aboutsummaryrefslogtreecommitdiff
path: root/core/math.odin
diff options
context:
space:
mode:
authorGinger Bill <bill@gingerbill.org>2016-12-18 21:50:14 +0000
committerGinger Bill <bill@gingerbill.org>2016-12-18 21:50:14 +0000
commite370337f97f80b99ff01031b7006e06d6433d475 (patch)
treeb6bbf7c6165fb8776813b94729ce9b412c7e32ba /core/math.odin
parent5217eb55b4d0b53828d9ba4599a249216c813d42 (diff)
var/const decl; remove `:` from parameter lists
Diffstat (limited to 'core/math.odin')
-rw-r--r--core/math.odin164
1 files changed, 82 insertions, 82 deletions
diff --git a/core/math.odin b/core/math.odin
index 014a8d5ed..4ad900bbe 100644
--- a/core/math.odin
+++ b/core/math.odin
@@ -1,20 +1,20 @@
-TAU :: 6.28318530717958647692528676655900576;
-PI :: 3.14159265358979323846264338327950288;
-ONE_OVER_TAU :: 0.636619772367581343075535053490057448;
-ONE_OVER_PI :: 0.159154943091895335768883763372514362;
+const TAU = 6.28318530717958647692528676655900576;
+const PI = 3.14159265358979323846264338327950288;
+const ONE_OVER_TAU = 0.636619772367581343075535053490057448;
+const ONE_OVER_PI = 0.159154943091895335768883763372514362;
-E :: 2.71828182845904523536;
-SQRT_TWO :: 1.41421356237309504880168872420969808;
-SQRT_THREE :: 1.73205080756887729352744634150587236;
-SQRT_FIVE :: 2.23606797749978969640917366873127623;
+const E = 2.71828182845904523536;
+const SQRT_TWO = 1.41421356237309504880168872420969808;
+const SQRT_THREE = 1.73205080756887729352744634150587236;
+const SQRT_FIVE = 2.23606797749978969640917366873127623;
-LOG_TWO :: 0.693147180559945309417232121458176568;
-LOG_TEN :: 2.30258509299404568401799145468436421;
+const LOG_TWO = 0.693147180559945309417232121458176568;
+const LOG_TEN = 2.30258509299404568401799145468436421;
-EPSILON :: 1.19209290e-7;
+const EPSILON = 1.19209290e-7;
-τ :: TAU;
-π :: PI;
+const τ = TAU;
+const π = PI;
type Vec2 [vector 2]f32;
@@ -26,57 +26,57 @@ type Mat3 [3]Vec3;
type Mat4 [4]Vec4;
-proc sqrt32(x: f32) -> f32 #foreign "llvm.sqrt.f32"
-proc sqrt64(x: f64) -> f64 #foreign "llvm.sqrt.f64"
+proc sqrt32(x f32) -> f32 #foreign "llvm.sqrt.f32"
+proc sqrt64(x f64) -> f64 #foreign "llvm.sqrt.f64"
-proc sin32(x: f32) -> f32 #foreign "llvm.sin.f32"
-proc sin64(x: f64) -> f64 #foreign "llvm.sin.f64"
+proc sin32(x f32) -> f32 #foreign "llvm.sin.f32"
+proc sin64(x f64) -> f64 #foreign "llvm.sin.f64"
-proc cos32(x: f32) -> f32 #foreign "llvm.cos.f32"
-proc cos64(x: f64) -> f64 #foreign "llvm.cos.f64"
+proc cos32(x f32) -> f32 #foreign "llvm.cos.f32"
+proc cos64(x f64) -> f64 #foreign "llvm.cos.f64"
-proc tan32(x: f32) -> f32 #inline { return sin32(x)/cos32(x); }
-proc tan64(x: f64) -> f64 #inline { return sin64(x)/cos64(x); }
+proc tan32(x f32) -> f32 #inline { return sin32(x)/cos32(x); }
+proc tan64(x f64) -> f64 #inline { return sin64(x)/cos64(x); }
-proc lerp32(a, b, t: f32) -> f32 { return a*(1-t) + b*t; }
-proc lerp64(a, b, t: f64) -> f64 { return a*(1-t) + b*t; }
+proc lerp32(a, b, t f32) -> f32 { return a*(1-t) + b*t; }
+proc lerp64(a, b, t f64) -> f64 { return a*(1-t) + b*t; }
-proc sign32(x: f32) -> f32 { if x >= 0 { return +1; } return -1; }
-proc sign64(x: f64) -> f64 { if x >= 0 { return +1; } return -1; }
+proc sign32(x f32) -> f32 { if x >= 0 { return +1; } return -1; }
+proc sign64(x f64) -> f64 { if x >= 0 { return +1; } return -1; }
-proc copy_sign32(x, y: f32) -> f32 {
+proc copy_sign32(x, y f32) -> f32 {
ix := x transmute u32;
iy := y transmute u32;
ix &= 0x7fffffff;
ix |= iy & 0x80000000;
return ix transmute f32;
}
-proc round32(x: f32) -> f32 {
+proc round32(x f32) -> f32 {
if x >= 0 {
return floor32(x + 0.5);
}
return ceil32(x - 0.5);
}
-proc floor32(x: f32) -> f32 {
+proc floor32(x f32) -> f32 {
if x >= 0 {
return x as int as f32;
}
return (x-0.5) as int as f32;
}
-proc ceil32(x: f32) -> f32 {
+proc ceil32(x f32) -> f32 {
if x < 0 {
return x as int as f32;
}
return ((x as int)+1) as f32;
}
-proc remainder32(x, y: f32) -> f32 {
+proc remainder32(x, y f32) -> f32 {
return x - round32(x/y) * y;
}
-proc fmod32(x, y: f32) -> f32 {
+proc fmod32(x, y f32) -> f32 {
y = abs(y);
result := remainder32(abs(x), y);
if sign32(result) < 0 {
@@ -86,32 +86,32 @@ proc fmod32(x, y: f32) -> f32 {
}
-proc to_radians(degrees: f32) -> f32 { return degrees * TAU / 360; }
-proc to_degrees(radians: f32) -> f32 { return radians * 360 / TAU; }
+proc to_radians(degrees f32) -> f32 { return degrees * TAU / 360; }
+proc to_degrees(radians f32) -> f32 { return radians * 360 / TAU; }
-proc dot2(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; }
-proc dot3(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; }
-proc dot4(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; }
+proc dot2(a, b Vec2) -> f32 { c := a*b; return c.x + c.y; }
+proc dot3(a, b Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; }
+proc dot4(a, b Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; }
-proc cross3(x, y: Vec3) -> Vec3 {
+proc cross3(x, y Vec3) -> Vec3 {
a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1);
b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0);
return a - b;
}
-proc vec2_mag(v: Vec2) -> f32 { return sqrt32(dot2(v, v)); }
-proc vec3_mag(v: Vec3) -> f32 { return sqrt32(dot3(v, v)); }
-proc vec4_mag(v: Vec4) -> f32 { return sqrt32(dot4(v, v)); }
+proc vec2_mag(v Vec2) -> f32 { return sqrt32(dot2(v, v)); }
+proc vec3_mag(v Vec3) -> f32 { return sqrt32(dot3(v, v)); }
+proc vec4_mag(v Vec4) -> f32 { return sqrt32(dot4(v, v)); }
-proc vec2_norm(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; }
-proc vec3_norm(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; }
-proc vec4_norm(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; }
+proc vec2_norm(v Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; }
+proc vec3_norm(v Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; }
+proc vec4_norm(v Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; }
-proc vec2_norm0(v: Vec2) -> Vec2 {
+proc vec2_norm0(v Vec2) -> Vec2 {
m := vec2_mag(v);
if m == 0 {
return Vec2{0};
@@ -119,7 +119,7 @@ proc vec2_norm0(v: Vec2) -> Vec2 {
return v / Vec2{m};
}
-proc vec3_norm0(v: Vec3) -> Vec3 {
+proc vec3_norm0(v Vec3) -> Vec3 {
m := vec3_mag(v);
if m == 0 {
return Vec3{0};
@@ -127,7 +127,7 @@ proc vec3_norm0(v: Vec3) -> Vec3 {
return v / Vec3{m};
}
-proc vec4_norm0(v: Vec4) -> Vec4 {
+proc vec4_norm0(v Vec4) -> Vec4 {
m := vec4_mag(v);
if m == 0 {
return Vec4{0};
@@ -146,7 +146,7 @@ proc mat4_identity() -> Mat4 {
};
}
-proc mat4_transpose(m: Mat4) -> Mat4 {
+proc mat4_transpose(m Mat4) -> Mat4 {
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
m[i][j], m[j][i] = m[j][i], m[i][j];
@@ -155,7 +155,7 @@ proc mat4_transpose(m: Mat4) -> Mat4 {
return m;
}
-proc mat4_mul(a, b: Mat4) -> Mat4 {
+proc mat4_mul(a, b Mat4) -> Mat4 {
c: Mat4;
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
@@ -168,7 +168,7 @@ proc mat4_mul(a, b: Mat4) -> Mat4 {
return c;
}
-proc mat4_mul_vec4(m: Mat4, v: Vec4) -> Vec4 {
+proc mat4_mul_vec4(m Mat4, v Vec4) -> Vec4 {
return Vec4{
m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
@@ -177,7 +177,7 @@ proc mat4_mul_vec4(m: Mat4, v: Vec4) -> Vec4 {
};
}
-proc mat4_inverse(m: Mat4) -> Mat4 {
+proc mat4_inverse(m Mat4) -> Mat4 {
o: Mat4;
sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3];
@@ -246,7 +246,7 @@ proc mat4_inverse(m: Mat4) -> Mat4 {
}
-proc mat4_translate(v: Vec3) -> Mat4 {
+proc mat4_translate(v Vec3) -> Mat4 {
m := mat4_identity();
m[3][0] = v.x;
m[3][1] = v.y;
@@ -255,7 +255,7 @@ proc mat4_translate(v: Vec3) -> Mat4 {
return m;
}
-proc mat4_rotate(v: Vec3, angle_radians: f32) -> Mat4 {
+proc mat4_rotate(v Vec3, angle_radians f32) -> Mat4 {
c := cos32(angle_radians);
s := sin32(angle_radians);
@@ -282,14 +282,14 @@ proc mat4_rotate(v: Vec3, angle_radians: f32) -> Mat4 {
return rot;
}
-proc mat4_scale(m: Mat4, v: Vec3) -> Mat4 {
+proc mat4_scale(m Mat4, v Vec3) -> Mat4 {
m[0][0] *= v.x;
m[1][1] *= v.y;
m[2][2] *= v.z;
return m;
}
-proc mat4_scalef(m: Mat4, s: f32) -> Mat4 {
+proc mat4_scalef(m Mat4, s f32) -> Mat4 {
m[0][0] *= s;
m[1][1] *= s;
m[2][2] *= s;
@@ -297,7 +297,7 @@ proc mat4_scalef(m: Mat4, s: f32) -> Mat4 {
}
-proc mat4_look_at(eye, centre, up: Vec3) -> Mat4 {
+proc mat4_look_at(eye, centre, up Vec3) -> Mat4 {
f := vec3_norm(centre - eye);
s := vec3_norm(cross3(f, up));
u := cross3(s, f);
@@ -311,7 +311,7 @@ proc mat4_look_at(eye, centre, up: Vec3) -> Mat4 {
return m;
}
-proc mat4_perspective(fovy, aspect, near, far: f32) -> Mat4 {
+proc mat4_perspective(fovy, aspect, near, far f32) -> Mat4 {
m: Mat4;
tan_half_fovy := tan32(0.5 * fovy);
m[0][0] = 1.0 / (aspect*tan_half_fovy);
@@ -323,7 +323,7 @@ proc mat4_perspective(fovy, aspect, near, far: f32) -> Mat4 {
}
-proc mat4_ortho3d(left, right, bottom, top, near, far: f32) -> Mat4 {
+proc mat4_ortho3d(left, right, bottom, top, near, far f32) -> Mat4 {
m := mat4_identity();
m[0][0] = +2.0 / (right - left);
m[1][1] = +2.0 / (top - bottom);
@@ -338,31 +338,31 @@ proc mat4_ortho3d(left, right, bottom, top, near, far: f32) -> Mat4 {
-F32_DIG :: 6;
-F32_EPSILON :: 1.192092896e-07;
-F32_GUARD :: 0;
-F32_MANT_DIG :: 24;
-F32_MAX :: 3.402823466e+38;
-F32_MAX_10_EXP :: 38;
-F32_MAX_EXP :: 128;
-F32_MIN :: 1.175494351e-38;
-F32_MIN_10_EXP :: -37;
-F32_MIN_EXP :: -125;
-F32_NORMALIZE :: 0;
-F32_RADIX :: 2;
-F32_ROUNDS :: 1;
-
-F64_DIG :: 15; // # of decimal digits of precision
-F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
-F64_MANT_DIG :: 53; // # of bits in mantissa
-F64_MAX :: 1.7976931348623158e+308; // max value
-F64_MAX_10_EXP :: 308; // max decimal exponent
-F64_MAX_EXP :: 1024; // max binary exponent
-F64_MIN :: 2.2250738585072014e-308; // min positive value
-F64_MIN_10_EXP :: -307; // min decimal exponent
-F64_MIN_EXP :: -1021; // min binary exponent
-F64_RADIX :: 2; // exponent radix
-F64_ROUNDS :: 1; // addition rounding: near
+const F32_DIG = 6;
+const F32_EPSILON = 1.192092896e-07;
+const F32_GUARD = 0;
+const F32_MANT_DIG = 24;
+const F32_MAX = 3.402823466e+38;
+const F32_MAX_10_EXP = 38;
+const F32_MAX_EXP = 128;
+const F32_MIN = 1.175494351e-38;
+const F32_MIN_10_EXP = -37;
+const F32_MIN_EXP = -125;
+const F32_NORMALIZE = 0;
+const F32_RADIX = 2;
+const F32_ROUNDS = 1;
+
+const F64_DIG = 15; // # of decimal digits of precision
+const F64_EPSILON = 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0
+const F64_MANT_DIG = 53; // # of bits in mantissa
+const F64_MAX = 1.7976931348623158e+308; // max value
+const F64_MAX_10_EXP = 308; // max decimal exponent
+const F64_MAX_EXP = 1024; // max binary exponent
+const F64_MIN = 2.2250738585072014e-308; // min positive value
+const F64_MIN_10_EXP = -307; // min decimal exponent
+const F64_MIN_EXP = -1021; // min binary exponent
+const F64_RADIX = 2; // exponent radix
+const F64_ROUNDS = 1; // addition rounding: near