aboutsummaryrefslogtreecommitdiff
path: root/core/crypto
diff options
context:
space:
mode:
authorYawning Angel <yawning@schwanenlied.me>2024-06-05 04:53:08 +0900
committerYawning Angel <yawning@schwanenlied.me>2024-07-16 01:29:43 +0900
commit69026852ce9c79210ee4c8719a492facafe207df (patch)
treef4e8e819554e806352a9d61fd04ee082cac251d7 /core/crypto
parentf578994fa634a615a6800703e18dfbf931958388 (diff)
core/crypto/aes: Add Intel AES-NI support
This supports AES-NI + PCLMUL, and provides optimized key schedule, ECB, CTR, and GCM. Other modes are trivial to add later if required.
Diffstat (limited to 'core/crypto')
-rw-r--r--core/crypto/_aes/hw_intel/api.odin43
-rw-r--r--core/crypto/_aes/hw_intel/ghash.odin281
-rw-r--r--core/crypto/_aes/hw_intel/hw_intel_keysched.odin178
-rw-r--r--core/crypto/aes/aes_ctr.odin24
-rw-r--r--core/crypto/aes/aes_ctr_hw_intel.odin151
-rw-r--r--core/crypto/aes/aes_ecb_hw_intel.odin58
-rw-r--r--core/crypto/aes/aes_gcm.odin7
-rw-r--r--core/crypto/aes/aes_gcm_hw_intel.odin231
-rw-r--r--core/crypto/aes/aes_impl_hw_gen.odin1
-rw-r--r--core/crypto/aes/aes_impl_hw_intel.odin18
10 files changed, 975 insertions, 17 deletions
diff --git a/core/crypto/_aes/hw_intel/api.odin b/core/crypto/_aes/hw_intel/api.odin
new file mode 100644
index 000000000..5cb5a68bb
--- /dev/null
+++ b/core/crypto/_aes/hw_intel/api.odin
@@ -0,0 +1,43 @@
+//+build amd64
+package aes_hw_intel
+
+import "core:sys/info"
+
+// is_supporte returns true iff hardware accelerated AES
+// is supported.
+is_supported :: proc "contextless" () -> bool {
+ features, ok := info.cpu_features.?
+ if !ok {
+ return false
+ }
+
+ // Note: Everything with AES-NI and PCLMULQDQ has support for
+ // the required SSE extxtensions.
+ req_features :: info.CPU_Features{
+ .sse2,
+ .ssse3,
+ .sse41,
+ .aes,
+ .pclmulqdq,
+ }
+ return features >= req_features
+}
+
+// Context is a keyed AES (ECB) instance.
+Context :: struct {
+ // Note: The ideal thing to do is for the expanded round keys to be
+ // arrays of `__m128i`, however that implies alignment (or using AVX).
+ //
+ // All the people using e-waste processors that don't support an
+ // insturction set that has been around for over 10 years are why
+ // we can't have nice things.
+ _sk_exp_enc: [15][16]byte,
+ _sk_exp_dec: [15][16]byte,
+ _num_rounds: int,
+}
+
+// init initializes a context for AES with the provided key.
+init :: proc(ctx: ^Context, key: []byte) {
+ keysched(ctx, key)
+}
+
diff --git a/core/crypto/_aes/hw_intel/ghash.odin b/core/crypto/_aes/hw_intel/ghash.odin
new file mode 100644
index 000000000..9a5208523
--- /dev/null
+++ b/core/crypto/_aes/hw_intel/ghash.odin
@@ -0,0 +1,281 @@
+// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
+// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+//+build amd64
+package aes_hw_intel
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:simd"
+import "core:simd/x86"
+
+@(private = "file")
+GHASH_STRIDE_HW :: 4
+@(private = "file")
+GHASH_STRIDE_BYTES_HW :: GHASH_STRIDE_HW * _aes.GHASH_BLOCK_SIZE
+
+// GHASH is defined over elements of GF(2^128) with "full little-endian"
+// representation: leftmost byte is least significant, and, within each
+// byte, leftmost _bit_ is least significant. The natural ordering in
+// x86 is "mixed little-endian": bytes are ordered from least to most
+// significant, but bits within a byte are in most-to-least significant
+// order. Going to full little-endian representation would require
+// reversing bits within each byte, which is doable but expensive.
+//
+// Instead, we go to full big-endian representation, by swapping bytes
+// around, which is done with a single _mm_shuffle_epi8() opcode (it
+// comes with SSSE3; all CPU that offer pclmulqdq also have SSSE3). We
+// can use a full big-endian representation because in a carryless
+// multiplication, we have a nice bit reversal property:
+//
+// rev_128(x) * rev_128(y) = rev_255(x * y)
+//
+// So by using full big-endian, we still get the right result, except
+// that it is right-shifted by 1 bit. The left-shift is relatively
+// inexpensive, and it can be mutualised.
+//
+// Since SSE2 opcodes do not have facilities for shitfting full 128-bit
+// values with bit precision, we have to break down values into 64-bit
+// chunks. We number chunks from 0 to 3 in left to right order.
+
+@(private = "file")
+byteswap_index := transmute(x86.__m128i)simd.i8x16{
+ // Note: simd.i8x16 is reverse order from x86._mm_set_epi8.
+ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2,ssse3")
+byteswap :: #force_inline proc "contextless" (x: x86.__m128i) -> x86.__m128i {
+ return x86._mm_shuffle_epi8(x, byteswap_index)
+}
+
+// From a 128-bit value kw, compute kx as the XOR of the two 64-bit
+// halves of kw (into the right half of kx; left half is unspecified),
+// and return kx.
+@(private = "file", require_results, enable_target_feature = "sse2")
+bk :: #force_inline proc "contextless" (kw: x86.__m128i) -> x86.__m128i {
+ return x86._mm_xor_si128(kw, x86._mm_shuffle_epi32(kw, 0x0e))
+}
+
+// Combine two 64-bit values (k0:k1) into a 128-bit (kw) value and
+// the XOR of the two values (kx), and return (kw, kx).
+@(private = "file", enable_target_feature = "sse2")
+pbk :: #force_inline proc "contextless" (k0, k1: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+ kw := x86._mm_unpacklo_epi64(k1, k0)
+ kx := x86._mm_xor_si128(k0, k1)
+ return kw, kx
+}
+
+// Left-shift by 1 bit a 256-bit value (in four 64-bit words).
+@(private = "file", require_results, enable_target_feature = "sse2")
+sl_256 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i, x86.__m128i, x86.__m128i) {
+ x0, x1, x2, x3 := x0, x1, x2, x3
+
+ x0 = x86._mm_or_si128(x86._mm_slli_epi64(x0, 1), x86._mm_srli_epi64(x1, 63))
+ x1 = x86._mm_or_si128(x86._mm_slli_epi64(x1, 1), x86._mm_srli_epi64(x2, 63))
+ x2 = x86._mm_or_si128(x86._mm_slli_epi64(x2, 1), x86._mm_srli_epi64(x3, 63))
+ x3 = x86._mm_slli_epi64(x3, 1)
+
+ return x0, x1, x2, x3
+}
+
+// Perform reduction in GF(2^128).
+@(private = "file", require_results, enable_target_feature = "sse2")
+reduce_f128 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+ x0, x1, x2 := x0, x1, x2
+
+ x1 = x86._mm_xor_si128(
+ x1,
+ x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x3,
+ x86._mm_srli_epi64(x3, 1)),
+ x86._mm_xor_si128(
+ x86._mm_srli_epi64(x3, 2),
+ x86._mm_srli_epi64(x3, 7))))
+ x2 = x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x2,
+ x86._mm_slli_epi64(x3, 63)),
+ x86._mm_xor_si128(
+ x86._mm_slli_epi64(x3, 62),
+ x86._mm_slli_epi64(x3, 57)))
+ x0 = x86._mm_xor_si128(
+ x0,
+ x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x2,
+ x86._mm_srli_epi64(x2, 1)),
+ x86._mm_xor_si128(
+ x86._mm_srli_epi64(x2, 2),
+ x86._mm_srli_epi64(x2, 7))))
+ x1 = x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x1,
+ x86._mm_slli_epi64(x2, 63)),
+ x86._mm_xor_si128(
+ x86._mm_slli_epi64(x2, 62),
+ x86._mm_slli_epi64(x2, 57)))
+
+ return x0, x1
+}
+
+// Square value kw in GF(2^128) into (dw,dx).
+@(private = "file", require_results, enable_target_feature = "sse2,pclmul")
+square_f128 :: #force_inline proc "contextless" (kw: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+ z1 := x86._mm_clmulepi64_si128(kw, kw, 0x11)
+ z3 := x86._mm_clmulepi64_si128(kw, kw, 0x00)
+ z0 := x86._mm_shuffle_epi32(z1, 0x0E)
+ z2 := x86._mm_shuffle_epi32(z3, 0x0E)
+ z0, z1, z2, z3 = sl_256(z0, z1, z2, z3)
+ z0, z1 = reduce_f128(z0, z1, z2, z3)
+ return pbk(z0, z1)
+}
+
+// ghash calculates the GHASH of data, with the key `key`, and input `dst`
+// and `data`, and stores the resulting digest in `dst`.
+//
+// Note: `dst` is both an input and an output, to support easy implementation
+// of GCM.
+@(enable_target_feature = "sse2,ssse3,pclmul")
+ghash :: proc "contextless" (dst, key, data: []byte) #no_bounds_check {
+ if len(dst) != _aes.GHASH_BLOCK_SIZE || len(key) != _aes.GHASH_BLOCK_SIZE {
+ intrinsics.trap()
+ }
+
+ // Note: BearSSL opts to copy the remainder into a zero-filled
+ // 64-byte buffer. We do something slightly more simple.
+
+ // Load key and dst (h and y).
+ yw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(dst)))
+ h1w := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+ yw = byteswap(yw)
+ h1w = byteswap(h1w)
+ h1x := bk(h1w)
+
+ // Process 4 blocks at a time
+ buf := data
+ l := len(buf)
+ if l >= GHASH_STRIDE_BYTES_HW {
+ // Compute h2 = h^2
+ h2w, h2x := square_f128(h1w)
+
+ // Compute h3 = h^3 = h*(h^2)
+ t1 := x86._mm_clmulepi64_si128(h1w, h2w, 0x11)
+ t3 := x86._mm_clmulepi64_si128(h1w, h2w, 0x00)
+ t2 := x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(h1x, h2x, 0x00),
+ x86._mm_xor_si128(t1, t3))
+ t0 := x86._mm_shuffle_epi32(t1, 0x0E)
+ t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+ t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+ t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+ t0, t1 = reduce_f128(t0, t1, t2, t3)
+ h3w, h3x := pbk(t0, t1)
+
+ // Compute h4 = h^4 = (h^2)^2
+ h4w, h4x := square_f128(h2w)
+
+ for l >= GHASH_STRIDE_BYTES_HW {
+ aw0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf)))
+ aw1 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[16:])))
+ aw2 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[32:])))
+ aw3 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[48:])))
+ aw0 = byteswap(aw0)
+ aw1 = byteswap(aw1)
+ aw2 = byteswap(aw2)
+ aw3 = byteswap(aw3)
+ buf, l = buf[GHASH_STRIDE_BYTES_HW:], l - GHASH_STRIDE_BYTES_HW
+
+ aw0 = x86._mm_xor_si128(aw0, yw)
+ ax1 := bk(aw1)
+ ax2 := bk(aw2)
+ ax3 := bk(aw3)
+ ax0 := bk(aw0)
+
+ t1 = x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(aw0, h4w, 0x11),
+ x86._mm_clmulepi64_si128(aw1, h3w, 0x11)),
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(aw2, h2w, 0x11),
+ x86._mm_clmulepi64_si128(aw3, h1w, 0x11)))
+ t3 = x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(aw0, h4w, 0x00),
+ x86._mm_clmulepi64_si128(aw1, h3w, 0x00)),
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(aw2, h2w, 0x00),
+ x86._mm_clmulepi64_si128(aw3, h1w, 0x00)))
+ t2 = x86._mm_xor_si128(
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(ax0, h4x, 0x00),
+ x86._mm_clmulepi64_si128(ax1, h3x, 0x00)),
+ x86._mm_xor_si128(
+ x86._mm_clmulepi64_si128(ax2, h2x, 0x00),
+ x86._mm_clmulepi64_si128(ax3, h1x, 0x00)))
+ t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
+ t0 = x86._mm_shuffle_epi32(t1, 0x0E)
+ t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+ t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+ t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+ t0, t1 = reduce_f128(t0, t1, t2, t3)
+ yw = x86._mm_unpacklo_epi64(t1, t0)
+ }
+ }
+
+ // Process 1 block at a time
+ src: []byte
+ for l > 0 {
+ if l >= _aes.GHASH_BLOCK_SIZE {
+ src = buf
+ buf = buf[_aes.GHASH_BLOCK_SIZE:]
+ l -= _aes.GHASH_BLOCK_SIZE
+ } else {
+ tmp: [_aes.GHASH_BLOCK_SIZE]byte
+ copy(tmp[:], buf)
+ src = tmp[:]
+ l = 0
+ }
+
+ aw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+ aw = byteswap(aw)
+
+ aw = x86._mm_xor_si128(aw, yw)
+ ax := bk(aw)
+
+ t1 := x86._mm_clmulepi64_si128(aw, h1w, 0x11)
+ t3 := x86._mm_clmulepi64_si128(aw, h1w, 0x00)
+ t2 := x86._mm_clmulepi64_si128(ax, h1x, 0x00)
+ t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
+ t0 := x86._mm_shuffle_epi32(t1, 0x0E)
+ t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
+ t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
+ t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
+ t0, t1 = reduce_f128(t0, t1, t2, t3)
+ yw = x86._mm_unpacklo_epi64(t1, t0)
+ }
+
+ // Write back the hash (dst, aka y)
+ yw = byteswap(yw)
+ intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), yw)
+}
diff --git a/core/crypto/_aes/hw_intel/hw_intel_keysched.odin b/core/crypto/_aes/hw_intel/hw_intel_keysched.odin
new file mode 100644
index 000000000..911dffbd5
--- /dev/null
+++ b/core/crypto/_aes/hw_intel/hw_intel_keysched.odin
@@ -0,0 +1,178 @@
+// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions
+// are met:
+//
+// 1. Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
+// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
+// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+//+build amd64
+package aes_hw_intel
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:mem"
+import "core:simd/x86"
+
+// Intel AES-NI based implementation. Inspiration taken from BearSSL.
+//
+// Note: This assumes that the SROA optimization pass is enabled to be
+// anything resembling performat otherwise, LLVM will not elide a massive
+// number of redundant loads/stores it generates for every intrinsic call.
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step128 :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
+ k1, k2 := k1, k2
+
+ k2 = x86._mm_shuffle_epi32(k2, 0xff)
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ return x86._mm_xor_si128(k1, k2)
+}
+
+@(private = "file", require_results, enable_target_feature = "sse,sse2")
+expand_step192a :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
+ k1, k2, k3 := k1_^, k2_^, k3
+
+ k3 = x86._mm_shuffle_epi32(k3, 0x55)
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, k3)
+
+ tmp := k2
+ k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
+ k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
+
+ k1_, k2_ := k1_, k2_
+ k1_^, k2_^ = k1, k2
+
+ r1 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(tmp), transmute(x86.__m128)(k1), 0x44))
+ r2 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(k1), transmute(x86.__m128)(k2), 0x4e))
+
+ return r1, r2
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step192b :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> x86.__m128i {
+ k1, k2, k3 := k1_^, k2_^, k3
+
+ k3 = x86._mm_shuffle_epi32(k3, 0x55)
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, k3)
+
+ k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
+ k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
+
+ k1_, k2_ := k1_, k2_
+ k1_^, k2_^ = k1, k2
+
+ return k1
+}
+
+@(private = "file", require_results, enable_target_feature = "sse2")
+expand_step256b :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
+ k1, k2 := k1, k2
+
+ k2 = x86._mm_shuffle_epi32(k2, 0xaa)
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
+ return x86._mm_xor_si128(k1, k2)
+}
+
+@(private = "file", enable_target_feature = "aes")
+derive_dec_keys :: proc(ctx: ^Context, sks: ^[15]x86.__m128i, num_rounds: int) {
+ intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[0]), sks[num_rounds])
+ for i in 1 ..< num_rounds {
+ tmp := x86._mm_aesimc_si128(sks[i])
+ intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds - i]), tmp)
+ }
+ intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds]), sks[0])
+}
+
+@(private, enable_target_feature = "sse,sse2,aes")
+keysched :: proc(ctx: ^Context, key: []byte) {
+ sks: [15]x86.__m128i = ---
+
+ // Compute the encryption keys.
+ num_rounds, key_len := 0, len(key)
+ switch key_len {
+ case _aes.KEY_SIZE_128:
+ sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+ sks[1] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[0], 0x01))
+ sks[2] = expand_step128(sks[1], x86._mm_aeskeygenassist_si128(sks[1], 0x02))
+ sks[3] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[2], 0x04))
+ sks[4] = expand_step128(sks[3], x86._mm_aeskeygenassist_si128(sks[3], 0x08))
+ sks[5] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[4], 0x10))
+ sks[6] = expand_step128(sks[5], x86._mm_aeskeygenassist_si128(sks[5], 0x20))
+ sks[7] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[6], 0x40))
+ sks[8] = expand_step128(sks[7], x86._mm_aeskeygenassist_si128(sks[7], 0x80))
+ sks[9] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[8], 0x1b))
+ sks[10] = expand_step128(sks[9], x86._mm_aeskeygenassist_si128(sks[9], 0x36))
+ num_rounds = _aes.ROUNDS_128
+ case _aes.KEY_SIZE_192:
+ k0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+ k1 := x86.__m128i{
+ intrinsics.unaligned_load((^i64)(raw_data(key[16:]))),
+ 0,
+ }
+ sks[0] = k0
+ sks[1], sks[2] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x01))
+ sks[3] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x02))
+ sks[4], sks[5] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x04))
+ sks[6] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x08))
+ sks[7], sks[8] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x10))
+ sks[9] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x20))
+ sks[10], sks[11] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x40))
+ sks[12] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x80))
+ num_rounds = _aes.ROUNDS_192
+ case _aes.KEY_SIZE_256:
+ sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
+ sks[1] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key[16:])))
+ sks[2] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[1], 0x01))
+ sks[3] = expand_step256b(sks[1], x86._mm_aeskeygenassist_si128(sks[2], 0x01))
+ sks[4] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[3], 0x02))
+ sks[5] = expand_step256b(sks[3], x86._mm_aeskeygenassist_si128(sks[4], 0x02))
+ sks[6] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[5], 0x04))
+ sks[7] = expand_step256b(sks[5], x86._mm_aeskeygenassist_si128(sks[6], 0x04))
+ sks[8] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[7], 0x08))
+ sks[9] = expand_step256b(sks[7], x86._mm_aeskeygenassist_si128(sks[8], 0x08))
+ sks[10] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[9], 0x10))
+ sks[11] = expand_step256b(sks[9], x86._mm_aeskeygenassist_si128(sks[10], 0x10))
+ sks[12] = expand_step128(sks[10], x86._mm_aeskeygenassist_si128(sks[11], 0x20))
+ sks[13] = expand_step256b(sks[11], x86._mm_aeskeygenassist_si128(sks[12], 0x20))
+ sks[14] = expand_step128(sks[12], x86._mm_aeskeygenassist_si128(sks[13], 0x40))
+ num_rounds = _aes.ROUNDS_256
+ case:
+ panic("crypto/aes: invalid AES key size")
+ }
+ for i in 0 ..= num_rounds {
+ intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_enc[i]), sks[i])
+ }
+
+ // Compute the decryption keys. GCM and CTR do not need this, however
+ // ECB, CBC, OCB3, etc do.
+ derive_dec_keys(ctx, &sks, num_rounds)
+
+ ctx._num_rounds = num_rounds
+
+ mem.zero_explicit(&sks, size_of(sks))
+}
diff --git a/core/crypto/aes/aes_ctr.odin b/core/crypto/aes/aes_ctr.odin
index de88a0c12..1c5fe31e8 100644
--- a/core/crypto/aes/aes_ctr.odin
+++ b/core/crypto/aes/aes_ctr.odin
@@ -125,8 +125,8 @@ reset_ctr :: proc "contextless" (ctx: ^Context_CTR) {
ctx._is_initialized = false
}
-@(private)
-ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) {
+@(private = "file")
+ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
// Use the optimized hardware implementation if available.
if _, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
ctr_blocks_hw(ctx, dst, src, nr_blocks)
@@ -185,17 +185,17 @@ xor_blocks :: #force_inline proc "contextless" (dst, src: []byte, blocks: [][]by
// performance of this implementation matters to where that
// optimization would be worth it, use chacha20poly1305, or a
// CPU that isn't e-waste.
- if src != nil {
- #no_bounds_check {
- for i in 0 ..< len(blocks) {
- off := i * BLOCK_SIZE
- for j in 0 ..< BLOCK_SIZE {
- blocks[i][j] ~= src[off + j]
+ #no_bounds_check {
+ if src != nil {
+ for i in 0 ..< len(blocks) {
+ off := i * BLOCK_SIZE
+ for j in 0 ..< BLOCK_SIZE {
+ blocks[i][j] ~= src[off + j]
+ }
}
- }
}
- }
- for i in 0 ..< len(blocks) {
- copy(dst[i * BLOCK_SIZE:], blocks[i])
+ for i in 0 ..< len(blocks) {
+ copy(dst[i * BLOCK_SIZE:], blocks[i])
+ }
}
}
diff --git a/core/crypto/aes/aes_ctr_hw_intel.odin b/core/crypto/aes/aes_ctr_hw_intel.odin
new file mode 100644
index 000000000..1c9e815ad
--- /dev/null
+++ b/core/crypto/aes/aes_ctr_hw_intel.odin
@@ -0,0 +1,151 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:math/bits"
+import "core:mem"
+import "core:simd/x86"
+
+@(private)
+CTR_STRIDE_HW :: 4
+@(private)
+CTR_STRIDE_BYTES_HW :: CTR_STRIDE_HW * BLOCK_SIZE
+
+@(private, enable_target_feature = "sse2,aes")
+ctr_blocks_hw :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
+ hw_ctx := ctx._impl.(Context_Impl_Hardware)
+
+ sks: [15]x86.__m128i = ---
+ for i in 0 ..= hw_ctx._num_rounds {
+ sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&hw_ctx._sk_exp_enc[i]))
+ }
+
+ hw_inc_ctr := #force_inline proc "contextless" (hi, lo: u64) -> (x86.__m128i, u64, u64) {
+ ret := x86.__m128i{
+ i64(intrinsics.byte_swap(hi)),
+ i64(intrinsics.byte_swap(lo)),
+ }
+
+ hi, lo := hi, lo
+ carry: u64
+
+ lo, carry = bits.add_u64(lo, 1, 0)
+ hi, _ = bits.add_u64(hi, 0, carry)
+ return ret, hi, lo
+ }
+
+ // The latency of AESENC depends on mfg and microarchitecture:
+ // - 7 -> up to Broadwell
+ // - 4 -> AMD and Skylake - Cascade Lake
+ // - 3 -> Ice Lake and newer
+ //
+ // This implementation does 4 blocks at once, since performance
+ // should be "adequate" across most CPUs.
+
+ src, dst := src, dst
+ nr_blocks := nr_blocks
+ ctr_hi, ctr_lo := ctx._ctr_hi, ctx._ctr_lo
+
+ blks: [CTR_STRIDE_HW]x86.__m128i = ---
+ for nr_blocks >= CTR_STRIDE_HW {
+ #unroll for i in 0..< CTR_STRIDE_HW {
+ blks[i], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
+ }
+
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_xor_si128(blks[i], sks[0])
+ }
+ #unroll for i in 1 ..= 9 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ switch hw_ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
+ }
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
+ }
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
+ }
+ }
+
+ xor_blocks_hw(dst, src, blks[:])
+
+ if src != nil {
+ src = src[CTR_STRIDE_BYTES_HW:]
+ }
+ dst = dst[CTR_STRIDE_BYTES_HW:]
+ nr_blocks -= CTR_STRIDE_HW
+ }
+
+ // Handle the remainder.
+ for nr_blocks > 0 {
+ blks[0], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
+
+ blks[0] = x86._mm_xor_si128(blks[0], sks[0])
+ #unroll for i in 1 ..= 9 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ switch hw_ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
+ }
+
+ xor_blocks_hw(dst, src, blks[:1])
+
+ if src != nil {
+ src = src[BLOCK_SIZE:]
+ }
+ dst = dst[BLOCK_SIZE:]
+ nr_blocks -= 1
+ }
+
+ // Write back the counter.
+ ctx._ctr_hi, ctx._ctr_lo = ctr_hi, ctr_lo
+
+ mem.zero_explicit(&blks, size_of(blks))
+ mem.zero_explicit(&sks, size_of(sks))
+}
+
+@(private, enable_target_feature = "sse2")
+xor_blocks_hw :: proc(dst, src: []byte, blocks: []x86.__m128i) {
+ #no_bounds_check {
+ if src != nil {
+ for i in 0 ..< len(blocks) {
+ off := i * BLOCK_SIZE
+ tmp := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src[off:])))
+ blocks[i] = x86._mm_xor_si128(blocks[i], tmp)
+ }
+ }
+ for i in 0 ..< len(blocks) {
+ intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst[i * BLOCK_SIZE:])), blocks[i])
+ }
+ }
+}
diff --git a/core/crypto/aes/aes_ecb_hw_intel.odin b/core/crypto/aes/aes_ecb_hw_intel.odin
new file mode 100644
index 000000000..b2ff36a0c
--- /dev/null
+++ b/core/crypto/aes/aes_ecb_hw_intel.odin
@@ -0,0 +1,58 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto/_aes"
+import "core:simd/x86"
+
+@(private, enable_target_feature = "sse2,aes")
+encrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
+ blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+
+ blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[0])))
+ #unroll for i in 1 ..= 9 {
+ blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+ }
+ switch ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[10])))
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+ }
+ blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[12])))
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
+ }
+ blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[14])))
+ }
+
+ intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
+}
+
+@(private, enable_target_feature = "sse2,aes")
+decrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
+ blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
+
+ blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[0])))
+ #unroll for i in 1 ..= 9 {
+ blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+ }
+ switch ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[10])))
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+ }
+ blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[12])))
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
+ }
+ blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[14])))
+ }
+
+ intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
+}
diff --git a/core/crypto/aes/aes_gcm.odin b/core/crypto/aes/aes_gcm.odin
index e097e0011..3631ca02f 100644
--- a/core/crypto/aes/aes_gcm.odin
+++ b/core/crypto/aes/aes_gcm.odin
@@ -113,7 +113,7 @@ reset_gcm :: proc "contextless" (ctx: ^Context_GCM) {
ctx._is_initialized = false
}
-@(private)
+@(private = "file")
gcm_validate_common_slice_sizes :: proc(tag, nonce, aad, text: []byte) {
if len(tag) != GCM_TAG_SIZE {
panic("crypto/aes: invalid GCM tag size")
@@ -184,7 +184,7 @@ gctr_ct64 :: proc(
h: ^[_aes.GHASH_KEY_SIZE]byte,
nonce: []byte,
is_seal: bool,
-) {
+) #no_bounds_check {
ct64_inc_ctr32 := #force_inline proc "contextless" (dst: []byte, ctr: u32) -> u32 {
endian.unchecked_put_u32be(dst[12:], ctr)
return ctr + 1
@@ -206,9 +206,6 @@ gctr_ct64 :: proc(
copy(ctrs[i], nonce)
}
- // We stitch the GCTR and GHASH operations together, so that only
- // one pass over the ciphertext is required.
-
impl := &ctx._impl.(ct64.Context)
src, dst := src, dst
diff --git a/core/crypto/aes/aes_gcm_hw_intel.odin b/core/crypto/aes/aes_gcm_hw_intel.odin
new file mode 100644
index 000000000..e9cd206f7
--- /dev/null
+++ b/core/crypto/aes/aes_gcm_hw_intel.odin
@@ -0,0 +1,231 @@
+//+build amd64
+package aes
+
+import "base:intrinsics"
+import "core:crypto"
+import "core:crypto/_aes"
+import "core:crypto/_aes/hw_intel"
+import "core:encoding/endian"
+import "core:mem"
+import "core:simd/x86"
+
+@(private)
+gcm_seal_hw :: proc(ctx: ^Context_Impl_Hardware, dst, tag, nonce, aad, plaintext: []byte) {
+ h: [_aes.GHASH_KEY_SIZE]byte
+ j0: [_aes.GHASH_BLOCK_SIZE]byte
+ s: [_aes.GHASH_TAG_SIZE]byte
+ init_ghash_hw(ctx, &h, &j0, nonce)
+
+ // Note: Our GHASH implementation handles appending padding.
+ hw_intel.ghash(s[:], h[:], aad)
+ gctr_hw(ctx, dst, &s, plaintext, &h, nonce, true)
+ final_ghash_hw(&s, &h, &j0, len(aad), len(plaintext))
+ copy(tag, s[:])
+
+ mem.zero_explicit(&h, len(h))
+ mem.zero_explicit(&j0, len(j0))
+}
+
+@(private)
+gcm_open_hw :: proc(ctx: ^Context_Impl_Hardware, dst, nonce, aad, ciphertext, tag: []byte) -> bool {
+ h: [_aes.GHASH_KEY_SIZE]byte
+ j0: [_aes.GHASH_BLOCK_SIZE]byte
+ s: [_aes.GHASH_TAG_SIZE]byte
+ init_ghash_hw(ctx, &h, &j0, nonce)
+
+ hw_intel.ghash(s[:], h[:], aad)
+ gctr_hw(ctx, dst, &s, ciphertext, &h, nonce, false)
+ final_ghash_hw(&s, &h, &j0, len(aad), len(ciphertext))
+
+ ok := crypto.compare_constant_time(s[:], tag) == 1
+ if !ok {
+ mem.zero_explicit(raw_data(dst), len(dst))
+ }
+
+ mem.zero_explicit(&h, len(h))
+ mem.zero_explicit(&j0, len(j0))
+ mem.zero_explicit(&s, len(s))
+
+ return ok
+}
+
+@(private = "file")
+init_ghash_hw :: proc(
+ ctx: ^Context_Impl_Hardware,
+ h: ^[_aes.GHASH_KEY_SIZE]byte,
+ j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
+ nonce: []byte,
+) {
+ // 1. Let H = CIPH(k, 0^128)
+ encrypt_block_hw(ctx, h[:], h[:])
+
+ // ECB encrypt j0, so that we can just XOR with the tag.
+ copy(j0[:], nonce)
+ j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
+ encrypt_block_hw(ctx, j0[:], j0[:])
+}
+
+@(private = "file", enable_target_feature = "sse2")
+final_ghash_hw :: proc(
+ s: ^[_aes.GHASH_BLOCK_SIZE]byte,
+ h: ^[_aes.GHASH_KEY_SIZE]byte,
+ j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
+ a_len: int,
+ t_len: int,
+) {
+ blk: [_aes.GHASH_BLOCK_SIZE]byte
+ endian.unchecked_put_u64be(blk[0:], u64(a_len) * 8)
+ endian.unchecked_put_u64be(blk[8:], u64(t_len) * 8)
+
+ hw_intel.ghash(s[:], h[:], blk[:])
+ j0_vec := intrinsics.unaligned_load((^x86.__m128i)(j0))
+ s_vec := intrinsics.unaligned_load((^x86.__m128i)(s))
+ s_vec = x86._mm_xor_si128(s_vec, j0_vec)
+ intrinsics.unaligned_store((^x86.__m128i)(s), s_vec)
+}
+
+@(private = "file", enable_target_feature = "sse2,sse4.1,aes")
+gctr_hw :: proc(
+ ctx: ^Context_Impl_Hardware,
+ dst: []byte,
+ s: ^[_aes.GHASH_BLOCK_SIZE]byte,
+ src: []byte,
+ h: ^[_aes.GHASH_KEY_SIZE]byte,
+ nonce: []byte,
+ is_seal: bool,
+) #no_bounds_check {
+ sks: [15]x86.__m128i = ---
+ for i in 0 ..= ctx._num_rounds {
+ sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i]))
+ }
+
+ // 2. Define a block J_0 as follows:
+ // if len(IV) = 96, then let J0 = IV || 0^31 || 1
+ //
+ // Note: We only support 96 bit IVs.
+ tmp: [BLOCK_SIZE]byte
+ ctr_blk: x86.__m128i
+ copy(tmp[:], nonce)
+ ctr_blk = intrinsics.unaligned_load((^x86.__m128i)(&tmp))
+ ctr: u32 = 2
+
+ src, dst := src, dst
+
+ // Note: Instead of doing GHASH and CTR separately, it is more
+ // performant to interleave (stitch) the two operations together.
+ // This results in an unreadable mess, so we opt for simplicity
+ // as performance is adequate.
+
+ blks: [CTR_STRIDE_HW]x86.__m128i = ---
+ nr_blocks := len(src) / BLOCK_SIZE
+ for nr_blocks >= CTR_STRIDE_HW {
+ if !is_seal {
+ hw_intel.ghash(s[:], h[:], src[:CTR_STRIDE_BYTES_HW])
+ }
+
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i], ctr = hw_inc_ctr32(&ctr_blk, ctr)
+ }
+
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_xor_si128(blks[i], sks[0])
+ }
+ #unroll for i in 1 ..= 9 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ switch ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
+ }
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
+ }
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ #unroll for j in 0 ..< CTR_STRIDE_HW {
+ blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
+ }
+ }
+ #unroll for i in 0 ..< CTR_STRIDE_HW {
+ blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
+ }
+ }
+
+ xor_blocks_hw(dst, src, blks[:])
+
+ if is_seal {
+ hw_intel.ghash(s[:], h[:], dst[:CTR_STRIDE_BYTES_HW])
+ }
+
+ src = src[CTR_STRIDE_BYTES_HW:]
+ dst = dst[CTR_STRIDE_BYTES_HW:]
+ nr_blocks -= CTR_STRIDE_HW
+ }
+
+ // Handle the remainder.
+ for n := len(src); n > 0; {
+ l := min(n, BLOCK_SIZE)
+ if !is_seal {
+ hw_intel.ghash(s[:], h[:], src[:l])
+ }
+
+ blks[0], ctr = hw_inc_ctr32(&ctr_blk, ctr)
+
+ blks[0] = x86._mm_xor_si128(blks[0], sks[0])
+ #unroll for i in 1 ..= 9 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ switch ctx._num_rounds {
+ case _aes.ROUNDS_128:
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
+ case _aes.ROUNDS_192:
+ #unroll for i in 10 ..= 11 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
+ case _aes.ROUNDS_256:
+ #unroll for i in 10 ..= 13 {
+ blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
+ }
+ blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
+ }
+
+ if l == BLOCK_SIZE {
+ xor_blocks_hw(dst, src, blks[:1])
+ } else {
+ blk: [BLOCK_SIZE]byte
+ copy(blk[:], src)
+ xor_blocks_hw(blk[:], blk[:], blks[:1])
+ copy(dst, blk[:l])
+ }
+ if is_seal {
+ hw_intel.ghash(s[:], h[:], dst[:l])
+ }
+
+ dst = dst[l:]
+ src = src[l:]
+ n -= l
+ }
+
+ mem.zero_explicit(&blks, size_of(blks))
+ mem.zero_explicit(&sks, size_of(sks))
+}
+
+// BUG: Sticking this in gctr_hw (like the other implementations) crashes
+// the compiler.
+//
+// src/check_expr.cpp(7892): Assertion Failure: `c->curr_proc_decl->entity`
+@(private = "file", enable_target_feature = "sse4.1")
+hw_inc_ctr32 :: #force_inline proc "contextless" (src: ^x86.__m128i, ctr: u32) -> (x86.__m128i, u32) {
+ ret := x86._mm_insert_epi32(src^, i32(intrinsics.byte_swap(ctr)), 3)
+ return ret, ctr + 1
+}
diff --git a/core/crypto/aes/aes_impl_hw_gen.odin b/core/crypto/aes/aes_impl_hw_gen.odin
index 94815f61c..5361c6ef0 100644
--- a/core/crypto/aes/aes_impl_hw_gen.odin
+++ b/core/crypto/aes/aes_impl_hw_gen.odin
@@ -1,3 +1,4 @@
+//+build !amd64
package aes
@(private = "file")
diff --git a/core/crypto/aes/aes_impl_hw_intel.odin b/core/crypto/aes/aes_impl_hw_intel.odin
new file mode 100644
index 000000000..39ea2dc8d
--- /dev/null
+++ b/core/crypto/aes/aes_impl_hw_intel.odin
@@ -0,0 +1,18 @@
+//+build amd64
+package aes
+
+import "core:crypto/_aes/hw_intel"
+
+// is_hardware_accelerated returns true iff hardware accelerated AES
+// is supported.
+is_hardware_accelerated :: proc "contextless" () -> bool {
+ return hw_intel.is_supported()
+}
+
+@(private)
+Context_Impl_Hardware :: hw_intel.Context
+
+@(private, enable_target_feature = "sse2,aes")
+init_impl_hw :: proc(ctx: ^Context_Impl_Hardware, key: []byte) {
+ hw_intel.init(ctx, key)
+}