aboutsummaryrefslogtreecommitdiff
path: root/core/math/ease
diff options
context:
space:
mode:
authorMichael Kutowski <skytrias@protonmail.com>2022-03-27 11:32:46 +0200
committerGitHub <noreply@github.com>2022-03-27 11:32:46 +0200
commitd2ff6f424db9d0422fc11d0c84f5bc63fcd64962 (patch)
tree009275eb3d7ce5ad06ebca26ca2586cbe47c4e41 /core/math/ease
parent92f985abd5c4e5017a644266816fb2b8326157be (diff)
add math easing package
Diffstat (limited to 'core/math/ease')
-rw-r--r--core/math/ease/ease.odin466
1 files changed, 466 insertions, 0 deletions
diff --git a/core/math/ease/ease.odin b/core/math/ease/ease.odin
new file mode 100644
index 000000000..0fe59f9d2
--- /dev/null
+++ b/core/math/ease/ease.odin
@@ -0,0 +1,466 @@
+package ease
+
+import "core:math"
+import "core:intrinsics"
+import "core:time"
+
+@(private) PI_2 :: math.PI / 2
+
+// converted to odin from https://github.com/warrenm/AHEasing
+// with additional enum based call
+
+// Modeled after the parabola y = x^2
+quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p * p
+}
+
+// Modeled after the parabola y = -x^2 + 2x
+quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return -(p * (p - 2))
+}
+
+// Modeled after the piecewise quadratic
+// y = (1/2)((2x)^2) ; [0, 0.5)
+// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
+quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 2 * p * p;
+ } else {
+ return (-2 * p * p) + (4 * p) - 1
+ }
+}
+
+// Modeled after the cubic y = x^3
+cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p * p * p
+}
+
+// Modeled after the cubic y = (x - 1)^3 + 1
+cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ f := p - 1
+ return f * f * f + 1
+}
+
+// Modeled after the piecewise cubic
+// y = (1/2)((2x)^3) ; [0, 0.5)
+// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
+cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 4 * p * p * p
+ } else {
+ f := (2 * p) - 2
+ return 0.5 * f * f * f + 1
+ }
+}
+
+// Modeled after the quartic x^4
+quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p * p * p * p
+}
+
+// Modeled after the quartic y = 1 - (x - 1)^4
+quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ f := p - 1
+ return f * f * f * (1 - p) + 1
+}
+
+// Modeled after the piecewise quartic
+// y = (1/2)((2x)^4) ; [0, 0.5)
+// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
+quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 8 * p * p * p * p
+ } else {
+ f := p - 1
+ return -8 * f * f * f * f + 1
+ }
+}
+
+// Modeled after the quintic y = x^5
+quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p * p * p * p * p
+}
+
+// Modeled after the quintic y = (x - 1)^5 + 1
+quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ f := p - 1
+ return f * f * f * f * f + 1
+}
+
+// Modeled after the piecewise quintic
+// y = (1/2)((2x)^5) ; [0, 0.5)
+// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
+quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 16 * p * p * p * p * p
+ } else {
+ f := (2 * p) - 2
+ return 0.5 * f * f * f * f * f + 1
+ }
+}
+
+// Modeled after quarter-cycle of sine wave
+sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return math.sin((p - 1) * PI_2) + 1
+}
+
+// Modeled after quarter-cycle of sine wave (different phase)
+sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return math.sin(p * PI_2)
+}
+
+// Modeled after half sine wave
+sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return 0.5 * (1 - math.cos(p * math.PI))
+}
+
+// Modeled after shifted quadrant IV of unit circle
+circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return 1 - math.sqrt(1 - (p * p))
+}
+
+// Modeled after shifted quadrant II of unit circle
+circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return math.sqrt((2 - p) * p)
+}
+
+// Modeled after the piecewise circular function
+// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
+// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
+circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
+ } else {
+ return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
+ }
+}
+
+// Modeled after the exponential function y = 2^(10(x - 1))
+exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
+}
+
+// Modeled after the exponential function y = -2^(-10x) + 1
+exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
+}
+
+// Modeled after the piecewise exponential
+// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
+// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
+exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p == 0.0 || p == 1.0 {
+ return p
+ }
+
+ if p < 0.5 {
+ return 0.5 * math.pow(2, (20 * p) - 10)
+ } else {
+ return -0.5 * math.pow(2, (-20 * p) + 10) + 1
+ }
+}
+
+// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
+elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
+}
+
+// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
+elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
+}
+
+// Modeled after the piecewise exponentially-damped sine wave:
+// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
+// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
+elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
+ } else {
+ return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2)
+ }
+}
+
+// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
+back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return p * p * p - p * math.sin(p * math.PI)
+}
+
+// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
+back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ f := 1 - p
+ return 1 - (f * f * f - f * math.sin(f * math.PI))
+}
+
+// Modeled after the piecewise overshooting cubic function:
+// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
+// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
+back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ f := 2 * p
+ return 0.5 * (f * f * f - f * math.sin(f * math.PI))
+ } else {
+ f := (1 - (2*p - 1))
+ return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5
+ }
+}
+
+bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ return 1 - bounce_out(1 - p)
+}
+
+bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 4/11.0 {
+ return (121 * p * p)/16.0
+ } else if p < 8/11.0 {
+ return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0
+ } else if p < 9/10.0 {
+ return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0
+ } else {
+ return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0
+ }
+}
+
+bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
+ if p < 0.5 {
+ return 0.5 * bounce_in(p*2)
+ } else {
+ return 0.5 * bounce_out(p * 2 - 1) + 0.5
+ }
+}
+
+// additional enum variant
+
+Ease :: enum {
+ Linear,
+
+ Quadratic_In,
+ Quadratic_Out,
+ Quadratic_In_Out,
+
+ Cubic_In,
+ Cubic_Out,
+ Cubic_In_Out,
+
+ Quartic_In,
+ Quartic_Out,
+ Quartic_In_Out,
+
+ Quintic_In,
+ Quintic_Out,
+ Quintic_In_Out,
+
+ Sine_In,
+ Sine_Out,
+ Sine_In_Out,
+
+ Circular_In,
+ Circular_Out,
+ Circular_In_Out,
+
+ Exponential_In,
+ Exponential_Out,
+ Exponential_In_Out,
+
+ Elastic_In,
+ Elastic_Out,
+ Elastic_In_Out,
+
+ Back_In,
+ Back_Out,
+ Back_In_Out,
+
+ Bounce_In,
+ Bounce_Out,
+ Bounce_In_Out,
+}
+
+ease :: proc "contextless" (type: Ease, p: $T) -> T
+ where intrinsics.type_is_float(T) {
+ switch type {
+ case .Linear: return p
+
+ case .Quadratic_In: return quadratic_in(p)
+ case .Quadratic_Out: return quadratic_out(p)
+ case .Quadratic_In_Out: return quadratic_in_out(p)
+
+ case .Cubic_In: return cubic_in(p)
+ case .Cubic_Out: return cubic_out(p)
+ case .Cubic_In_Out: return cubic_in_out(p)
+
+ case .Quartic_In: return quartic_in(p)
+ case .Quartic_Out: return quartic_out(p)
+ case .Quartic_In_Out: return quartic_in_out(p)
+
+ case .Quintic_In: return quintic_in(p)
+ case .Quintic_Out: return quintic_out(p)
+ case .Quintic_In_Out: return quintic_in_out(p)
+
+ case .Sine_In: return sine_in(p)
+ case .Sine_Out: return sine_out(p)
+ case .Sine_In_Out: return sine_in_out(p)
+
+ case .Circular_In: return circular_in(p)
+ case .Circular_Out: return circular_out(p)
+ case .Circular_In_Out: return circular_in_out(p)
+
+ case .Exponential_In: return exponential_in(p)
+ case .Exponential_Out: return exponential_out(p)
+ case .Exponential_In_Out: return exponential_in_out(p)
+
+ case .Elastic_In: return elastic_in(p)
+ case .Elastic_Out: return elastic_out(p)
+ case .Elastic_In_Out: return elastic_in_out(p)
+
+ case .Back_In: return back_in(p)
+ case .Back_Out: return back_out(p)
+ case .Back_In_Out: return back_in_out(p)
+
+ case .Bounce_In: return bounce_in(p)
+ case .Bounce_Out: return bounce_out(p)
+ case .Bounce_In_Out: return bounce_in_out(p)
+ }
+
+ // in case type was invalid
+ return 0
+}
+
+Flux_Map :: struct($T: typeid) {
+ values: map[^T]Flux_Tween(T),
+}
+
+Flux_Tween :: struct($T: typeid) {
+ value: ^T,
+ start: T,
+ diff: T,
+ goal: T,
+
+ // using ticks for timing instead
+ delay_tick_start: time.Tick,
+ delay: time.Duration,
+ duration: time.Duration,
+
+ progress: f64,
+ rate: f64,
+ type: Ease,
+
+ inited: bool,
+
+ // callbacks, data can be set, will be pushed to callback
+ data: rawptr, // by default gets set to value input
+ on_start: proc(flux: ^Flux_Map(T), data: rawptr),
+ on_update: proc(flux: ^Flux_Map(T), data: rawptr),
+ on_complete: proc(flux: ^Flux_Map(T), data: rawptr),
+}
+
+// init flux map to a float type and a wanted cap
+flux_init :: proc($T: typeid, cap := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) {
+ return {
+ make(map[^T]Flux_Tween(T), cap),
+ }
+}
+
+// delete map content
+flux_destroy :: proc(flux: Flux_Map($T)) where intrinsics.type_is_float(T) {
+ delete(flux.values)
+}
+
+// clear map content, stops all animations
+flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) {
+ clear(&flux.values)
+}
+
+// append / overwrite existing tween value to parameters
+// rest is initialized in flux_tween_init, inside update
+// return value can be used to set callbacks
+flux_to :: proc(
+ flux: ^Flux_Map($T),
+ value: ^f32,
+ goal: f32,
+ type: Ease = .Quadratic_Out,
+ duration: time.Duration = time.Second,
+ delay: time.Duration = 0,
+) -> (tween: ^Flux_Tween(T)) where intrinsics.type_is_float(T) {
+ if res, ok := &flux.values[value]; ok {
+ tween = res
+ } else {
+ flux.values[value] = {}
+ tween = &flux.values[value]
+ }
+
+ tween^ = {
+ value = value,
+ goal = goal,
+ duration = duration,
+ delay = delay,
+ delay_tick_start = time.tick_now(),
+ type = type,
+ data = value,
+ }
+
+ return
+}
+
+// init internal properties
+flux_tween_init :: proc(tween: ^Flux_Tween($T), duration: time.Duration) where intrinsics.type_is_float(T) {
+ tween.inited = true
+ tween.start = tween.value^
+ tween.diff = tween.goal - tween.value^
+ s := time.duration_seconds(duration)
+ tween.rate = duration > 0 ? 1.0 / s : 0
+ tween.progress = duration > 0 ? 0 : 1
+}
+
+// update all tweens, wait for their delay if one exists
+// calls callbacks in all stages, when they're filled
+// deletes tween from the map after completion
+flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float(T) {
+ size := len(flux.values)
+ now := time.tick_now()
+
+ for key, tween in &flux.values {
+ if tween.delay != 0 {
+ diff := time.tick_diff(tween.delay_tick_start, now)
+
+ // when diff reached delay, stop delaying
+ if diff > tween.delay {
+ tween.delay = 0
+ }
+ } else {
+ if !tween.inited {
+ flux_tween_init(&tween, tween.duration)
+
+ if tween.on_start != nil {
+ tween.on_start(flux, tween.data)
+ }
+ }
+
+ tween.progress += tween.rate * dt
+ x := tween.progress >= 1 ? 1 : ease(tween.type, tween.progress)
+ tween.value^ = tween.start + tween.diff * T(x)
+
+ if tween.on_update != nil {
+ tween.on_update(flux, tween.data)
+ }
+
+ if tween.progress >= 1 {
+ delete_key(&flux.values, key)
+
+ if tween.on_complete != nil {
+ tween.on_complete(flux, tween.data)
+ }
+ }
+ }
+ }
+}
+
+// stop a specific key inside the map
+// returns true when it successfully removed the key
+flux_stop :: proc(flux: ^Flux_Map($T), key: ^f32) -> bool where intrinsics.type_is_float(T) {
+ if key in flux {
+ delete_key(flux, key)
+ return true
+ }
+
+ return false
+} \ No newline at end of file