - return -1; + return -1 } index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { for r, i in string(s) { if p(state, r) == truth { - return i; + return i } } - return -1; + return -1 } last_index_proc :: proc(s: []byte, p: proc(rune) -> bool, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { - r, size := utf8.decode_last_rune(s[:i]); - i -= size; + r, size := utf8.decode_last_rune(s[:i]) + i -= size if p(r) == truth { - return i; + return i } } - return -1; + return -1 } last_index_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr, truth := true) -> int { // TODO(bill): Probably use Rabin-Karp Search for i := len(s); i > 0; { - r, size := utf8.decode_last_rune(s[:i]); - i -= size; + r, size := utf8.decode_last_rune(s[:i]) + i -= size if p(state, r) == truth { - return i; + return i } } - return -1; + return -1 } trim_left_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte { - i := index_proc(s, p, false); + i := index_proc(s, p, false) if i == -1 { - return nil; + return nil } - return s[i:]; + return s[i:] } index_rune :: proc(s: []byte, r: rune) -> int { switch { case 0 <= r && r < utf8.RUNE_SELF: - return index_byte(s, byte(r)); + return index_byte(s, byte(r)) case r == utf8.RUNE_ERROR: for c, i in string(s) { if c == utf8.RUNE_ERROR { - return i; + return i } } - return -1; + return -1 case !utf8.valid_rune(r): - return -1; + return -1 } - b, w := utf8.encode_rune(r); - return index(s, b[:w]); + b, w := utf8.encode_rune(r) + return index(s, b[:w]) } trim_left_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte { - i := index_proc_with_state(s, p, state, false); + i := index_proc_with_state(s, p, state, false) if i == -1 { - return nil; + return nil } - return s[i:]; + return s[i:] } trim_right_proc :: proc(s: []byte, p: proc(rune) -> bool) -> []byte { - i := last_index_proc(s, p, false); + i := last_index_proc(s, p, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { - _, w := utf8.decode_rune(s[i:]); - i += w; + _, w := utf8.decode_rune(s[i:]) + i += w } else { - i += 1; + i += 1 } - return s[0:i]; + return s[0:i] } trim_right_proc_with_state :: proc(s: []byte, p: proc(rawptr, rune) -> bool, state: rawptr) -> []byte { - i := last_index_proc_with_state(s, p, state, false); + i := last_index_proc_with_state(s, p, state, false) if i >= 0 && s[i] >= utf8.RUNE_SELF { - _, w := utf8.decode_rune(s[i:]); - i += w; + _, w := utf8.decode_rune(s[i:]) + i += w } else { - i += 1; + i += 1 } - return s[0:i]; + return s[0:i] } is_in_cutset :: proc(state: rawptr, r: rune) -> bool { if state == nil { - return false; + return false } - cutset := (^string)(state)^; + cutset := (^string)(state)^ for c in cutset { if r == c { - return true; + return true } } - return false; + return false } trim_left :: proc(s: []byte, cutset: []byte) -> []byte { if s == nil || cutset == nil { - return s; + return s } - state := cutset; - return trim_left_proc_with_state(s, is_in_cutset, &state); + state := cutset + return trim_left_proc_with_state(s, is_in_cutset, &state) } trim_right :: proc(s: []byte, cutset: []byte) -> []byte { if s == nil || cutset == nil { - return s; + return s } - state := cutset; - return trim_right_proc_with_state(s, is_in_cutset, &state); + state := cutset + return trim_right_proc_with_state(s, is_in_cutset, &state) } trim :: proc(s: []byte, cutset: []byte) -> []byte { - return trim_right(trim_left(s, cutset), cutset); + return trim_right(trim_left(s, cutset), cutset) } trim_left_space :: proc(s: []byte) -> []byte { - return trim_left_proc(s, is_space); + return trim_left_proc(s, is_space) } trim_right_space :: proc(s: []byte) -> []byte { - return trim_right_proc(s, is_space); + return trim_right_proc(s, is_space) } trim_space :: proc(s: []byte) -> []byte { - return trim_right_space(trim_left_space(s)); + return trim_right_space(trim_left_space(s)) } trim_left_null :: proc(s: []byte) -> []byte { - return trim_left_proc(s, is_null); + return trim_left_proc(s, is_null) } trim_right_null :: proc(s: []byte) -> []byte { - return trim_right_proc(s, is_null); + return trim_right_proc(s, is_null) } trim_null :: proc(s: []byte) -> []byte { - return trim_right_null(trim_left_null(s)); + return trim_right_null(trim_left_null(s)) } trim_prefix :: proc(s, prefix: []byte) -> []byte { if has_prefix(s, prefix) { - return s[len(prefix):]; + return s[len(prefix):] } - return s; + return s } trim_suffix :: proc(s, suffix: []byte) -> []byte { if has_suffix(s, suffix) { - return s[:len(s)-len(suffix)]; + return s[:len(s)-len(suffix)] } - return s; + return s } split_multi :: proc(s: []byte, substrs: [][]byte, skip_empty := false, allocator := context.allocator) -> [][]byte #no_bounds_check { if s == nil || len(substrs) <= 0 { - return nil; + return nil } - sublen := len(substrs[0]); + sublen := len(substrs[0]) for substr in substrs[1:] { - sublen = min(sublen, len(substr)); + sublen = min(sublen, len(substr)) } - shared := len(s) - sublen; + shared := len(s) - sublen if shared <= 0 { - return nil; + return nil } // number, index, last - n, i, l := 0, 0, 0; + n, i, l := 0, 0, 0 // count results first_pass: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { - n += 1; + n += 1 } - i += sublen; - l = i; + i += sublen + l = i - continue first_pass; + continue first_pass } } - _, skip := utf8.decode_rune(s[i:]); - i += skip; + _, skip := utf8.decode_rune(s[i:]) + i += skip } if !skip_empty || len(s) - l > 0 { - n += 1; + n += 1 } if n < 1 { // no results - return nil; + return nil } - buf := make([][]byte, n, allocator); + buf := make([][]byte, n, allocator) - n, i, l = 0, 0, 0; + n, i, l = 0, 0, 0 // slice results second_pass: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { - buf[n] = s[l:i]; - n += 1; + buf[n] = s[l:i] + n += 1 } - i += sublen; - l = i; + i += sublen + l = i - continue second_pass; + continue second_pass } } - _, skip := utf8.decode_rune(s[i:]); - i += skip; + _, skip := utf8.decode_rune(s[i:]) + i += skip } if !skip_empty || len(s) - l > 0 { - buf[n] = s[l:]; + buf[n] = s[l:] } - return buf; + return buf } split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false) -> ([]byte, bool) #no_bounds_check { if s == nil || s^ == nil || len(substrs) <= 0 { - return nil, false; + return nil, false } - sublen := len(substrs[0]); + sublen := len(substrs[0]) for substr in substrs[1:] { - sublen = min(sublen, len(substr)); + sublen = min(sublen, len(substr)) } - shared := len(s) - sublen; + shared := len(s) - sublen if shared <= 0 { - return nil, false; + return nil, false } // index, last - i, l := 0, 0; + i, l := 0, 0 loop: for i <= shared { for substr in substrs { if string(s[i:i+sublen]) == string(substr) { if !skip_empty || i - l > 0 { - res := s[l:i]; - s^ = s[i:]; - return res, true; + res := s[l:i] + s^ = s[i:] + return res, true } - i += sublen; - l = i; + i += sublen + l = i - continue loop; + continue loop } } - _, skip := utf8.decode_rune(s[i:]); - i += skip; + _, skip := utf8.decode_rune(s[i:]) + i += skip } if !skip_empty || len(s) - l > 0 { - res := s[l:]; - s^ = s[len(s):]; - return res, true; + res := s[l:] + s^ = s[len(s):] + return res, true } - return nil, false; + return nil, false } @@ -879,167 +879,167 @@ split_multi_iterator :: proc(s: ^[]byte, substrs: [][]byte, skip_empty := false) // scrub scruvs invalid utf-8 characters and replaces them with the replacement string // Adjacent invalid bytes are only replaced once scrub :: proc(s: []byte, replacement: []byte, allocator := context.allocator) -> []byte { - str := s; - b: Buffer; - buffer_init_allocator(&b, 0, len(s), allocator); + str := s + b: Buffer + buffer_init_allocator(&b, 0, len(s), allocator) - has_error := false; - cursor := 0; - origin := str; + has_error := false + cursor := 0 + origin := str for len(str) > 0 { - r, w := utf8.decode_rune(str); + r, w := utf8.decode_rune(str) if r == utf8.RUNE_ERROR { if !has_error { - has_error = true; - buffer_write(&b, origin[:cursor]); + has_error = true + buffer_write(&b, origin[:cursor]) } } else if has_error { - has_error = false; - buffer_write(&b, replacement); + has_error = false + buffer_write(&b, replacement) - origin = origin[cursor:]; - cursor = 0; + origin = origin[cursor:] + cursor = 0 } - cursor += w; - str = str[w:]; + cursor += w + str = str[w:] } - return buffer_to_bytes(&b); + return buffer_to_bytes(&b) } reverse :: proc(s: []byte, allocator := context.allocator) -> []byte { - str := s; - n := len(str); - buf := make([]byte, n); - i := n; + str := s + n := len(str) + buf := make([]byte, n) + i := n for len(str) > 0 { - _, w := utf8.decode_rune(str); - i -= w; - copy(buf[i:], str[:w]); - str = str[w:]; + _, w := utf8.decode_rune(str) + i -= w + copy(buf[i:], str[:w]) + str = str[w:] } - return buf; + return buf } expand_tabs :: proc(s: []byte, tab_size: int, allocator := context.allocator) -> []byte { if tab_size <= 0 { - panic("tab size must be positive"); + panic("tab size must be positive") } if s == nil { - return nil; + return nil } - b: Buffer; - buffer_init_allocator(&b, 0, len(s), allocator); + b: Buffer + buffer_init_allocator(&b, 0, len(s), allocator) - str := s; - column: int; + str := s + column: int for len(str) > 0 { - r, w := utf8.decode_rune(str); + r, w := utf8.decode_rune(str) if r == '\t' { - expand := tab_size - column%tab_size; + expand := tab_size - column%tab_size for i := 0; i < expand; i += 1 { - buffer_write_byte(&b, ' '); + buffer_write_byte(&b, ' ') } - column += expand; + column += expand } else { if r == '\n' { - column = 0; + column = 0 } else { - column += w; + column += w } - buffer_write_rune(&b, r); + buffer_write_rune(&b, r) } - str = str[w:]; + str = str[w:] } - return buffer_to_bytes(&b); + return buffer_to_bytes(&b) } partition :: proc(str, sep: []byte) -> (head, match, tail: []byte) { - i := index(str, sep); + i := index(str, sep) if i == -1 { - head = str; - return; + head = str + return } - head = str[:i]; - match = str[i:i+len(sep)]; - tail = str[i+len(sep):]; - return; + head = str[:i] + match = str[i:i+len(sep)] + tail = str[i+len(sep):] + return } -center_justify :: centre_justify; // NOTE(bill): Because Americans exist +center_justify :: centre_justify // NOTE(bill): Because Americans exist // centre_justify returns a byte slice with a pad byte slice at boths sides if the str's rune length is smaller than length centre_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { - n := rune_count(str); + n := rune_count(str) if n >= length || pad == nil { - return clone(str, allocator); + return clone(str, allocator) } - remains := length-1; - pad_len := rune_count(pad); + remains := length-1 + pad_len := rune_count(pad) - b: Buffer; - buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator); + b: Buffer + buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) - write_pad_string(&b, pad, pad_len, remains/2); - buffer_write(&b, str); - write_pad_string(&b, pad, pad_len, (remains+1)/2); + write_pad_string(&b, pad, pad_len, remains/2) + buffer_write(&b, str) + write_pad_string(&b, pad, pad_len, (remains+1)/2) - return buffer_to_bytes(&b); + return buffer_to_bytes(&b) } // left_justify returns a byte slice with a pad byte slice at left side if the str's rune length is smaller than length left_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { - n := rune_count(str); + n := rune_count(str) if n >= length || pad == nil { - return clone(str, allocator); + return clone(str, allocator) } - remains := length-1; - pad_len := rune_count(pad); + remains := length-1 + pad_len := rune_count(pad) - b: Buffer; - buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator); + b: Buffer + buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) - buffer_write(&b, str); - write_pad_string(&b, pad, pad_len, remains); + buffer_write(&b, str) + write_pad_string(&b, pad, pad_len, remains) - return buffer_to_bytes(&b); + return buffer_to_bytes(&b) } // right_justify returns a byte slice with a pad byte slice at right side if the str's rune length is smaller than length right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := context.allocator) -> []byte { - n := rune_count(str); + n := rune_count(str) if n >= length || pad == nil { - return clone(str, allocator); + return clone(str, allocator) } - remains := length-1; - pad_len := rune_count(pad); + remains := length-1 + pad_len := rune_count(pad) - b: Buffer; - buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator); + b: Buffer + buffer_init_allocator(&b, 0, len(str) + (remains/pad_len + 1)*len(pad), allocator) - write_pad_string(&b, pad, pad_len, remains); - buffer_write(&b, str); + write_pad_string(&b, pad, pad_len, remains) + buffer_write(&b, str) - return buffer_to_bytes(&b); + return buffer_to_bytes(&b) } @@ -1047,19 +1047,19 @@ right_justify :: proc(str: []byte, length: int, pad: []byte, allocator := contex @private write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) { - repeats := remains / pad_len; + repeats := remains / pad_len for i := 0; i < repeats; i += 1 { - buffer_write(b, pad); + buffer_write(b, pad) } - n := remains % pad_len; - p := pad; + n := remains % pad_len + p := pad for i := 0; i < n; i += 1 { - r, width := utf8.decode_rune(p); - buffer_write_rune(b, r); - p = p[width:]; + r, width := utf8.decode_rune(p) + buffer_write_rune(b, r) + p = p[width:] } } @@ -1067,52 +1067,52 @@ write_pad_string :: proc(b: ^Buffer, pad: []byte, pad_len, remains: int) { // fields splits the byte slice s around each instance of one or more consecutive white space character, defined by unicode.is_space // returning a slice of subslices of s or an empty slice if s only contains white space fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds_check { - n := 0; - was_space := 1; - set_bits := u8(0); + n := 0 + was_space := 1 + set_bits := u8(0) // check to see for i in 0..<len(s) { - r := s[i]; - set_bits |= r; - is_space := int(_ascii_space[r]); - n += was_space & ~is_space; - was_space = is_space; + r := s[i] + set_bits |= r + is_space := int(_ascii_space[r]) + n += was_space & ~is_space + was_space = is_space } if set_bits >= utf8.RUNE_SELF { - return fields_proc(s, unicode.is_space, allocator); + return fields_proc(s, unicode.is_space, allocator) } if n == 0 { - return nil; + return nil } - a := make([][]byte, n, allocator); - na := 0; - field_start := 0; - i := 0; + a := make([][]byte, n, allocator) + na := 0 + field_start := 0 + i := 0 for i < len(s) && _ascii_space[s[i]] != 0 { - i += 1; + i += 1 } - field_start = i; + field_start = i for i < len(s) { if _ascii_space[s[i]] == 0 { - i += 1; - continue; + i += 1 + continue } - a[na] = s[field_start : i]; - na += 1; - i += 1; + a[na] = s[field_start : i] + na += 1 + i += 1 for i < len(s) && _ascii_space[s[i]] != 0 { - i += 1; + i += 1 } - field_start = i; + field_start = i } if field_start < len(s) { - a[na] = s[field_start:]; + a[na] = s[field_start:] } - return a; + return a } @@ -1123,28 +1123,28 @@ fields :: proc(s: []byte, allocator := context.allocator) -> [][]byte #no_bounds // fields_proc makes no guarantee about the order in which it calls f(ch) // it assumes that `f` always returns the same value for a given ch fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.allocator) -> [][]byte #no_bounds_check { - subslices := make([dynamic][]byte, 0, 32, allocator); + subslices := make([dynamic][]byte, 0, 32, allocator) - start, end := -1, -1; + start, end := -1, -1 for r, offset in string(s) { - end = offset; + end = offset if f(r) { if start >= 0 { - append(&subslices, s[start : end]); + append(&subslices, s[start : end]) // -1 could be used, but just speed it up through bitwise not // gotta love 2's complement - start = ~start; + start = ~start } } else { if start < 0 { - start = end; + start = end } } } if start >= 0 { - append(&subslices, s[start : end]); + append(&subslices, s[start : end]) } - return subslices[:]; + return subslices[:] } |