diff options
| author | Ginger Bill <bill@gingerbill.org> | 2016-12-18 21:50:14 +0000 |
|---|---|---|
| committer | Ginger Bill <bill@gingerbill.org> | 2016-12-18 21:50:14 +0000 |
| commit | e370337f97f80b99ff01031b7006e06d6433d475 (patch) | |
| tree | b6bbf7c6165fb8776813b94729ce9b412c7e32ba /core/math.odin | |
| parent | 5217eb55b4d0b53828d9ba4599a249216c813d42 (diff) | |
var/const decl; remove `:` from parameter lists
Diffstat (limited to 'core/math.odin')
| -rw-r--r-- | core/math.odin | 164 |
1 files changed, 82 insertions, 82 deletions
diff --git a/core/math.odin b/core/math.odin index 014a8d5ed..4ad900bbe 100644 --- a/core/math.odin +++ b/core/math.odin @@ -1,20 +1,20 @@ -TAU :: 6.28318530717958647692528676655900576; -PI :: 3.14159265358979323846264338327950288; -ONE_OVER_TAU :: 0.636619772367581343075535053490057448; -ONE_OVER_PI :: 0.159154943091895335768883763372514362; +const TAU = 6.28318530717958647692528676655900576; +const PI = 3.14159265358979323846264338327950288; +const ONE_OVER_TAU = 0.636619772367581343075535053490057448; +const ONE_OVER_PI = 0.159154943091895335768883763372514362; -E :: 2.71828182845904523536; -SQRT_TWO :: 1.41421356237309504880168872420969808; -SQRT_THREE :: 1.73205080756887729352744634150587236; -SQRT_FIVE :: 2.23606797749978969640917366873127623; +const E = 2.71828182845904523536; +const SQRT_TWO = 1.41421356237309504880168872420969808; +const SQRT_THREE = 1.73205080756887729352744634150587236; +const SQRT_FIVE = 2.23606797749978969640917366873127623; -LOG_TWO :: 0.693147180559945309417232121458176568; -LOG_TEN :: 2.30258509299404568401799145468436421; +const LOG_TWO = 0.693147180559945309417232121458176568; +const LOG_TEN = 2.30258509299404568401799145468436421; -EPSILON :: 1.19209290e-7; +const EPSILON = 1.19209290e-7; -τ :: TAU; -π :: PI; +const τ = TAU; +const π = PI; type Vec2 [vector 2]f32; @@ -26,57 +26,57 @@ type Mat3 [3]Vec3; type Mat4 [4]Vec4; -proc sqrt32(x: f32) -> f32 #foreign "llvm.sqrt.f32" -proc sqrt64(x: f64) -> f64 #foreign "llvm.sqrt.f64" +proc sqrt32(x f32) -> f32 #foreign "llvm.sqrt.f32" +proc sqrt64(x f64) -> f64 #foreign "llvm.sqrt.f64" -proc sin32(x: f32) -> f32 #foreign "llvm.sin.f32" -proc sin64(x: f64) -> f64 #foreign "llvm.sin.f64" +proc sin32(x f32) -> f32 #foreign "llvm.sin.f32" +proc sin64(x f64) -> f64 #foreign "llvm.sin.f64" -proc cos32(x: f32) -> f32 #foreign "llvm.cos.f32" -proc cos64(x: f64) -> f64 #foreign "llvm.cos.f64" +proc cos32(x f32) -> f32 #foreign "llvm.cos.f32" +proc cos64(x f64) -> f64 #foreign "llvm.cos.f64" -proc tan32(x: f32) -> f32 #inline { return sin32(x)/cos32(x); } -proc tan64(x: f64) -> f64 #inline { return sin64(x)/cos64(x); } +proc tan32(x f32) -> f32 #inline { return sin32(x)/cos32(x); } +proc tan64(x f64) -> f64 #inline { return sin64(x)/cos64(x); } -proc lerp32(a, b, t: f32) -> f32 { return a*(1-t) + b*t; } -proc lerp64(a, b, t: f64) -> f64 { return a*(1-t) + b*t; } +proc lerp32(a, b, t f32) -> f32 { return a*(1-t) + b*t; } +proc lerp64(a, b, t f64) -> f64 { return a*(1-t) + b*t; } -proc sign32(x: f32) -> f32 { if x >= 0 { return +1; } return -1; } -proc sign64(x: f64) -> f64 { if x >= 0 { return +1; } return -1; } +proc sign32(x f32) -> f32 { if x >= 0 { return +1; } return -1; } +proc sign64(x f64) -> f64 { if x >= 0 { return +1; } return -1; } -proc copy_sign32(x, y: f32) -> f32 { +proc copy_sign32(x, y f32) -> f32 { ix := x transmute u32; iy := y transmute u32; ix &= 0x7fffffff; ix |= iy & 0x80000000; return ix transmute f32; } -proc round32(x: f32) -> f32 { +proc round32(x f32) -> f32 { if x >= 0 { return floor32(x + 0.5); } return ceil32(x - 0.5); } -proc floor32(x: f32) -> f32 { +proc floor32(x f32) -> f32 { if x >= 0 { return x as int as f32; } return (x-0.5) as int as f32; } -proc ceil32(x: f32) -> f32 { +proc ceil32(x f32) -> f32 { if x < 0 { return x as int as f32; } return ((x as int)+1) as f32; } -proc remainder32(x, y: f32) -> f32 { +proc remainder32(x, y f32) -> f32 { return x - round32(x/y) * y; } -proc fmod32(x, y: f32) -> f32 { +proc fmod32(x, y f32) -> f32 { y = abs(y); result := remainder32(abs(x), y); if sign32(result) < 0 { @@ -86,32 +86,32 @@ proc fmod32(x, y: f32) -> f32 { } -proc to_radians(degrees: f32) -> f32 { return degrees * TAU / 360; } -proc to_degrees(radians: f32) -> f32 { return radians * 360 / TAU; } +proc to_radians(degrees f32) -> f32 { return degrees * TAU / 360; } +proc to_degrees(radians f32) -> f32 { return radians * 360 / TAU; } -proc dot2(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y; } -proc dot3(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; } -proc dot4(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; } +proc dot2(a, b Vec2) -> f32 { c := a*b; return c.x + c.y; } +proc dot3(a, b Vec3) -> f32 { c := a*b; return c.x + c.y + c.z; } +proc dot4(a, b Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w; } -proc cross3(x, y: Vec3) -> Vec3 { +proc cross3(x, y Vec3) -> Vec3 { a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1); b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0); return a - b; } -proc vec2_mag(v: Vec2) -> f32 { return sqrt32(dot2(v, v)); } -proc vec3_mag(v: Vec3) -> f32 { return sqrt32(dot3(v, v)); } -proc vec4_mag(v: Vec4) -> f32 { return sqrt32(dot4(v, v)); } +proc vec2_mag(v Vec2) -> f32 { return sqrt32(dot2(v, v)); } +proc vec3_mag(v Vec3) -> f32 { return sqrt32(dot3(v, v)); } +proc vec4_mag(v Vec4) -> f32 { return sqrt32(dot4(v, v)); } -proc vec2_norm(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; } -proc vec3_norm(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; } -proc vec4_norm(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; } +proc vec2_norm(v Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)}; } +proc vec3_norm(v Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)}; } +proc vec4_norm(v Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)}; } -proc vec2_norm0(v: Vec2) -> Vec2 { +proc vec2_norm0(v Vec2) -> Vec2 { m := vec2_mag(v); if m == 0 { return Vec2{0}; @@ -119,7 +119,7 @@ proc vec2_norm0(v: Vec2) -> Vec2 { return v / Vec2{m}; } -proc vec3_norm0(v: Vec3) -> Vec3 { +proc vec3_norm0(v Vec3) -> Vec3 { m := vec3_mag(v); if m == 0 { return Vec3{0}; @@ -127,7 +127,7 @@ proc vec3_norm0(v: Vec3) -> Vec3 { return v / Vec3{m}; } -proc vec4_norm0(v: Vec4) -> Vec4 { +proc vec4_norm0(v Vec4) -> Vec4 { m := vec4_mag(v); if m == 0 { return Vec4{0}; @@ -146,7 +146,7 @@ proc mat4_identity() -> Mat4 { }; } -proc mat4_transpose(m: Mat4) -> Mat4 { +proc mat4_transpose(m Mat4) -> Mat4 { for j := 0; j < 4; j++ { for i := 0; i < 4; i++ { m[i][j], m[j][i] = m[j][i], m[i][j]; @@ -155,7 +155,7 @@ proc mat4_transpose(m: Mat4) -> Mat4 { return m; } -proc mat4_mul(a, b: Mat4) -> Mat4 { +proc mat4_mul(a, b Mat4) -> Mat4 { c: Mat4; for j := 0; j < 4; j++ { for i := 0; i < 4; i++ { @@ -168,7 +168,7 @@ proc mat4_mul(a, b: Mat4) -> Mat4 { return c; } -proc mat4_mul_vec4(m: Mat4, v: Vec4) -> Vec4 { +proc mat4_mul_vec4(m Mat4, v Vec4) -> Vec4 { return Vec4{ m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w, m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w, @@ -177,7 +177,7 @@ proc mat4_mul_vec4(m: Mat4, v: Vec4) -> Vec4 { }; } -proc mat4_inverse(m: Mat4) -> Mat4 { +proc mat4_inverse(m Mat4) -> Mat4 { o: Mat4; sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]; @@ -246,7 +246,7 @@ proc mat4_inverse(m: Mat4) -> Mat4 { } -proc mat4_translate(v: Vec3) -> Mat4 { +proc mat4_translate(v Vec3) -> Mat4 { m := mat4_identity(); m[3][0] = v.x; m[3][1] = v.y; @@ -255,7 +255,7 @@ proc mat4_translate(v: Vec3) -> Mat4 { return m; } -proc mat4_rotate(v: Vec3, angle_radians: f32) -> Mat4 { +proc mat4_rotate(v Vec3, angle_radians f32) -> Mat4 { c := cos32(angle_radians); s := sin32(angle_radians); @@ -282,14 +282,14 @@ proc mat4_rotate(v: Vec3, angle_radians: f32) -> Mat4 { return rot; } -proc mat4_scale(m: Mat4, v: Vec3) -> Mat4 { +proc mat4_scale(m Mat4, v Vec3) -> Mat4 { m[0][0] *= v.x; m[1][1] *= v.y; m[2][2] *= v.z; return m; } -proc mat4_scalef(m: Mat4, s: f32) -> Mat4 { +proc mat4_scalef(m Mat4, s f32) -> Mat4 { m[0][0] *= s; m[1][1] *= s; m[2][2] *= s; @@ -297,7 +297,7 @@ proc mat4_scalef(m: Mat4, s: f32) -> Mat4 { } -proc mat4_look_at(eye, centre, up: Vec3) -> Mat4 { +proc mat4_look_at(eye, centre, up Vec3) -> Mat4 { f := vec3_norm(centre - eye); s := vec3_norm(cross3(f, up)); u := cross3(s, f); @@ -311,7 +311,7 @@ proc mat4_look_at(eye, centre, up: Vec3) -> Mat4 { return m; } -proc mat4_perspective(fovy, aspect, near, far: f32) -> Mat4 { +proc mat4_perspective(fovy, aspect, near, far f32) -> Mat4 { m: Mat4; tan_half_fovy := tan32(0.5 * fovy); m[0][0] = 1.0 / (aspect*tan_half_fovy); @@ -323,7 +323,7 @@ proc mat4_perspective(fovy, aspect, near, far: f32) -> Mat4 { } -proc mat4_ortho3d(left, right, bottom, top, near, far: f32) -> Mat4 { +proc mat4_ortho3d(left, right, bottom, top, near, far f32) -> Mat4 { m := mat4_identity(); m[0][0] = +2.0 / (right - left); m[1][1] = +2.0 / (top - bottom); @@ -338,31 +338,31 @@ proc mat4_ortho3d(left, right, bottom, top, near, far: f32) -> Mat4 { -F32_DIG :: 6; -F32_EPSILON :: 1.192092896e-07; -F32_GUARD :: 0; -F32_MANT_DIG :: 24; -F32_MAX :: 3.402823466e+38; -F32_MAX_10_EXP :: 38; -F32_MAX_EXP :: 128; -F32_MIN :: 1.175494351e-38; -F32_MIN_10_EXP :: -37; -F32_MIN_EXP :: -125; -F32_NORMALIZE :: 0; -F32_RADIX :: 2; -F32_ROUNDS :: 1; - -F64_DIG :: 15; // # of decimal digits of precision -F64_EPSILON :: 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0 -F64_MANT_DIG :: 53; // # of bits in mantissa -F64_MAX :: 1.7976931348623158e+308; // max value -F64_MAX_10_EXP :: 308; // max decimal exponent -F64_MAX_EXP :: 1024; // max binary exponent -F64_MIN :: 2.2250738585072014e-308; // min positive value -F64_MIN_10_EXP :: -307; // min decimal exponent -F64_MIN_EXP :: -1021; // min binary exponent -F64_RADIX :: 2; // exponent radix -F64_ROUNDS :: 1; // addition rounding: near +const F32_DIG = 6; +const F32_EPSILON = 1.192092896e-07; +const F32_GUARD = 0; +const F32_MANT_DIG = 24; +const F32_MAX = 3.402823466e+38; +const F32_MAX_10_EXP = 38; +const F32_MAX_EXP = 128; +const F32_MIN = 1.175494351e-38; +const F32_MIN_10_EXP = -37; +const F32_MIN_EXP = -125; +const F32_NORMALIZE = 0; +const F32_RADIX = 2; +const F32_ROUNDS = 1; + +const F64_DIG = 15; // # of decimal digits of precision +const F64_EPSILON = 2.2204460492503131e-016; // smallest such that 1.0+F64_EPSILON != 1.0 +const F64_MANT_DIG = 53; // # of bits in mantissa +const F64_MAX = 1.7976931348623158e+308; // max value +const F64_MAX_10_EXP = 308; // max decimal exponent +const F64_MAX_EXP = 1024; // max binary exponent +const F64_MIN = 2.2250738585072014e-308; // min positive value +const F64_MIN_10_EXP = -307; // min decimal exponent +const F64_MIN_EXP = -1021; // min binary exponent +const F64_RADIX = 2; // exponent radix +const F64_ROUNDS = 1; // addition rounding: near |