aboutsummaryrefslogtreecommitdiff
path: root/core/math/big
diff options
context:
space:
mode:
authorJeroen van Rijn <Kelimion@users.noreply.github.com>2021-09-03 23:41:14 +0200
committerJeroen van Rijn <Kelimion@users.noreply.github.com>2021-09-03 23:54:54 +0200
commitb1ed7fc6b9bb16540a76d8edf286415f641ae120 (patch)
tree0738ba10f7a3e4ee17dd99a354c9bf4924ed8031 /core/math/big
parente3809f5c1b10963bcdbcebe925f0d3a31c0ea893 (diff)
big: Add Lucas-Selfridge.
Diffstat (limited to 'core/math/big')
-rw-r--r--core/math/big/build.bat7
-rw-r--r--core/math/big/example.odin10
-rw-r--r--core/math/big/internal.odin29
-rw-r--r--core/math/big/prime.odin244
4 files changed, 274 insertions, 16 deletions
diff --git a/core/math/big/build.bat b/core/math/big/build.bat
index 47e940888..7ca32641b 100644
--- a/core/math/big/build.bat
+++ b/core/math/big/build.bat
@@ -1,10 +1,11 @@
@echo off
-:odin run . -vet -define:MATH_BIG_USE_FROBENIUS_TEST=true
+odin run . -vet
+: -define:MATH_BIG_USE_FROBENIUS_TEST=true
set TEST_ARGS=-fast-tests
-set TEST_ARGS=
+:set TEST_ARGS=
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
-odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
+:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
:odin build . -build-mode:shared -show-timings -o:size -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check -define:MATH_BIG_EXE=false && python test.py %TEST_ARGS%
:odin build . -build-mode:shared -show-timings -o:speed -define:MATH_BIG_EXE=false && python test.py -fast-tests %TEST_ARGS% \ No newline at end of file
diff --git a/core/math/big/example.odin b/core/math/big/example.odin
index 9c5fd6bc7..e324d5e29 100644
--- a/core/math/big/example.odin
+++ b/core/math/big/example.odin
@@ -84,14 +84,14 @@ print :: proc(name: string, a: ^Int, base := i8(10), print_name := true, newline
}
}
-//printf :: fmt.printf;
+// printf :: fmt.printf;
demo :: proc() {
a, b, c, d, e, f, res := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(a, b, c, d, e, f, res);
err: Error;
- frob: bool;
+ lucas: bool;
prime: bool;
// USE_MILLER_RABIN_ONLY = true;
@@ -103,11 +103,11 @@ demo :: proc() {
SCOPED_TIMING(.is_prime);
prime, err = internal_int_is_prime(a, trials);
}
- print("Candidate prime: ", a);
+ print("Candidate prime: ", a, 10, true, true, true);
fmt.printf("%v Miller-Rabin trials needed.\n", trials);
- frob, err = internal_int_prime_frobenius_underwood(a);
- fmt.printf("Frobenius-Underwood: %v, Prime: %v, Error: %v\n", frob, prime, err);
+ // lucas, err = internal_int_prime_strong_lucas_selfridge(a);
+ fmt.printf("Lucas-Selfridge: %v, Prime: %v, Error: %v\n", lucas, prime, err);
}
main :: proc() {
diff --git a/core/math/big/internal.odin b/core/math/big/internal.odin
index 81cb325d7..5b09e97e2 100644
--- a/core/math/big/internal.odin
+++ b/core/math/big/internal.odin
@@ -545,6 +545,25 @@ internal_int_shl1 :: proc(dest, src: ^Int, allocator := context.allocator) -> (e
}
/*
+ Multiply bigint `a` with int `d` and put the result in `dest`.
+ Like `internal_int_mul_digit` but with an integer as the small input.
+*/
+internal_int_mul_integer :: proc(dest, a: ^Int, b: $T, allocator := context.allocator) -> (err: Error)
+where intrinsics.type_is_integer(T) && T != DIGIT {
+ context.allocator = allocator;
+
+ t := &Int{};
+ defer internal_destroy(t);
+
+ /*
+ DIGIT might be smaller than a long, which excludes the use of `internal_int_mul_digit` here.
+ */
+ internal_set(t, b) or_return;
+ internal_mul(dest, a, t) or_return;
+ return;
+}
+
+/*
Multiply by a DIGIT.
*/
internal_int_mul_digit :: proc(dest, src: ^Int, multiplier: DIGIT, allocator := context.allocator) -> (err: Error) {
@@ -697,7 +716,7 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
return err;
}
-internal_mul :: proc { internal_int_mul, internal_int_mul_digit, };
+internal_mul :: proc { internal_int_mul, internal_int_mul_digit, internal_int_mul_integer };
internal_sqr :: proc (dest, src: ^Int, allocator := context.allocator) -> (res: Error) {
/*
@@ -940,6 +959,14 @@ internal_int_gcd_lcm :: proc(res_gcd, res_lcm, a, b: ^Int, allocator := context.
return #force_inline _private_int_gcd_lcm(res_gcd, res_lcm, a, b, allocator);
}
+internal_int_gcd :: proc(res_gcd, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+ return #force_inline _private_int_gcd_lcm(res_gcd, nil, a, b, allocator);
+}
+
+internal_int_lcm :: proc(res_lcm, a, b: ^Int, allocator := context.allocator) -> (err: Error) {
+ return #force_inline _private_int_gcd_lcm(nil, res_lcm, a, b, allocator);
+}
+
/*
remainder = numerator % (1 << bits)
diff --git a/core/math/big/prime.odin b/core/math/big/prime.odin
index 316a9de29..0e3749273 100644
--- a/core/math/big/prime.odin
+++ b/core/math/big/prime.odin
@@ -368,12 +368,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
when MATH_BIG_USE_FROBENIUS_TEST {
if !internal_int_prime_frobenius_underwood(a) or_return { return; }
} else {
-// if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
-// goto LBL_B;
-// }
-// if (!res) {
-// goto LBL_B;
-// }
+ if !internal_int_prime_strong_lucas_selfridge(a) or_return { return; }
}
}
}
@@ -540,7 +535,7 @@ internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.all
// Composite if N and (a+4)*(2*a+5) are not coprime.
internal_set(T1z, u32((a + 4) * ((2 * a) + 5)));
- internal_int_gcd_lcm(T1z, nil, T1z, N) or_return;
+ internal_int_gcd(T1z, T1z, N) or_return;
if !(T1z.used == 1 && T1z.digit[0] == 1) {
// Composite.
@@ -597,6 +592,241 @@ internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.all
return;
}
+
+/*
+ Strong Lucas-Selfridge test.
+ returns true if it is a strong L-S prime, false if it is composite
+
+ Code ported from Thomas Ray Nicely's implementation of the BPSW test at http://www.trnicely.net/misc/bpsw.html
+
+ Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
+ Released into the public domain by the author, who disclaims any legal liability arising from its use.
+
+ The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
+ (If that name sounds familiar, he is the guy who found the fdiv bug in the Pentium CPU.)
+*/
+internal_int_prime_strong_lucas_selfridge :: proc(a: ^Int, allocator := context.allocator) -> (lucas_selfridge: bool, err: Error) {
+ // TODO: choose better variable names!
+
+ Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+ defer internal_destroy(Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz);
+
+ /*
+ Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
+ such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
+ indicates that, if N is not a perfect square, D will "nearly
+ always" be "small." Just in case, an overflow trap for D is included.
+ */
+ internal_init_multi(Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz) or_return;
+
+ D := 5;
+ sign := 1;
+ Ds : int;
+
+ for {
+ Ds = sign * D;
+ sign = -sign;
+
+ internal_set(Dz, D) or_return;
+ internal_int_gcd(gcd, a, Dz) or_return;
+
+ /*
+ If 1 < GCD < `N` then `N` is composite with factor "D", and
+ Jacobi(D, N) is technically undefined (but often returned as zero).
+ */
+ if internal_gt(gcd, 1) && internal_lt(gcd, a) { return; }
+ if Ds < 0 { Dz.sign = .Negative; }
+
+ j := internal_int_kronecker(Dz, a) or_return;
+ if j == -1 { break; }
+
+ D += 2;
+ if D > max(int) - 2 { return false, .Invalid_Argument; }
+ }
+
+ Q := (1 - Ds) / 4; /* Required so D = P*P - 4*Q */
+
+ /*
+ NOTE: The conditions (a) N does not divide Q, and
+ (b) D is square-free or not a perfect square, are included by
+ some authors; e.g., "Prime numbers and computer methods for
+ factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
+ p. 130. For this particular application of Lucas sequences,
+ these conditions were found to be immaterial.
+ */
+
+ /*
+ Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
+ odd positive integer d and positive integer s for which
+ N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
+ The strong Lucas-Selfridge test then returns N as a strong
+ Lucas probable prime (slprp) if any of the following
+ conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
+ V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
+ (all equalities mod N). Thus d is the highest index of U that
+ must be computed (since V_2m is independent of U), compared
+ to U_{N+1} for the standard Lucas-Selfridge test; and no
+ index of V beyond (N+1)/2 is required, just as in the
+ standard Lucas-Selfridge test. However, the quantity Q^d must
+ be computed for use (if necessary) in the latter stages of
+ the test. The result is that the strong Lucas-Selfridge test
+ has a running time only slightly greater (order of 10 %) than
+ that of the standard Lucas-Selfridge test, while producing
+ only (roughly) 30 % as many pseudoprimes (and every strong
+ Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
+ the evidence indicates that the strong Lucas-Selfridge test is
+ more effective than the standard Lucas-Selfridge test, and a
+ Baillie-PSW test based on the strong Lucas-Selfridge test
+ should be more reliable.
+ */
+ internal_add(Np1, a, 1) or_return;
+ s := internal_count_lsb(Np1) or_return;
+
+ /*
+ This should round towards zero because Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
+ and mp_div_2d() is equivalent. Additionally: dividing an even number by two does not produce
+ any leftovers.
+ */
+ internal_int_shr(Dz, Np1, s) or_return;
+
+ /*
+ We must now compute U_d and V_d. Since d is odd, the accumulated
+ values U and V are initialized to U_1 and V_1 (if the target
+ index were even, U and V would be initialized instead to U_0=0
+ and V_0=2). The values of U_2m and V_2m are also initialized to
+ U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
+ U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
+ (1, 2, 3, ...) of t are on (the zero bit having been accounted
+ for in the initialization of U and V), these values are then
+ combined with the previous totals for U and V, using the
+ composition formulas for addition of indices.
+ */
+ internal_set(Uz, 1) or_return;
+ internal_set(Vz, 1) or_return; // P := 1; /* Selfridge's choice */
+ internal_set(U2mz, 1) or_return;
+ internal_set(V2mz, 1) or_return; // P := 1; /* Selfridge's choice */
+ internal_set(Qmz, Q) or_return;
+
+ internal_int_shl1(Q2mz, Qmz) or_return;
+
+ /*
+ Initializes calculation of Q^d.
+ */
+ internal_set(Qkdz, Q) or_return;
+ Nbits := internal_count_bits(Dz);
+
+ for u := 1; u < Nbits; u += 1 { /* zero bit off, already accounted for */
+ /*
+ Formulas for doubling of indices (carried out mod N). Note that
+ the indices denoted as "2m" are actually powers of 2, specifically
+ 2^(ul-1) beginning each loop and 2^ul ending each loop.
+ U_2m = U_m*V_m
+ V_2m = V_m*V_m - 2*Q^m
+ */
+ internal_mul(U2mz, U2mz, V2mz) or_return;
+ internal_mod(U2mz, U2mz, a) or_return;
+ internal_sqr(V2mz, V2mz) or_return;
+ internal_sub(V2mz, V2mz, Q2mz) or_return;
+ internal_mod(V2mz, V2mz, a) or_return;
+
+ /*
+ Must calculate powers of Q for use in V_2m, also for Q^d later.
+ */
+ internal_sqr(Qmz, Qmz) or_return;
+
+ /* Prevents overflow. Still necessary without a fixed prealloc'd mem.? */
+ internal_mod(Qmz, Qmz, a) or_return;
+ internal_int_shl1(Q2mz, Qmz) or_return;
+
+ if internal_int_bitfield_extract_bool(Dz, u) or_return {
+ /*
+ Formulas for addition of indices (carried out mod N);
+ U_(m+n) = (U_m*V_n + U_n*V_m)/2
+ V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
+ Be careful with division by 2 (mod N)!
+ */
+ internal_mul(T1z, U2mz, Vz) or_return;
+ internal_mul(T2z, Uz, V2mz) or_return;
+ internal_mul(T3z, V2mz, Vz) or_return;
+ internal_mul(T4z, U2mz, Uz) or_return;
+ internal_mul(T4z, T4z, Ds) or_return;
+
+ internal_add(Uz, T1z, T2z) or_return;
+
+ if internal_is_odd(Uz) {
+ internal_add(Uz, Uz, a) or_return;
+ }
+
+ /*
+ This should round towards negative infinity because Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
+ But `internal_shr1` does not do so, it is truncating instead.
+ */
+ oddness := internal_is_odd(Uz);
+ internal_int_shr1(Uz, Uz) or_return;
+ if internal_is_negative(Uz) && oddness {
+ internal_sub(Uz, Uz, 1) or_return;
+ }
+ internal_add(Vz, T3z, T4z) or_return;
+ if internal_is_odd(Vz) {
+ internal_add(Vz, Vz, a) or_return;
+ }
+
+ oddness = internal_is_odd(Vz);
+ internal_int_shr1(Vz, Vz) or_return;
+ if internal_is_negative(Vz) && oddness {
+ internal_sub(Vz, Vz, 1) or_return;
+ }
+ internal_mod(Uz, Uz, a) or_return;
+ internal_mod(Vz, Vz, a) or_return;
+
+ /* Calculating Q^d for later use */
+ internal_mul(Qkdz, Qkdz, Qmz) or_return;
+ internal_mod(Qkdz, Qkdz, a) or_return;
+ }
+ }
+
+ /*
+ If U_d or V_d is congruent to 0 mod N, then N is a prime or a strong Lucas pseudoprime. */
+ if internal_is_zero(Uz) || internal_is_zero(Vz) {
+ return true, nil;
+ }
+
+ /*
+ NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
+ 1995/6) omits the condition V0 on p.142, but includes it on
+ p. 130. The condition is NECESSARY; otherwise the test will
+ return false negatives---e.g., the primes 29 and 2000029 will be
+ returned as composite.
+ */
+
+ /*
+ Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
+ by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
+ these are congruent to 0 mod N, then N is a prime or a strong
+ Lucas pseudoprime.
+ */
+
+ /* Initialize 2*Q^(d*2^r) for V_2m */
+ internal_int_shr1(Q2kdz, Qkdz) or_return;
+
+ for r := 1; r < s; r += 1 {
+ internal_sqr(Vz, Vz) or_return;
+ internal_sub(Vz, Vz, Q2kdz) or_return;
+ internal_mod(Vz, Vz, a) or_return;
+ if internal_is_zero(Vz) {
+ return true, nil;
+ }
+ /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
+ if r < (s - 1) {
+ internal_sqr(Qkdz, Qkdz) or_return;
+ internal_mod(Qkdz, Qkdz, a) or_return;
+ internal_int_shl1(Q2kdz, Qkdz) or_return;
+ }
+ }
+ return false, nil;
+}
+
+
/*
Returns the number of Rabin-Miller trials needed for a given bit size.
*/