diff options
| author | gingerBill <bill@gingerbill.org> | 2021-03-03 16:44:41 +0000 |
|---|---|---|
| committer | gingerBill <bill@gingerbill.org> | 2021-03-03 16:44:41 +0000 |
| commit | 619a9778563da32bfb0322b65573e7fb3fda9686 (patch) | |
| tree | e82eda1bf56339822a27eb53c9ffc793b449f5ac /core/math/linalg/specific.odin | |
| parent | b727b6438b86ccd2d60a8f18d8a8d990206613d8 (diff) | |
Improve math/linalg to support both f32 and f64 basic procedures for the specific*.odin files
Diffstat (limited to 'core/math/linalg/specific.odin')
| -rw-r--r-- | core/math/linalg/specific.odin | 1272 |
1 files changed, 1124 insertions, 148 deletions
diff --git a/core/math/linalg/specific.odin b/core/math/linalg/specific.odin index ab3180a73..1b3bc1f2d 100644 --- a/core/math/linalg/specific.odin +++ b/core/math/linalg/specific.odin @@ -7,49 +7,90 @@ import "core:math" Float :: f64 when #config(ODIN_MATH_LINALG_USE_F64, false) else f32; -FLOAT_EPSILON :: 1e-7 when size_of(Float) == 4 else 1e-15; - -Vector2 :: distinct [2]Float; -Vector3 :: distinct [3]Float; -Vector4 :: distinct [4]Float; - -Matrix1x1 :: distinct [1][1]Float; -Matrix1x2 :: distinct [1][2]Float; -Matrix1x3 :: distinct [1][3]Float; -Matrix1x4 :: distinct [1][4]Float; - -Matrix2x1 :: distinct [2][1]Float; -Matrix2x2 :: distinct [2][2]Float; -Matrix2x3 :: distinct [2][3]Float; -Matrix2x4 :: distinct [2][4]Float; - -Matrix3x1 :: distinct [3][1]Float; -Matrix3x2 :: distinct [3][2]Float; -Matrix3x3 :: distinct [3][3]Float; -Matrix3x4 :: distinct [3][4]Float; - -Matrix4x1 :: distinct [4][1]Float; -Matrix4x2 :: distinct [4][2]Float; -Matrix4x3 :: distinct [4][3]Float; -Matrix4x4 :: distinct [4][4]Float; - -Matrix1 :: Matrix1x1; -Matrix2 :: Matrix2x2; -Matrix3 :: Matrix3x3; -Matrix4 :: Matrix4x4; - -Quaternion :: distinct (quaternion128 when size_of(Float) == size_of(f32) else quaternion256); - -MATRIX1_IDENTITY :: Matrix1{{1}}; -MATRIX2_IDENTITY :: Matrix2{{1, 0}, {0, 1}}; -MATRIX3_IDENTITY :: Matrix3{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; -MATRIX4_IDENTITY :: Matrix4{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; - -QUATERNION_IDENTITY :: Quaternion(1); - -VECTOR3_X_AXIS :: Vector3{1, 0, 0}; -VECTOR3_Y_AXIS :: Vector3{0, 1, 0}; -VECTOR3_Z_AXIS :: Vector3{0, 0, 1}; +F32_EPSILON :: 1e-7; +F64_EPSILON :: 1e-15; + +Vector2f32 :: distinct [2]f32; +Vector3f32 :: distinct [3]f32; +Vector4f32 :: distinct [4]f32; + +Matrix1x1f32 :: distinct [1][1]f32; +Matrix1x2f32 :: distinct [1][2]f32; +Matrix1x3f32 :: distinct [1][3]f32; +Matrix1x4f32 :: distinct [1][4]f32; + +Matrix2x1f32 :: distinct [2][1]f32; +Matrix2x2f32 :: distinct [2][2]f32; +Matrix2x3f32 :: distinct [2][3]f32; +Matrix2x4f32 :: distinct [2][4]f32; + +Matrix3x1f32 :: distinct [3][1]f32; +Matrix3x2f32 :: distinct [3][2]f32; +Matrix3x3f32 :: distinct [3][3]f32; +Matrix3x4f32 :: distinct [3][4]f32; + +Matrix4x1f32 :: distinct [4][1]f32; +Matrix4x2f32 :: distinct [4][2]f32; +Matrix4x3f32 :: distinct [4][3]f32; +Matrix4x4f32 :: distinct [4][4]f32; + +Matrix1f32 :: Matrix1x1f32; +Matrix2f32 :: Matrix2x2f32; +Matrix3f32 :: Matrix3x3f32; +Matrix4f32 :: Matrix4x4f32; + +Vector2f64 :: distinct [2]f64; +Vector3f64 :: distinct [3]f64; +Vector4f64 :: distinct [4]f64; + +Matrix1x1f64 :: distinct [1][1]f64; +Matrix1x2f64 :: distinct [1][2]f64; +Matrix1x3f64 :: distinct [1][3]f64; +Matrix1x4f64 :: distinct [1][4]f64; + +Matrix2x1f64 :: distinct [2][1]f64; +Matrix2x2f64 :: distinct [2][2]f64; +Matrix2x3f64 :: distinct [2][3]f64; +Matrix2x4f64 :: distinct [2][4]f64; + +Matrix3x1f64 :: distinct [3][1]f64; +Matrix3x2f64 :: distinct [3][2]f64; +Matrix3x3f64 :: distinct [3][3]f64; +Matrix3x4f64 :: distinct [3][4]f64; + +Matrix4x1f64 :: distinct [4][1]f64; +Matrix4x2f64 :: distinct [4][2]f64; +Matrix4x3f64 :: distinct [4][3]f64; +Matrix4x4f64 :: distinct [4][4]f64; + +Matrix1f64 :: Matrix1x1f64; +Matrix2f64 :: Matrix2x2f64; +Matrix3f64 :: Matrix3x3f64; +Matrix4f64 :: Matrix4x4f64; + +Quaternionf32 :: distinct quaternion128; +Quaternionf64 :: distinct quaternion256; + +MATRIX1F32_IDENTITY :: Matrix1f32{{1}}; +MATRIX2F32_IDENTITY :: Matrix2f32{{1, 0}, {0, 1}}; +MATRIX3F32_IDENTITY :: Matrix3f32{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; +MATRIX4F32_IDENTITY :: Matrix4f32{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; + +MATRIX1F64_IDENTITY :: Matrix1f64{{1}}; +MATRIX2F64_IDENTITY :: Matrix2f64{{1, 0}, {0, 1}}; +MATRIX3F64_IDENTITY :: Matrix3f64{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; +MATRIX4F64_IDENTITY :: Matrix4f64{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}; + +QUATERNIONF32_IDENTITY :: Quaternionf32(1); +QUATERNIONF64_IDENTITY :: Quaternionf64(1); + +VECTOR3F32_X_AXIS :: Vector3f32{1, 0, 0}; +VECTOR3F32_Y_AXIS :: Vector3f32{0, 1, 0}; +VECTOR3F32_Z_AXIS :: Vector3f32{0, 0, 1}; + +VECTOR3F64_X_AXIS :: Vector3f64{1, 0, 0}; +VECTOR3F64_Y_AXIS :: Vector3f64{0, 1, 0}; +VECTOR3F64_Z_AXIS :: Vector3f64{0, 0, 1}; vector2_orthogonal :: proc(v: $V/[2]$E) -> V where !IS_ARRAY(E), IS_FLOAT(E) { @@ -82,15 +123,47 @@ orthogonal :: proc{vector2_orthogonal, vector3_orthogonal}; -vector4_srgb_to_linear :: proc(col: Vector4) -> Vector4 { +vector4_srgb_to_linear_f32 :: proc(col: Vector4f32) -> Vector4f32 { + r := math.pow(col.x, 2.2); + g := math.pow(col.y, 2.2); + b := math.pow(col.z, 2.2); + a := col.w; + return {r, g, b, a}; +} +vector4_srgb_to_linear_f64 :: proc(col: Vector4f64) -> Vector4f64 { r := math.pow(col.x, 2.2); g := math.pow(col.y, 2.2); b := math.pow(col.z, 2.2); a := col.w; return {r, g, b, a}; } +vector4_srgb_to_linear :: proc{ + vector4_srgb_to_linear_f32, + vector4_srgb_to_linear_f64, +}; + +vector4_linear_to_srgb_f32 :: proc(col: Vector4f32) -> Vector4f32 { + a :: 2.51; + b :: 0.03; + c :: 2.43; + d :: 0.59; + e :: 0.14; + + x := col.x; + y := col.y; + z := col.z; + + x = (x * (a * x + b)) / (x * (c * x + d) + e); + y = (y * (a * y + b)) / (y * (c * y + d) + e); + z = (z * (a * z + b)) / (z * (c * z + d) + e); + + x = math.pow(clamp(x, 0, 1), 1.0 / 2.2); + y = math.pow(clamp(y, 0, 1), 1.0 / 2.2); + z = math.pow(clamp(z, 0, 1), 1.0 / 2.2); -vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 { + return {x, y, z, col.w}; +} +vector4_linear_to_srgb_f64 :: proc(col: Vector4f64) -> Vector4f64 { a :: 2.51; b :: 0.03; c :: 2.43; @@ -111,9 +184,41 @@ vector4_linear_to_srgb :: proc(col: Vector4) -> Vector4 { return {x, y, z, col.w}; } +vector4_linear_to_srgb :: proc{ + vector4_linear_to_srgb_f32, + vector4_linear_to_srgb_f64, +}; + + +vector4_hsl_to_rgb_f32 :: proc(h, s, l: f32, a: f32 = 1) -> Vector4f32 { + hue_to_rgb :: proc(p, q, t: f32) -> f32 { + t := t; + if t < 0 { t += 1; } + if t > 1 { t -= 1; } + switch { + case t < 1.0/6.0: return p + (q - p) * 6.0 * t; + case t < 1.0/2.0: return q; + case t < 2.0/3.0: return p + (q - p) * 6.0 * (2.0/3.0 - t); + } + return p; + } -vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 { - hue_to_rgb :: proc(p, q, t: Float) -> Float { + r, g, b: f32; + if s == 0 { + r = l; + g = l; + b = l; + } else { + q := l * (1+s) if l < 0.5 else l+s - l*s; + p := 2*l - q; + r = hue_to_rgb(p, q, h + 1.0/3.0); + g = hue_to_rgb(p, q, h); + b = hue_to_rgb(p, q, h - 1.0/3.0); + } + return {r, g, b, a}; +} +vector4_hsl_to_rgb_f64 :: proc(h, s, l: f64, a: f64 = 1) -> Vector4f64 { + hue_to_rgb :: proc(p, q, t: f64) -> f64 { t := t; if t < 0 { t += 1; } if t > 1 { t -= 1; } @@ -125,7 +230,7 @@ vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 { return p; } - r, g, b: Float; + r, g, b: f64; if s == 0 { r = l; g = l; @@ -139,15 +244,19 @@ vector4_hsl_to_rgb :: proc(h, s, l: Float, a: Float = 1) -> Vector4 { } return {r, g, b, a}; } +vector4_hsl_to_rgb :: proc{ + vector4_hsl_to_rgb_f32, + vector4_hsl_to_rgb_f64, +}; -vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 { +vector4_rgb_to_hsl_f32 :: proc(col: Vector4f32) -> Vector4f32 { r := col.x; g := col.y; b := col.z; a := col.w; v_min := min(r, g, b); v_max := max(r, g, b); - h, s, l: Float; + h, s, l: f32; h = 0.0; s = 0.0; l = (v_min + v_max) * 0.5; @@ -170,9 +279,51 @@ vector4_rgb_to_hsl :: proc(col: Vector4) -> Vector4 { return {h, s, l, a}; } +vector4_rgb_to_hsl_f64 :: proc(col: Vector4f64) -> Vector4f64 { + r := col.x; + g := col.y; + b := col.z; + a := col.w; + v_min := min(r, g, b); + v_max := max(r, g, b); + h, s, l: f64; + h = 0.0; + s = 0.0; + l = (v_min + v_max) * 0.5; + + if v_max != v_min { + d: = v_max - v_min; + s = d / (2.0 - v_max - v_min) if l > 0.5 else d / (v_max + v_min); + switch { + case v_max == r: + h = (g - b) / d + (6.0 if g < b else 0.0); + case v_max == g: + h = (b - r) / d + 2.0; + case v_max == b: + h = (r - g) / d + 4.0; + } + h *= 1.0/6.0; + } -quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> (q: Quaternion) { + return {h, s, l, a}; +} +vector4_rgb_to_hsl :: proc{ + vector4_rgb_to_hsl_f32, + vector4_rgb_to_hsl_f64, +}; + + +quaternion_angle_axis_f32 :: proc(angle_radians: f32, axis: Vector3f32) -> (q: Quaternionf32) { + t := angle_radians*0.5; + v := normalize(axis) * math.sin(t); + q.x = v.x; + q.y = v.y; + q.z = v.z; + q.w = math.cos(t); + return; +} +quaternion_angle_axis_f64 :: proc(angle_radians: f64, axis: Vector3f64) -> (q: Quaternionf64) { t := angle_radians*0.5; v := normalize(axis) * math.sin(t); q.x = v.x; @@ -181,34 +332,72 @@ quaternion_angle_axis :: proc(angle_radians: Float, axis: Vector3) -> (q: Quater q.w = math.cos(t); return; } +quaternion_angle_axis :: proc{ + quaternion_angle_axis_f32, + quaternion_angle_axis_f64, +}; -angle_from_quaternion :: proc(q: Quaternion) -> Float { +angle_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 { if abs(q.w) > math.SQRT_THREE*0.5 { return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2; } return math.cos(q.x) * 2; } +angle_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 { + if abs(q.w) > math.SQRT_THREE*0.5 { + return math.asin(q.x*q.x + q.y*q.y + q.z*q.z) * 2; + } -axis_from_quaternion :: proc(q: Quaternion) -> Vector3 { + return math.cos(q.x) * 2; +} +angle_from_quaternion :: proc{ + angle_from_quaternion_f32, + angle_from_quaternion_f64, +}; + +axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> Vector3f32 { + t1 := 1 - q.w*q.w; + if t1 < 0 { + return {0, 0, 1}; + } + t2 := 1.0 / math.sqrt(t1); + return {q.x*t2, q.y*t2, q.z*t2}; +} +axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> Vector3f64 { t1 := 1 - q.w*q.w; if t1 < 0 { - return Vector3{0, 0, 1}; + return {0, 0, 1}; } t2 := 1.0 / math.sqrt(t1); - return Vector3{q.x*t2, q.y*t2, q.z*t2}; + return {q.x*t2, q.y*t2, q.z*t2}; } -angle_axis_from_quaternion :: proc(q: Quaternion) -> (angle: Float, axis: Vector3) { +axis_from_quaternion :: proc{ + axis_from_quaternion_f32, + axis_from_quaternion_f64, +}; + +angle_axis_from_quaternion_f32 :: proc(q: Quaternionf32) -> (angle: f32, axis: Vector3f32) { angle = angle_from_quaternion(q); axis = axis_from_quaternion(q); return; } +angle_axis_from_quaternion_f64 :: proc(q: Quaternionf64) -> (angle: f64, axis: Vector3f64) { + angle = angle_from_quaternion(q); + axis = axis_from_quaternion(q); + return; +} +angle_axis_from_quaternion :: proc { + angle_axis_from_quaternion_f32, + angle_axis_from_quaternion_f64, +}; + -quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion { +quaternion_from_forward_and_up_f32 :: proc(forward, up: Vector3f32) -> Quaternionf32 { f := normalize(forward); s := normalize(cross(f, up)); u := cross(s, f); - m := Matrix3{ + m := Matrix3f32{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, @@ -216,7 +405,7 @@ quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion { tr := trace(m); - q: Quaternion; + q: Quaternionf32; switch { case tr > 0: @@ -247,29 +436,120 @@ quaternion_from_forward_and_up :: proc(forward, up: Vector3) -> Quaternion { return normalize(q); } +quaternion_from_forward_and_up_f64 :: proc(forward, up: Vector3f64) -> Quaternionf64 { + f := normalize(forward); + s := normalize(cross(f, up)); + u := cross(s, f); + m := Matrix3f64{ + {+s.x, +u.x, -f.x}, + {+s.y, +u.y, -f.y}, + {+s.z, +u.z, -f.z}, + }; + + tr := trace(m); -quaternion_look_at :: proc(eye, centre: Vector3, up: Vector3) -> Quaternion { + q: Quaternionf64; + + switch { + case tr > 0: + S := 2 * math.sqrt(1 + tr); + q.w = 0.25 * S; + q.x = (m[2][1] - m[1][2]) / S; + q.y = (m[0][2] - m[2][0]) / S; + q.z = (m[1][0] - m[0][1]) / S; + case (m[0][0] > m[1][1]) && (m[0][0] > m[2][2]): + S := 2 * math.sqrt(1 + m[0][0] - m[1][1] - m[2][2]); + q.w = (m[2][1] - m[1][2]) / S; + q.x = 0.25 * S; + q.y = (m[0][1] + m[1][0]) / S; + q.z = (m[0][2] + m[2][0]) / S; + case m[1][1] > m[2][2]: + S := 2 * math.sqrt(1 + m[1][1] - m[0][0] - m[2][2]); + q.w = (m[0][2] - m[2][0]) / S; + q.x = (m[0][1] + m[1][0]) / S; + q.y = 0.25 * S; + q.z = (m[1][2] + m[2][1]) / S; + case: + S := 2 * math.sqrt(1 + m[2][2] - m[0][0] - m[1][1]); + q.w = (m[1][0] - m[0][1]) / S; + q.x = (m[0][2] - m[2][0]) / S; + q.y = (m[1][2] + m[2][1]) / S; + q.z = 0.25 * S; + } + + return normalize(q); +} +quaternion_from_forward_and_up :: proc{ + quaternion_from_forward_and_up_f32, + quaternion_from_forward_and_up_f64, +}; + +quaternion_look_at_f32 :: proc(eye, centre: Vector3f32, up: Vector3f32) -> Quaternionf32 { return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)); } +quaternion_look_at_f64 :: proc(eye, centre: Vector3f64, up: Vector3f64) -> Quaternionf64 { + return quaternion_from_matrix3(matrix3_look_at(eye, centre, up)); +} +quaternion_look_at :: proc{ + quaternion_look_at_f32, + quaternion_look_at_f64, +}; -quaternion_nlerp :: proc(a, b: Quaternion, t: Float) -> (c: Quaternion) { +quaternion_nlerp_f32 :: proc(a, b: Quaternionf32, t: f32) -> (c: Quaternionf32) { c.x = a.x + (b.x-a.x)*t; c.y = a.y + (b.y-a.y)*t; c.z = a.z + (b.z-a.z)*t; c.w = a.w + (b.w-a.w)*t; return normalize(c); } +quaternion_nlerp_f64 :: proc(a, b: Quaternionf64, t: f64) -> (c: Quaternionf64) { + c.x = a.x + (b.x-a.x)*t; + c.y = a.y + (b.y-a.y)*t; + c.z = a.z + (b.z-a.z)*t; + c.w = a.w + (b.w-a.w)*t; + return normalize(c); +} +quaternion_nlerp :: proc{ + quaternion_nlerp_f32, + quaternion_nlerp_f64, +}; + +quaternion_slerp_f32 :: proc(x, y: Quaternionf32, t: f32) -> (q: Quaternionf32) { + a, b := x, y; + cos_angle := dot(a, b); + if cos_angle < 0 { + b = -b; + cos_angle = -cos_angle; + } + if cos_angle > 1 - F32_EPSILON { + q.x = a.x + (b.x-a.x)*t; + q.y = a.y + (b.y-a.y)*t; + q.z = a.z + (b.z-a.z)*t; + q.w = a.w + (b.w-a.w)*t; + return; + } + + angle := math.acos(cos_angle); + sin_angle := math.sin(angle); + factor_a := math.sin((1-t) * angle) / sin_angle; + factor_b := math.sin(t * angle) / sin_angle; -quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> (q: Quaternion) { + q.x = factor_a * a.x + factor_b * b.x; + q.y = factor_a * a.y + factor_b * b.y; + q.z = factor_a * a.z + factor_b * b.z; + q.w = factor_a * a.w + factor_b * b.w; + return; +} +quaternion_slerp_f64 :: proc(x, y: Quaternionf64, t: f64) -> (q: Quaternionf64) { a, b := x, y; cos_angle := dot(a, b); if cos_angle < 0 { b = -b; cos_angle = -cos_angle; } - if cos_angle > 1 - FLOAT_EPSILON { + if cos_angle > 1 - F64_EPSILON { q.x = a.x + (b.x-a.x)*t; q.y = a.y + (b.y-a.y)*t; q.z = a.z + (b.z-a.z)*t; @@ -289,23 +569,93 @@ quaternion_slerp :: proc(x, y: Quaternion, t: Float) -> (q: Quaternion) { q.w = factor_a * a.w + factor_b * b.w; return; } +quaternion_slerp :: proc{ + quaternion_slerp_f32, + quaternion_slerp_f64, +}; -quaternion_squad :: proc(q1, q2, s1, s2: Quaternion, h: Float) -> Quaternion { +quaternion_squad_f32 :: proc(q1, q2, s1, s2: Quaternionf32, h: f32) -> Quaternionf32 { slerp :: quaternion_slerp; return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h); } +quaternion_squad_f64 :: proc(q1, q2, s1, s2: Quaternionf64, h: f64) -> Quaternionf64 { + slerp :: quaternion_slerp; + return slerp(slerp(q1, q2, h), slerp(s1, s2, h), 2 * (1 - h) * h); +} +quaternion_squad :: proc{ + quaternion_squad_f32, + quaternion_squad_f64, +}; - -quaternion_from_matrix4 :: proc(m: Matrix4) -> (q: Quaternion) { - m3: Matrix3 = ---; +quaternion_from_matrix4_f32 :: proc(m: Matrix4f32) -> (q: Quaternionf32) { + m3: Matrix3f32 = ---; m3[0][0], m3[0][1], m3[0][2] = m[0][0], m[0][1], m[0][2]; m3[1][0], m3[1][1], m3[1][2] = m[1][0], m[1][1], m[1][2]; m3[2][0], m3[2][1], m3[2][2] = m[2][0], m[2][1], m[2][2]; return quaternion_from_matrix3(m3); } +quaternion_from_matrix4_f64 :: proc(m: Matrix4f64) -> (q: Quaternionf64) { + m3: Matrix3f64 = ---; + m3[0][0], m3[0][1], m3[0][2] = m[0][0], m[0][1], m[0][2]; + m3[1][0], m3[1][1], m3[1][2] = m[1][0], m[1][1], m[1][2]; + m3[2][0], m3[2][1], m3[2][2] = m[2][0], m[2][1], m[2][2]; + return quaternion_from_matrix3(m3); +} +quaternion_from_matrix4 :: proc{ + quaternion_from_matrix4_f32, + quaternion_from_matrix4_f64, +}; + +quaternion_from_matrix3_f32 :: proc(m: Matrix3f32) -> (q: Quaternionf32) { + four_x_squared_minus_1 := m[0][0] - m[1][1] - m[2][2]; + four_y_squared_minus_1 := m[1][1] - m[0][0] - m[2][2]; + four_z_squared_minus_1 := m[2][2] - m[0][0] - m[1][1]; + four_w_squared_minus_1 := m[0][0] + m[1][1] + m[2][2]; + + biggest_index := 0; + four_biggest_squared_minus_1 := four_w_squared_minus_1; + if four_x_squared_minus_1 > four_biggest_squared_minus_1 { + four_biggest_squared_minus_1 = four_x_squared_minus_1; + biggest_index = 1; + } + if four_y_squared_minus_1 > four_biggest_squared_minus_1 { + four_biggest_squared_minus_1 = four_y_squared_minus_1; + biggest_index = 2; + } + if four_z_squared_minus_1 > four_biggest_squared_minus_1 { + four_biggest_squared_minus_1 = four_z_squared_minus_1; + biggest_index = 3; + } + biggest_val := math.sqrt(four_biggest_squared_minus_1 + 1) * 0.5; + mult := 0.25 / biggest_val; -quaternion_from_matrix3 :: proc(m: Matrix3) -> (q: Quaternion) { + q = 1; + switch biggest_index { + case 0: + q.w = biggest_val; + q.x = (m[1][2] - m[2][1]) * mult; + q.y = (m[2][0] - m[0][2]) * mult; + q.z = (m[0][1] - m[1][0]) * mult; + case 1: + q.w = (m[1][2] - m[2][1]) * mult; + q.x = biggest_val; + q.y = (m[0][1] + m[1][0]) * mult; + q.z = (m[2][0] + m[0][2]) * mult; + case 2: + q.w = (m[2][0] - m[0][2]) * mult; + q.x = (m[0][1] + m[1][0]) * mult; + q.y = biggest_val; + q.z = (m[1][2] + m[2][1]) * mult; + case 3: + q.w = (m[0][1] - m[1][0]) * mult; + q.x = (m[2][0] + m[0][2]) * mult; + q.y = (m[1][2] + m[2][1]) * mult; + q.z = biggest_val; + } + return; +} +quaternion_from_matrix3_f64 :: proc(m: Matrix3f64) -> (q: Quaternionf64) { four_x_squared_minus_1 := m[0][0] - m[1][1] - m[2][2]; four_y_squared_minus_1 := m[1][1] - m[0][0] - m[2][2]; four_z_squared_minus_1 := m[2][2] - m[0][0] - m[1][1]; @@ -354,13 +704,17 @@ quaternion_from_matrix3 :: proc(m: Matrix3) -> (q: Quaternion) { } return; } +quaternion_from_matrix3 :: proc{ + quaternion_from_matrix3_f32, + quaternion_from_matrix3_f64, +}; -quaternion_between_two_vector3 :: proc(from, to: Vector3) -> (q: Quaternion) { +quaternion_between_two_vector3_f32 :: proc(from, to: Vector3f32) -> (q: Quaternionf32) { x := normalize(from); y := normalize(to); cos_theta := dot(x, y); - if abs(cos_theta + 1) < 2*FLOAT_EPSILON { + if abs(cos_theta + 1) < 2*F32_EPSILON { v := vector3_orthogonal(x); q.x = v.x; q.y = v.y; @@ -376,9 +730,33 @@ quaternion_between_two_vector3 :: proc(from, to: Vector3) -> (q: Quaternion) { q.z = v.z; return normalize(q); } +quaternion_between_two_vector3_f64 :: proc(from, to: Vector3f64) -> (q: Quaternionf64) { + x := normalize(from); + y := normalize(to); + cos_theta := dot(x, y); + if abs(cos_theta + 1) < 2*F64_EPSILON { + v := vector3_orthogonal(x); + q.x = v.x; + q.y = v.y; + q.z = v.z; + q.w = 0; + return; + } + v := cross(x, y); + w := cos_theta + 1; + q.w = w; + q.x = v.x; + q.y = v.y; + q.z = v.z; + return normalize(q); +} +quaternion_between_two_vector3 :: proc{ + quaternion_between_two_vector3_f32, + quaternion_between_two_vector3_f64, +}; -matrix2_inverse_transpose :: proc(m: Matrix2) -> (c: Matrix2) { +matrix2_inverse_transpose_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; @@ -387,10 +765,41 @@ matrix2_inverse_transpose :: proc(m: Matrix2) -> (c: Matrix2) { c[1][1] = +m[0][0] * id; return c; } -matrix2_determinant :: proc(m: Matrix2) -> Float { +matrix2_inverse_transpose_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { + d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; + id := 1.0/d; + c[0][0] = +m[1][1] * id; + c[0][1] = -m[0][1] * id; + c[1][0] = -m[1][0] * id; + c[1][1] = +m[0][0] * id; + return c; +} +matrix2_inverse_transpose :: proc{ + matrix2_inverse_transpose_f32, + matrix2_inverse_transpose_f64, +}; + +matrix2_determinant_f32 :: proc(m: Matrix2f32) -> f32 { + return m[0][0]*m[1][1] - m[1][0]*m[0][1]; +} +matrix2_determinant_f64 :: proc(m: Matrix2f64) -> f64 { return m[0][0]*m[1][1] - m[1][0]*m[0][1]; } -matrix2_inverse :: proc(m: Matrix2) -> (c: Matrix2) { +matrix2_determinant :: proc{ + matrix2_determinant_f32, + matrix2_determinant_f64, +}; + +matrix2_inverse_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { + d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; + id := 1.0/d; + c[0][0] = +m[1][1] * id; + c[1][0] = -m[0][1] * id; + c[0][1] = -m[1][0] * id; + c[1][1] = +m[0][0] * id; + return c; +} +matrix2_inverse_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { d := m[0][0]*m[1][1] - m[1][0]*m[0][1]; id := 1.0/d; c[0][0] = +m[1][1] * id; @@ -399,17 +808,55 @@ matrix2_inverse :: proc(m: Matrix2) -> (c: Matrix2) { c[1][1] = +m[0][0] * id; return c; } +matrix2_inverse :: proc{ + matrix2_inverse_f32, + matrix2_inverse_f64, +}; -matrix2_adjoint :: proc(m: Matrix2) -> (c: Matrix2) { +matrix2_adjoint_f32 :: proc(m: Matrix2f32) -> (c: Matrix2f32) { c[0][0] = +m[1][1]; c[0][1] = -m[1][0]; c[1][0] = -m[0][1]; c[1][1] = +m[0][0]; return c; } +matrix2_adjoint_f64 :: proc(m: Matrix2f64) -> (c: Matrix2f64) { + c[0][0] = +m[1][1]; + c[0][1] = -m[1][0]; + c[1][0] = -m[0][1]; + c[1][1] = +m[0][0]; + return c; +} +matrix2_adjoint :: proc{ + matrix2_adjoint_f32, + matrix2_adjoint_f64, +}; +matrix3_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix3f32) { + qxx := q.x * q.x; + qyy := q.y * q.y; + qzz := q.z * q.z; + qxz := q.x * q.z; + qxy := q.x * q.y; + qyz := q.y * q.z; + qwx := q.w * q.x; + qwy := q.w * q.y; + qwz := q.w * q.z; + + m[0][0] = 1 - 2 * (qyy + qzz); + m[0][1] = 2 * (qxy + qwz); + m[0][2] = 2 * (qxz - qwy); -matrix3_from_quaternion :: proc(q: Quaternion) -> (m: Matrix3) { + m[1][0] = 2 * (qxy - qwz); + m[1][1] = 1 - 2 * (qxx + qzz); + m[1][2] = 2 * (qyz + qwx); + + m[2][0] = 2 * (qxz + qwy); + m[2][1] = 2 * (qyz - qwx); + m[2][2] = 1 - 2 * (qxx + qyy); + return m; +} +matrix3_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix3f64) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; @@ -433,20 +880,40 @@ matrix3_from_quaternion :: proc(q: Quaternion) -> (m: Matrix3) { m[2][2] = 1 - 2 * (qxx + qyy); return m; } +matrix3_from_quaternion :: proc{ + matrix3_from_quaternion_f32, + matrix3_from_quaternion_f64, +}; -matrix3_inverse :: proc(m: Matrix3) -> Matrix3 { +matrix3_inverse_f32 :: proc(m: Matrix3f32) -> Matrix3f32 { return transpose(matrix3_inverse_transpose(m)); } +matrix3_inverse_f64 :: proc(m: Matrix3f64) -> Matrix3f64 { + return transpose(matrix3_inverse_transpose(m)); +} +matrix3_inverse :: proc{ + matrix3_inverse_f32, + matrix3_inverse_f64, +}; - -matrix3_determinant :: proc(m: Matrix3) -> Float { +matrix3_determinant_f32 :: proc(m: Matrix3f32) -> f32 { a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); return a + b + c; } +matrix3_determinant_f64 :: proc(m: Matrix3f64) -> f64 { + a := +m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]); + b := -m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]); + c := +m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]); + return a + b + c; +} +matrix3_determinant :: proc{ + matrix3_determinant_f32, + matrix3_determinant_f64, +}; -matrix3_adjoint :: proc(m: Matrix3) -> (adjoint: Matrix3) { +matrix3_adjoint_f32 :: proc(m: Matrix3f32) -> (adjoint: Matrix3f32) { adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); @@ -458,10 +925,24 @@ matrix3_adjoint :: proc(m: Matrix3) -> (adjoint: Matrix3) { adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); return adjoint; } +matrix3_adjoint_f64 :: proc(m: Matrix3f64) -> (adjoint: Matrix3f64) { + adjoint[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]); + adjoint[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); + adjoint[2][0] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]); + adjoint[0][1] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]); + adjoint[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]); + adjoint[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); + adjoint[0][2] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]); + adjoint[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); + adjoint[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]); + return adjoint; +} +matrix3_adjoint :: proc{ + matrix3_adjoint_f32, + matrix3_adjoint_f64, +}; -matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 { - inverse_transpose: Matrix3; - +matrix3_inverse_transpose_f32 :: proc(m: Matrix3f32) -> (inverse_transpose: Matrix3f32) { adjoint := matrix3_adjoint(m); determinant := matrix3_determinant(m); inv_determinant := 1.0 / determinant; @@ -470,25 +951,68 @@ matrix3_inverse_transpose :: proc(m: Matrix3) -> Matrix3 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } - return inverse_transpose; + return; } +matrix3_inverse_transpose_f64 :: proc(m: Matrix3f64) -> (inverse_transpose: Matrix3f64) { + adjoint := matrix3_adjoint(m); + determinant := matrix3_determinant(m); + inv_determinant := 1.0 / determinant; + for i in 0..<3 { + for j in 0..<3 { + inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; + } + } + return; +} +matrix3_inverse_transpose :: proc{ + matrix3_inverse_transpose_f32, + matrix3_inverse_transpose_f64, +}; - -matrix3_scale :: proc(s: Vector3) -> (m: Matrix3) { +matrix3_scale_f32 :: proc(s: Vector3f32) -> (m: Matrix3f32) { m[0][0] = s[0]; m[1][1] = s[1]; m[2][2] = s[2]; return m; } +matrix3_scale_f64 :: proc(s: Vector3f64) -> (m: Matrix3f64) { + m[0][0] = s[0]; + m[1][1] = s[1]; + m[2][2] = s[2]; + return m; +} +matrix3_scale :: proc{ + matrix3_scale_f32, + matrix3_scale_f64, +}; -matrix3_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix3 { +matrix3_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> (rot: Matrix3f32) { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); - rot: Matrix3 = ---; + rot[0][0] = c + t[0]*a[0]; + rot[0][1] = 0 + t[0]*a[1] + s*a[2]; + rot[0][2] = 0 + t[0]*a[2] - s*a[1]; + + rot[1][0] = 0 + t[1]*a[0] - s*a[2]; + rot[1][1] = c + t[1]*a[1]; + rot[1][2] = 0 + t[1]*a[2] + s*a[0]; + + rot[2][0] = 0 + t[2]*a[0] + s*a[1]; + rot[2][1] = 0 + t[2]*a[1] - s*a[0]; + rot[2][2] = c + t[2]*a[2]; + + return rot; +} +matrix3_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> (rot: Matrix3f64) { + c := math.cos(angle_radians); + s := math.sin(angle_radians); + + a := normalize(v); + t := a * (1-c); rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; @@ -504,19 +1028,64 @@ matrix3_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix3 { return rot; } +matrix3_rotate :: proc{ + matrix3_rotate_f32, + matrix3_rotate_f64, +}; -matrix3_look_at :: proc(eye, centre, up: Vector3) -> Matrix3 { +matrix3_look_at_f32 :: proc(eye, centre, up: Vector3f32) -> Matrix3f32 { + f := normalize(centre - eye); + s := normalize(cross(f, up)); + u := cross(s, f); + return Matrix3f32{ + {+s.x, +u.x, -f.x}, + {+s.y, +u.y, -f.y}, + {+s.z, +u.z, -f.z}, + }; +} +matrix3_look_at_f64 :: proc(eye, centre, up: Vector3f64) -> Matrix3f64 { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); - return Matrix3{ + return Matrix3f64{ {+s.x, +u.x, -f.x}, {+s.y, +u.y, -f.y}, {+s.z, +u.z, -f.z}, }; } +matrix3_look_at :: proc{ + matrix3_look_at_f32, + matrix3_look_at_f64, +}; + +matrix4_from_quaternion_f32 :: proc(q: Quaternionf32) -> (m: Matrix4f32) { + qxx := q.x * q.x; + qyy := q.y * q.y; + qzz := q.z * q.z; + qxz := q.x * q.z; + qxy := q.x * q.y; + qyz := q.y * q.z; + qwx := q.w * q.x; + qwy := q.w * q.y; + qwz := q.w * q.z; + + m[0][0] = 1 - 2 * (qyy + qzz); + m[0][1] = 2 * (qxy + qwz); + m[0][2] = 2 * (qxz - qwy); + + m[1][0] = 2 * (qxy - qwz); + m[1][1] = 1 - 2 * (qxx + qzz); + m[1][2] = 2 * (qyz + qwx); + + m[2][0] = 2 * (qxz + qwy); + m[2][1] = 2 * (qyz - qwx); + m[2][2] = 1 - 2 * (qxx + qyy); -matrix4_from_quaternion :: proc(q: Quaternion) -> (m: Matrix4) { + m[3][3] = 1; + + return m; +} +matrix4_from_quaternion_f64 :: proc(q: Quaternionf64) -> (m: Matrix4f64) { qxx := q.x * q.x; qyy := q.y * q.y; qzz := q.z * q.z; @@ -543,22 +1112,42 @@ matrix4_from_quaternion :: proc(q: Quaternion) -> (m: Matrix4) { return m; } +matrix4_from_quaternion :: proc{ + matrix4_from_quaternion_f32, + matrix4_from_quaternion_f64, +}; -matrix4_from_trs :: proc(t: Vector3, r: Quaternion, s: Vector3) -> Matrix4 { +matrix4_from_trs_f32 :: proc(t: Vector3f32, r: Quaternionf32, s: Vector3f32) -> Matrix4f32 { + translation := matrix4_translate(t); + rotation := matrix4_from_quaternion(r); + scale := matrix4_scale(s); + return mul(translation, mul(rotation, scale)); +} +matrix4_from_trs_f64 :: proc(t: Vector3f64, r: Quaternionf64, s: Vector3f64) -> Matrix4f64 { translation := matrix4_translate(t); rotation := matrix4_from_quaternion(r); scale := matrix4_scale(s); return mul(translation, mul(rotation, scale)); } +matrix4_from_trs :: proc{ + matrix4_from_trs_f32, + matrix4_from_trs_f64, +}; -matrix4_inverse :: proc(m: Matrix4) -> Matrix4 { +matrix4_inverse_f32 :: proc(m: Matrix4f32) -> Matrix4f32 { return transpose(matrix4_inverse_transpose(m)); } +matrix4_inverse_f64 :: proc(m: Matrix4f64) -> Matrix4f64 { + return transpose(matrix4_inverse_transpose(m)); +} +matrix4_inverse :: proc{ + matrix4_inverse_f32, + matrix4_inverse_f64, +}; - -matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float { - cut_down: Matrix3; +matrix4_minor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { + cut_down: Matrix3f32; for i in 0..<3 { col := i if i < c else i+1; for j in 0..<3 { @@ -568,67 +1157,165 @@ matrix4_minor :: proc(m: Matrix4, c, r: int) -> Float { } return matrix3_determinant(cut_down); } +matrix4_minor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { + cut_down: Matrix3f64; + for i in 0..<3 { + col := i if i < c else i+1; + for j in 0..<3 { + row := j if j < r else j+1; + cut_down[i][j] = m[col][row]; + } + } + return matrix3_determinant(cut_down); +} +matrix4_minor :: proc{ + matrix4_minor_f32, + matrix4_minor_f64, +}; -matrix4_cofactor :: proc(m: Matrix4, c, r: int) -> Float { - sign, minor: Float; +matrix4_cofactor_f32 :: proc(m: Matrix4f32, c, r: int) -> f32 { + sign, minor: f32; + sign = 1 if (c + r) % 2 == 0 else -1; + minor = matrix4_minor(m, c, r); + return sign * minor; +} +matrix4_cofactor_f64 :: proc(m: Matrix4f64, c, r: int) -> f64 { + sign, minor: f64; sign = 1 if (c + r) % 2 == 0 else -1; minor = matrix4_minor(m, c, r); return sign * minor; } +matrix4_cofactor :: proc{ + matrix4_cofactor_f32, + matrix4_cofactor_f64, +}; -matrix4_adjoint :: proc(m: Matrix4) -> Matrix4 { - adjoint: Matrix4; +matrix4_adjoint_f32 :: proc(m: Matrix4f32) -> (adjoint: Matrix4f32) { for i in 0..<4 { for j in 0..<4 { adjoint[i][j] = matrix4_cofactor(m, i, j); } } - return adjoint; + return; +} +matrix4_adjoint_f64 :: proc(m: Matrix4f64) -> (adjoint: Matrix4f64) { + for i in 0..<4 { + for j in 0..<4 { + adjoint[i][j] = matrix4_cofactor(m, i, j); + } + } + return; } +matrix4_adjoint :: proc{ + matrix4_adjoint_f32, + matrix4_adjoint_f64, +}; -matrix4_determinant :: proc(m: Matrix4) -> Float { +matrix4_determinant_f32 :: proc(m: Matrix4f32) -> (determinant: f32) { adjoint := matrix4_adjoint(m); - determinant: Float = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } - return determinant; - + return; } +matrix4_determinant_f64 :: proc(m: Matrix4f64) -> (determinant: f64) { + adjoint := matrix4_adjoint(m); + for i in 0..<4 { + determinant += m[i][0] * adjoint[i][0]; + } + return; +} +matrix4_determinant :: proc{ + matrix4_determinant_f32, + matrix4_determinant_f64, +}; -matrix4_inverse_transpose :: proc(m: Matrix4) -> Matrix4 { +matrix4_inverse_transpose_f32 :: proc(m: Matrix4f32) -> (inverse_transpose: Matrix4f32) { adjoint := matrix4_adjoint(m); - determinant: Float = 0; + determinant: f32 = 0; for i in 0..<4 { determinant += m[i][0] * adjoint[i][0]; } inv_determinant := 1.0 / determinant; - inverse_transpose: Matrix4; for i in 0..<4 { for j in 0..<4 { inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; } } - return inverse_transpose; + return; } +matrix4_inverse_transpose_f64 :: proc(m: Matrix4f64) -> (inverse_transpose: Matrix4f64) { + adjoint := matrix4_adjoint(m); + determinant: f64 = 0; + for i in 0..<4 { + determinant += m[i][0] * adjoint[i][0]; + } + inv_determinant := 1.0 / determinant; + for i in 0..<4 { + for j in 0..<4 { + inverse_transpose[i][j] = adjoint[i][j] * inv_determinant; + } + } + return; +} +matrix4_inverse_transpose :: proc{ + matrix4_inverse_transpose_f32, + matrix4_inverse_transpose_f64, +}; -matrix4_translate :: proc(v: Vector3) -> Matrix4 { - m := MATRIX4_IDENTITY; +matrix4_translate_f32 :: proc(v: Vector3f32) -> Matrix4f32 { + m := MATRIX4F32_IDENTITY; m[3][0] = v[0]; m[3][1] = v[1]; m[3][2] = v[2]; return m; } +matrix4_translate_f64 :: proc(v: Vector3f64) -> Matrix4f64 { + m := MATRIX4F64_IDENTITY; + m[3][0] = v[0]; + m[3][1] = v[1]; + m[3][2] = v[2]; + return m; +} +matrix4_translate :: proc{ + matrix4_translate_f32, + matrix4_translate_f64, +}; + +matrix4_rotate_f32 :: proc(angle_radians: f32, v: Vector3f32) -> Matrix4f32 { + c := math.cos(angle_radians); + s := math.sin(angle_radians); + a := normalize(v); + t := a * (1-c); + + rot := MATRIX4F32_IDENTITY; -matrix4_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix4 { + rot[0][0] = c + t[0]*a[0]; + rot[0][1] = 0 + t[0]*a[1] + s*a[2]; + rot[0][2] = 0 + t[0]*a[2] - s*a[1]; + rot[0][3] = 0; + + rot[1][0] = 0 + t[1]*a[0] - s*a[2]; + rot[1][1] = c + t[1]*a[1]; + rot[1][2] = 0 + t[1]*a[2] + s*a[0]; + rot[1][3] = 0; + + rot[2][0] = 0 + t[2]*a[0] + s*a[1]; + rot[2][1] = 0 + t[2]*a[1] - s*a[0]; + rot[2][2] = c + t[2]*a[2]; + rot[2][3] = 0; + + return rot; +} +matrix4_rotate_f64 :: proc(angle_radians: f64, v: Vector3f64) -> Matrix4f64 { c := math.cos(angle_radians); s := math.sin(angle_radians); a := normalize(v); t := a * (1-c); - rot := MATRIX4_IDENTITY; + rot := MATRIX4F64_IDENTITY; rot[0][0] = c + t[0]*a[0]; rot[0][1] = 0 + t[0]*a[1] + s*a[2]; @@ -647,34 +1334,65 @@ matrix4_rotate :: proc(angle_radians: Float, v: Vector3) -> Matrix4 { return rot; } +matrix4_rotate :: proc{ + matrix4_rotate_f32, + matrix4_rotate_f64, +}; -matrix4_scale :: proc(v: Vector3) -> Matrix4 { - m: Matrix4; +matrix4_scale_f32 :: proc(v: Vector3f32) -> (m: Matrix4f32) { m[0][0] = v[0]; m[1][1] = v[1]; m[2][2] = v[2]; m[3][3] = 1; - return m; + return; +} +matrix4_scale_f64 :: proc(v: Vector3f64) -> (m: Matrix4f64) { + m[0][0] = v[0]; + m[1][1] = v[1]; + m[2][2] = v[2]; + m[3][3] = 1; + return; } +matrix4_scale :: proc{ + matrix4_scale_f32, + matrix4_scale_f64, +}; -matrix4_look_at :: proc(eye, centre, up: Vector3, flip_z_axis := true) -> Matrix4 { +matrix4_look_at_f32 :: proc(eye, centre, up: Vector3f32, flip_z_axis := true) -> (m: Matrix4f32) { f := normalize(centre - eye); s := normalize(cross(f, up)); u := cross(s, f); fe := dot(f, eye); - m := Matrix4{ + return { {+s.x, +u.x, -f.x, 0}, {+s.y, +u.y, -f.y, 0}, {+s.z, +u.z, -f.z, 0}, {-dot(s, eye), -dot(u, eye), +fe if flip_z_axis else -fe, 1}, }; - return m; } +matrix4_look_at_f64 :: proc(eye, centre, up: Vector3f64, flip_z_axis := true) -> (m: Matrix4f64) { + f := normalize(centre - eye); + s := normalize(cross(f, up)); + u := cross(s, f); + + fe := dot(f, eye); + + return { + {+s.x, +u.x, -f.x, 0}, + {+s.y, +u.y, -f.y, 0}, + {+s.z, +u.z, -f.z, 0}, + {-dot(s, eye), -dot(u, eye), +fe if flip_z_axis else -fe, 1}, + }; +} +matrix4_look_at :: proc{ + matrix4_look_at_f32, + matrix4_look_at_f64, +}; -matrix4_perspective :: proc(fovy, aspect, near, far: Float, flip_z_axis := true) -> (m: Matrix4) { +matrix4_perspective_f32 :: proc(fovy, aspect, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); @@ -688,9 +1406,26 @@ matrix4_perspective :: proc(fovy, aspect, near, far: Float, flip_z_axis := true) return; } +matrix4_perspective_f64 :: proc(fovy, aspect, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { + tan_half_fovy := math.tan(0.5 * fovy); + m[0][0] = 1 / (aspect*tan_half_fovy); + m[1][1] = 1 / (tan_half_fovy); + m[2][2] = +(far + near) / (far - near); + m[2][3] = +1; + m[3][2] = -2*far*near / (far - near); + + if flip_z_axis { + m[2] = -m[2]; + } + return; +} +matrix4_perspective :: proc{ + matrix4_perspective_f32, + matrix4_perspective_f64, +}; -matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float, flip_z_axis := true) -> (m: Matrix4) { +matrix_ortho3d_f32 :: proc(left, right, bottom, top, near, far: f32, flip_z_axis := true) -> (m: Matrix4f32) { m[0][0] = +2 / (right - left); m[1][1] = +2 / (top - bottom); m[2][2] = +2 / (far - near); @@ -705,9 +1440,27 @@ matrix_ortho3d :: proc(left, right, bottom, top, near, far: Float, flip_z_axis : return; } +matrix_ortho3d_f64 :: proc(left, right, bottom, top, near, far: f64, flip_z_axis := true) -> (m: Matrix4f64) { + m[0][0] = +2 / (right - left); + m[1][1] = +2 / (top - bottom); + m[2][2] = +2 / (far - near); + m[3][0] = -(right + left) / (right - left); + m[3][1] = -(top + bottom) / (top - bottom); + m[3][2] = -(far + near) / (far- near); + m[3][3] = 1; + + if flip_z_axis { + m[2] = -m[2]; + } + return; +} +matrix_ortho3d :: proc{ + matrix_ortho3d_f32, + matrix_ortho3d_f64, +}; -matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := true) -> (m: Matrix4) { +matrix4_infinite_perspective_f32 :: proc(fovy, aspect, near: f32, flip_z_axis := true) -> (m: Matrix4f32) { tan_half_fovy := math.tan(0.5 * fovy); m[0][0] = 1 / (aspect*tan_half_fovy); m[1][1] = 1 / (tan_half_fovy); @@ -721,83 +1474,231 @@ matrix4_infinite_perspective :: proc(fovy, aspect, near: Float, flip_z_axis := t return; } +matrix4_infinite_perspective_f64 :: proc(fovy, aspect, near: f64, flip_z_axis := true) -> (m: Matrix4f64) { + tan_half_fovy := math.tan(0.5 * fovy); + m[0][0] = 1 / (aspect*tan_half_fovy); + m[1][1] = 1 / (tan_half_fovy); + m[2][2] = +1; + m[2][3] = +1; + m[3][2] = -2*near; + if flip_z_axis { + m[2] = -m[2]; + } -matrix2_from_scalar :: proc(f: Float) -> (m: Matrix2) { + return; +} +matrix4_infinite_perspective :: proc{ + matrix4_infinite_perspective_f32, + matrix4_infinite_perspective_f64, +}; + + +matrix2_from_scalar_f32 :: proc(f: f32) -> (m: Matrix2f32) { + m[0][0], m[0][1] = f, 0; + m[1][0], m[1][1] = 0, f; + return; +} +matrix2_from_scalar_f64 :: proc(f: f64) -> (m: Matrix2f64) { m[0][0], m[0][1] = f, 0; m[1][0], m[1][1] = 0, f; return; } +matrix2_from_scalar :: proc{ + matrix2_from_scalar_f32, + matrix2_from_scalar_f64, +}; -matrix3_from_scalar :: proc(f: Float) -> (m: Matrix3) { +matrix3_from_scalar_f32 :: proc(f: f32) -> (m: Matrix3f32) { m[0][0], m[0][1], m[0][2] = f, 0, 0; m[1][0], m[1][1], m[1][2] = 0, f, 0; m[2][0], m[2][1], m[2][2] = 0, 0, f; return; } +matrix3_from_scalar_f64 :: proc(f: f64) -> (m: Matrix3f64) { + m[0][0], m[0][1], m[0][2] = f, 0, 0; + m[1][0], m[1][1], m[1][2] = 0, f, 0; + m[2][0], m[2][1], m[2][2] = 0, 0, f; + return; +} +matrix3_from_scalar :: proc{ + matrix3_from_scalar_f32, + matrix3_from_scalar_f64, +}; -matrix4_from_scalar :: proc(f: Float) -> (m: Matrix4) { +matrix4_from_scalar_f32 :: proc(f: f32) -> (m: Matrix4f32) { m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0; m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0; m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0; m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f; return; } +matrix4_from_scalar_f64 :: proc(f: f64) -> (m: Matrix4f64) { + m[0][0], m[0][1], m[0][2], m[0][3] = f, 0, 0, 0; + m[1][0], m[1][1], m[1][2], m[1][3] = 0, f, 0, 0; + m[2][0], m[2][1], m[2][2], m[2][3] = 0, 0, f, 0; + m[3][0], m[3][1], m[3][2], m[3][3] = 0, 0, 0, f; + return; +} +matrix4_from_scalar :: proc{ + matrix4_from_scalar_f32, + matrix4_from_scalar_f64, +}; -matrix2_from_matrix3 :: proc(m: Matrix3) -> (r: Matrix2) { +matrix2_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix2f32) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } +matrix2_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix2f64) { + r[0][0], r[0][1] = m[0][0], m[0][1]; + r[1][0], r[1][1] = m[1][0], m[1][1]; + return; +} +matrix2_from_matrix3 :: proc{ + matrix2_from_matrix3_f32, + matrix2_from_matrix3_f64, +}; -matrix2_from_matrix4 :: proc(m: Matrix4) -> (r: Matrix2) { +matrix2_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix2f32) { r[0][0], r[0][1] = m[0][0], m[0][1]; r[1][0], r[1][1] = m[1][0], m[1][1]; return; } +matrix2_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix2f64) { + r[0][0], r[0][1] = m[0][0], m[0][1]; + r[1][0], r[1][1] = m[1][0], m[1][1]; + return; +} +matrix2_from_matrix4 :: proc{ + matrix2_from_matrix4_f32, + matrix2_from_matrix4_f64, +}; -matrix3_from_matrix2 :: proc(m: Matrix2) -> (r: Matrix3) { +matrix3_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix3f32) { + r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0; + r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0; + r[2][0], r[2][1], r[2][2] = 0, 0, 1; + return; +} +matrix3_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix3f64) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], 0; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], 0; r[2][0], r[2][1], r[2][2] = 0, 0, 1; return; } +matrix3_from_matrix2 :: proc{ + matrix3_from_matrix2_f32, + matrix3_from_matrix2_f64, +}; -matrix3_from_matrix4 :: proc(m: Matrix4) -> (r: Matrix3) { +matrix3_from_matrix4_f32 :: proc(m: Matrix4f32) -> (r: Matrix3f32) { r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2]; r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2]; r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2]; return; } +matrix3_from_matrix4_f64 :: proc(m: Matrix4f64) -> (r: Matrix3f64) { + r[0][0], r[0][1], r[0][2] = m[0][0], m[0][1], m[0][2]; + r[1][0], r[1][1], r[1][2] = m[1][0], m[1][1], m[1][2]; + r[2][0], r[2][1], r[2][2] = m[2][0], m[2][1], m[2][2]; + return; +} +matrix3_from_matrix4 :: proc{ + matrix3_from_matrix4_f32, + matrix3_from_matrix4_f64, +}; -matrix4_from_matrix2 :: proc(m: Matrix2) -> (r: Matrix4) { +matrix4_from_matrix2_f32 :: proc(m: Matrix2f32) -> (r: Matrix4f32) { + r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0; + r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0; + r[2][0], r[2][1], r[2][2], r[2][3] = 0, 0, 1, 0; + r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; + return; +} +matrix4_from_matrix2_f64 :: proc(m: Matrix2f64) -> (r: Matrix4f64) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], 0, 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], 0, 0; r[2][0], r[2][1], r[2][2], r[2][3] = 0, 0, 1, 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } -matrix4_from_matrix3 :: proc(m: Matrix3) -> (r: Matrix4) { +matrix4_from_matrix2 :: proc{ + matrix4_from_matrix2_f32, + matrix4_from_matrix2_f64, +}; + +matrix4_from_matrix3_f32 :: proc(m: Matrix3f32) -> (r: Matrix4f32) { r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0; r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0; r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0; r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; return; } +matrix4_from_matrix3_f64 :: proc(m: Matrix3f64) -> (r: Matrix4f64) { + r[0][0], r[0][1], r[0][2], r[0][3] = m[0][0], m[0][1], m[0][2], 0; + r[1][0], r[1][1], r[1][2], r[1][3] = m[1][0], m[1][1], m[1][2], 0; + r[2][0], r[2][1], r[2][2], r[2][3] = m[2][0], m[2][1], m[2][2], 0; + r[3][0], r[3][1], r[3][2], r[3][3] = 0, 0, 0, 1; + return; +} +matrix4_from_matrix3 :: proc{ + matrix4_from_matrix3_f32, + matrix4_from_matrix3_f64, +}; -quaternion_from_scalar :: proc(f: Float) -> (q: Quaternion) { +quaternion_from_scalar_f32 :: proc(f: f32) -> (q: Quaternionf32) { + q.w = f; + return; +} +quaternion_from_scalar_f64 :: proc(f: f64) -> (q: Quaternionf64) { q.w = f; return; } +quaternion_from_scalar :: proc{ + quaternion_from_scalar_f32, + quaternion_from_scalar_f64, +}; + +to_matrix2f32 :: proc{matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32}; +to_matrix3f32 :: proc{matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32}; +to_matrix4f32 :: proc{matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32}; +to_quaternionf32 :: proc{quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32}; + +to_matrix2f64 :: proc{matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64}; +to_matrix3f64 :: proc{matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64}; +to_matrix4f64 :: proc{matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64}; +to_quaternionf64 :: proc{quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64}; + + +to_matrix2f :: proc{ + matrix2_from_scalar_f32, matrix2_from_matrix3_f32, matrix2_from_matrix4_f32, + matrix2_from_scalar_f64, matrix2_from_matrix3_f64, matrix2_from_matrix4_f64, +}; +to_matrix3 :: proc{ + matrix3_from_scalar_f32, matrix3_from_matrix2_f32, matrix3_from_matrix4_f32, matrix3_from_quaternion_f32, + matrix3_from_scalar_f64, matrix3_from_matrix2_f64, matrix3_from_matrix4_f64, matrix3_from_quaternion_f64, +}; +to_matrix4 :: proc{ + matrix4_from_scalar_f32, matrix4_from_matrix2_f32, matrix4_from_matrix3_f32, matrix4_from_quaternion_f32, + matrix4_from_scalar_f64, matrix4_from_matrix2_f64, matrix4_from_matrix3_f64, matrix4_from_quaternion_f64, +}; +to_quaternion :: proc{ + quaternion_from_scalar_f32, quaternion_from_matrix3_f32, quaternion_from_matrix4_f32, + quaternion_from_scalar_f64, quaternion_from_matrix3_f64, quaternion_from_matrix4_f64, +}; -to_matrix2 :: proc{matrix2_from_scalar, matrix2_from_matrix3, matrix2_from_matrix4}; -to_matrix3 :: proc{matrix3_from_scalar, matrix3_from_matrix2, matrix3_from_matrix4, matrix3_from_quaternion}; -to_matrix4 :: proc{matrix4_from_scalar, matrix4_from_matrix2, matrix4_from_matrix3, matrix4_from_quaternion}; -to_quaternion :: proc{quaternion_from_scalar, quaternion_from_matrix3, quaternion_from_matrix4}; +matrix2_orthonormalize_f32 :: proc(m: Matrix2f32) -> (r: Matrix2f32) { + r[0] = normalize(m[0]); + d0 := dot(r[0], r[1]); + r[1] -= r[0] * d0; + r[1] = normalize(r[1]); -matrix2_orthonormalize :: proc(m: Matrix2) -> (r: Matrix2) { + return; +} +matrix2_orthonormalize_f64 :: proc(m: Matrix2f64) -> (r: Matrix2f64) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); @@ -806,8 +1707,12 @@ matrix2_orthonormalize :: proc(m: Matrix2) -> (r: Matrix2) { return; } +matrix2_orthonormalize :: proc{ + matrix2_orthonormalize_f32, + matrix2_orthonormalize_f64, +}; -matrix3_orthonormalize :: proc(m: Matrix3) -> (r: Matrix3) { +matrix3_orthonormalize_f32 :: proc(m: Matrix3f32) -> (r: Matrix3f32) { r[0] = normalize(m[0]); d0 := dot(r[0], r[1]); @@ -821,22 +1726,49 @@ matrix3_orthonormalize :: proc(m: Matrix3) -> (r: Matrix3) { return; } +matrix3_orthonormalize_f64 :: proc(m: Matrix3f64) -> (r: Matrix3f64) { + r[0] = normalize(m[0]); -vector3_orthonormalize :: proc(x, y: Vector3) -> (z: Vector3) { - return normalize(x - y * dot(y, x)); + d0 := dot(r[0], r[1]); + r[1] -= r[0] * d0; + r[1] = normalize(r[1]); + + d1 := dot(r[1], r[2]); + d0 = dot(r[0], r[2]); + r[2] -= r[0]*d0 + r[1]*d1; + r[2] = normalize(r[2]); + + return; } +matrix3_orthonormalize :: proc{ + matrix3_orthonormalize_f32, + matrix3_orthonormalize_f64, +}; +vector3_orthonormalize_f32 :: proc(x, y: Vector3f32) -> (z: Vector3f32) { + return normalize(x - y * dot(y, x)); +} +vector3_orthonormalize_f64 :: proc(x, y: Vector3f64) -> (z: Vector3f64) { + return normalize(x - y * dot(y, x)); +} +vector3_orthonormalize :: proc{ + vector3_orthonormalize_f32, + vector3_orthonormalize_f64, +}; orthonormalize :: proc{ - matrix2_orthonormalize, - matrix3_orthonormalize, - vector3_orthonormalize, + matrix2_orthonormalize_f32, + matrix2_orthonormalize_f64, + matrix3_orthonormalize_f32, + matrix3_orthonormalize_f64, + vector3_orthonormalize_f32, + vector3_orthonormalize_f64, }; -matrix4_orientation :: proc(normal, up: Vector3) -> Matrix4 { +matrix4_orientation_f32 :: proc(normal, up: Vector3f32) -> Matrix4f32 { if all(equal(normal, up)) { - return MATRIX4_IDENTITY; + return MATRIX4F32_IDENTITY; } rotation_axis := cross(up, normal); @@ -844,29 +1776,73 @@ matrix4_orientation :: proc(normal, up: Vector3) -> Matrix4 { return matrix4_rotate(angle, rotation_axis); } +matrix4_orientation_f64 :: proc(normal, up: Vector3f64) -> Matrix4f64 { + if all(equal(normal, up)) { + return MATRIX4F64_IDENTITY; + } + rotation_axis := cross(up, normal); + angle := math.acos(dot(normal, up)); + return matrix4_rotate(angle, rotation_axis); +} +matrix4_orientation :: proc{ + matrix4_orientation_f32, + matrix4_orientation_f64, +}; -euclidean_from_polar :: proc(polar: Vector2) -> Vector3 { +euclidean_from_polar_f32 :: proc(polar: Vector2f32) -> Vector3f32 { latitude, longitude := polar.x, polar.y; cx, sx := math.cos(latitude), math.sin(latitude); cy, sy := math.cos(longitude), math.sin(longitude); - return Vector3{ + return { cx*sy, sx, cx*cy, }; } -polar_from_euclidean :: proc(euclidean: Vector3) -> Vector3 { +euclidean_from_polar_f64 :: proc(polar: Vector2f64) -> Vector3f64 { + latitude, longitude := polar.x, polar.y; + cx, sx := math.cos(latitude), math.sin(latitude); + cy, sy := math.cos(longitude), math.sin(longitude); + + return { + cx*sy, + sx, + cx*cy, + }; +} +euclidean_from_polar :: proc{ + euclidean_from_polar_f32, + euclidean_from_polar_f64, +}; + +polar_from_euclidean_f32 :: proc(euclidean: Vector3f32) -> Vector3f32 { n := length(euclidean); tmp := euclidean / n; xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z); - return Vector3{ + return { math.asin(tmp.y), math.atan2(tmp.x, tmp.z), xz_dist, }; } +polar_from_euclidean_f64 :: proc(euclidean: Vector3f64) -> Vector3f64 { + n := length(euclidean); + tmp := euclidean / n; + + xz_dist := math.sqrt(tmp.x*tmp.x + tmp.z*tmp.z); + + return { + math.asin(tmp.y), + math.atan2(tmp.x, tmp.z), + xz_dist, + }; +} +polar_from_euclidean :: proc{ + polar_from_euclidean_f32, + polar_from_euclidean_f64, +}; |