diff options
| author | gingerBill <bill@gingerbill.org> | 2017-12-04 22:01:51 +0000 |
|---|---|---|
| committer | gingerBill <bill@gingerbill.org> | 2017-12-04 22:01:51 +0000 |
| commit | f0de99405982e8e2e2a121fccf81e32e4c221e8c (patch) | |
| tree | 07a78ee9d1e7803772c42bd0a04fa9624152c0e5 /core/math.odin | |
| parent | ebb2a9812ced9c3f53085a57843f42b95086ae87 (diff) | |
Make core library use procedure groupings rather than normal overloading
Diffstat (limited to 'core/math.odin')
| -rw-r--r-- | core/math.odin | 194 |
1 files changed, 144 insertions, 50 deletions
diff --git a/core/math.odin b/core/math.odin index 4aa5423b0..54f44c1d0 100644 --- a/core/math.odin +++ b/core/math.odin @@ -25,51 +25,49 @@ Mat2 :: [2][2]f32; Mat3 :: [3][3]f32; Mat4 :: [4][4]f32; -Complex :: complex64; +Quat :: struct {x, y, z: f32, w: f32 = 1}; @(default_calling_convention="c") foreign __llvm_core { @(link_name="llvm.sqrt.f32") - sqrt :: proc(x: f32) -> f32 ---; + sqrt_f32 :: proc(x: f32) -> f32 ---; @(link_name="llvm.sqrt.f64") - sqrt :: proc(x: f64) -> f64 ---; + sqrt_f64 :: proc(x: f64) -> f64 ---; @(link_name="llvm.sin.f32") - sin :: proc(θ: f32) -> f32 ---; + sin_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.sin.f64") - sin :: proc(θ: f64) -> f64 ---; + sin_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.cos.f32") - cos :: proc(θ: f32) -> f32 ---; + cos_f32 :: proc(θ: f32) -> f32 ---; @(link_name="llvm.cos.f64") - cos :: proc(θ: f64) -> f64 ---; + cos_f64 :: proc(θ: f64) -> f64 ---; @(link_name="llvm.pow.f32") - pow :: proc(x, power: f32) -> f32 ---; + pow_f32 :: proc(x, power: f32) -> f32 ---; @(link_name="llvm.pow.f64") - pow :: proc(x, power: f64) -> f64 ---; + pow_f64 :: proc(x, power: f64) -> f64 ---; @(link_name="llvm.fmuladd.f32") - fmuladd :: proc(a, b, c: f32) -> f32 ---; + fmuladd_f32 :: proc(a, b, c: f32) -> f32 ---; @(link_name="llvm.fmuladd.f64") - fmuladd :: proc(a, b, c: f64) -> f64 ---; + fmuladd_f64 :: proc(a, b, c: f64) -> f64 ---; } -tan :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); } -tan :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); } +tan_f32 :: proc "c" (θ: f32) -> f32 { return sin(θ)/cos(θ); } +tan_f64 :: proc "c" (θ: f64) -> f64 { return sin(θ)/cos(θ); } -lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } +lerp :: proc(a, b: $T, t: $E) -> (x: T) { return a*(1-t) + b*t; } -unlerp :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } -unlerp :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } +unlerp_f32 :: proc(a, b, x: f32) -> (t: f32) { return (x-a)/(b-a); } +unlerp_f64 :: proc(a, b, x: f64) -> (t: f64) { return (x-a)/(b-a); } -sign :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; } -sign :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; } +sign_f32 :: proc(x: f32) -> f32 { return x >= 0 ? +1 : -1; } +sign_f64 :: proc(x: f64) -> f64 { return x >= 0 ? +1 : -1; } - - -copy_sign :: proc(x, y: f32) -> f32 { +copy_sign_f32 :: proc(x, y: f32) -> f32 { ix := transmute(u32)x; iy := transmute(u32)y; ix &= 0x7fff_ffff; @@ -77,7 +75,7 @@ copy_sign :: proc(x, y: f32) -> f32 { return transmute(f32)ix; } -copy_sign :: proc(x, y: f64) -> f64 { +copy_sign_f64 :: proc(x, y: f64) -> f64 { ix := transmute(u64)x; iy := transmute(u64)y; ix &= 0x7fff_ffff_ffff_ff; @@ -85,19 +83,34 @@ copy_sign :: proc(x, y: f64) -> f64 { return transmute(f64)ix; } -round :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } -round :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } -floor :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions -floor :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions +sqrt :: proc[sqrt_f32, sqrt_f64]; +sin :: proc[sin_f32, sin_f64]; +cos :: proc[cos_f32, cos_f64]; +tan :: proc[tan_f32, tan_f64]; +pow :: proc[pow_f32, pow_f64]; +fmuladd :: proc[fmuladd_f32, fmuladd_f64]; +sign :: proc[sign_f32, sign_f64]; +copy_sign :: proc[copy_sign_f32, copy_sign_f64]; + + +round_f32 :: proc(x: f32) -> f32 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } +round_f64 :: proc(x: f64) -> f64 { return x >= 0 ? floor(x + 0.5) : ceil(x - 0.5); } +round :: proc[round_f32, round_f64]; + +floor_f32 :: proc(x: f32) -> f32 { return x >= 0 ? f32(i64(x)) : f32(i64(x-0.5)); } // TODO: Get accurate versions +floor_f64 :: proc(x: f64) -> f64 { return x >= 0 ? f64(i64(x)) : f64(i64(x-0.5)); } // TODO: Get accurate versions +floor :: proc[floor_f32, floor_f64]; -ceil :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions -ceil :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions +ceil_f32 :: proc(x: f32) -> f32 { return x < 0 ? f32(i64(x)) : f32(i64(x+1)); }// TODO: Get accurate versions +ceil_f64 :: proc(x: f64) -> f64 { return x < 0 ? f64(i64(x)) : f64(i64(x+1)); }// TODO: Get accurate versions +ceil :: proc[ceil_f32, ceil_f64]; -remainder :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } -remainder :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } +remainder_f32 :: proc(x, y: f32) -> f32 { return x - round(x/y) * y; } +remainder_f64 :: proc(x, y: f64) -> f64 { return x - round(x/y) * y; } +remainder :: proc[remainder_f32, remainder_f64]; -mod :: proc(x, y: f32) -> f32 { +mod_f32 :: proc(x, y: f32) -> f32 { result: f32; y = abs(y); result = remainder(abs(x), y); @@ -106,7 +119,7 @@ mod :: proc(x, y: f32) -> f32 { } return copy_sign(result, x); } -mod :: proc(x, y: f64) -> f64 { +mod_f64 :: proc(x, y: f64) -> f64 { result: f64; y = abs(y); result = remainder(abs(x), y); @@ -115,6 +128,8 @@ mod :: proc(x, y: f64) -> f64 { } return copy_sign(result, x); } +mod :: proc[mod_f32, mod_f64]; + to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360; } @@ -122,21 +137,37 @@ to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU; } + +mul :: proc[ + mat4_mul, mat4_mul_vec4, + quat_mul, quat_mulf, +]; + +div :: proc[ + quat_div, quat_divf, +]; + +inverse :: proc[mat4_inverse, quat_inverse]; + + dot :: proc(a, b: $T/[$N]$E) -> E { res: E; - for i in 0..N { res += a[i] * b[i]; } + for i in 0..N { + res += a[i] * b[i]; + } return res; } -cross :: proc(a, b: $T/[2]$E) -> E { +cross2 :: proc(a, b: $T/[2]$E) -> E { return a[0]*b[1] - a[1]*b[0]; } -cross :: proc(a, b: $T/[3]$E) -> T { +cross3 :: proc(a, b: $T/[3]$E) -> T { i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1); j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0); return T(i - j); } +cross :: proc[cross2, cross3]; length :: proc(v: $T/[$N]$E) -> E { return sqrt(dot(v, v)); } @@ -150,13 +181,10 @@ norm0 :: proc(v: $T/[$N]$E) -> T { -mat4_identity :: proc() -> Mat4 { - return Mat4{ - {1, 0, 0, 0}, - {0, 1, 0, 0}, - {0, 0, 1, 0}, - {0, 0, 0, 1}, - }; +identity :: proc(T: type/[$N][N]$E) -> T { + m: T; + for i in 0..N do m[i][i] = E(1); + return m; } transpose :: proc(m: Mat4) -> Mat4 { @@ -168,7 +196,7 @@ transpose :: proc(m: Mat4) -> Mat4 { return m; } -mul :: proc(a, b: Mat4) -> Mat4 { +mat4_mul :: proc(a, b: Mat4) -> Mat4 { c: Mat4; for j in 0..4 { for i in 0..4 { @@ -181,7 +209,7 @@ mul :: proc(a, b: Mat4) -> Mat4 { return c; } -mul :: proc(m: Mat4, v: Vec4) -> Vec4 { +mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 { return Vec4{ m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2] + m[3][0]*v[3], m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2] + m[3][1]*v[3], @@ -190,7 +218,8 @@ mul :: proc(m: Mat4, v: Vec4) -> Vec4 { }; } -inverse :: proc(m: Mat4) -> Mat4 { + +mat4_inverse :: proc(m: Mat4) -> Mat4 { o: Mat4; sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]; @@ -261,7 +290,7 @@ inverse :: proc(m: Mat4) -> Mat4 { mat4_translate :: proc(v: Vec3) -> Mat4 { - m := mat4_identity(); + m := identity(Mat4); m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; @@ -276,7 +305,7 @@ mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { a := norm(v); t := a * (1-c); - rot := mat4_identity(); + rot := identity(Mat4); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; @@ -296,20 +325,22 @@ mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 { return rot; } -scale :: proc(m: Mat4, v: Vec3) -> Mat4 { +scale_vec3 :: proc(m: Mat4, v: Vec3) -> Mat4 { m[0][0] *= v[0]; m[1][1] *= v[1]; m[2][2] *= v[2]; return m; } -scale :: proc(m: Mat4, s: f32) -> Mat4 { +scale_f32 :: proc(m: Mat4, s: f32) -> Mat4 { m[0][0] *= s; m[1][1] *= s; m[2][2] *= s; return m; } +scale :: proc[scale_vec3, scale_f32]; + look_at :: proc(eye, centre, up: Vec3) -> Mat4 { f := norm(centre - eye); @@ -338,7 +369,7 @@ perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 { ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { - m := mat4_identity(); + m := identity(Mat4); m[0][0] = +2.0 / (right - left); m[1][1] = +2.0 / (top - bottom); m[2][2] = -2.0 / (far - near); @@ -349,6 +380,69 @@ ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 { } +// Quaternion operations + +conj :: proc(q: Quat) -> Quat { + return Quat{-q.x, -q.y, -q.z, q.w}; +} + +quat_mul :: proc(q0, q1: Quat) -> Quat { + d: Quat; + d.x = q0.w * q1.x + q0.x * q1.w + q0.y * q1.z - q0.z * q1.y; + d.y = q0.w * q1.y - q0.x * q1.z + q0.y * q1.w + q0.z * q1.x; + d.z = q0.w * q1.z + q0.x * q1.y - q0.y * q1.x + q0.z * q1.w; + d.w = q0.w * q1.w - q0.x * q1.x - q0.y * q1.y - q0.z * q1.z; + return d; +} + +quat_mulf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x*f, q.y*f, q.z*f, q.w*f}; } +quat_divf :: proc(q: Quat, f: f32) -> Quat { return Quat{q.x/f, q.y/f, q.z/f, q.w/f}; } + +quat_div :: proc(q0, q1: Quat) -> Quat { return mul(q0, quat_inverse(q1)); } +quat_inverse :: proc(q: Quat) -> Quat { return div(conj(q), quat_dot(q, q)); } +quat_dot :: proc(q0, q1: Quat) -> f32 { return q0.x*q1.x + q0.y*q1.y + q0.z*q1.z + q0.w*q1.w; } + +quat_norm :: proc(q: Quat) -> Quat { + m := sqrt(quat_dot(q, q)); + return div(q, m); +} + +axis_angle :: proc(axis: Vec3, angle_radians: f32) -> Quat { + v := norm(axis) * sin(0.5*angle_radians); + w := cos(0.5*angle_radians); + return Quat{v.x, v.y, v.z, w}; +} + +euler_angles :: proc(pitch, yaw, roll: f32) -> Quat { + p := axis_angle(Vec3{1, 0, 0}, pitch); + y := axis_angle(Vec3{0, 1, 0}, pitch); + r := axis_angle(Vec3{0, 0, 1}, pitch); + return mul(mul(y, p), r); +} + +quat_to_mat4 :: proc(q: Quat) -> Mat4 { + a := quat_norm(q); + xx := a.x*a.x; yy := a.y*a.y; zz := a.z*a.z; + xy := a.x*a.y; xz := a.x*a.z; yz := a.y*a.z; + wx := a.w*a.x; wy := a.w*a.y; wz := a.w*a.z; + + m := identity(Mat4); + + m[0][0] = 1 - 2*(yy + zz); + m[0][1] = 2*(xy + wz); + m[0][2] = 2*(xz - wy); + + m[1][0] = 2*(xy - wz); + m[1][1] = 1 - 2*(xx + zz); + m[1][2] = 2*(yz + wx); + + m[2][0] = 2*(xz + wy); + m[2][1] = 2*(yz - wx); + m[2][2] = 1 - 2*(xx + yy); + return m; +} + + F32_DIG :: 6; |