diff options
| author | gingerBill <bill@gingerbill.org> | 2021-11-16 15:05:04 +0000 |
|---|---|---|
| committer | gingerBill <bill@gingerbill.org> | 2021-11-16 15:05:04 +0000 |
| commit | e721f26a76facc8d0d9b5f2fccdb171c3857a327 (patch) | |
| tree | 2cd126a5b957972443fcc2b169f4c090856998bc /core/math/math_basic.odin | |
| parent | 91408cb21f5ad7d04f5dc63dc350f727fe93d920 (diff) | |
Implement `ln` based off FreeBSD's /usr/src/lib/msun/src/e_log.c
Diffstat (limited to 'core/math/math_basic.odin')
| -rw-r--r-- | core/math/math_basic.odin | 124 |
1 files changed, 117 insertions, 7 deletions
diff --git a/core/math/math_basic.odin b/core/math/math_basic.odin index fe7b07d98..27c9bb366 100644 --- a/core/math/math_basic.odin +++ b/core/math/math_basic.odin @@ -33,13 +33,6 @@ foreign _ { @(link_name="llvm.fmuladd.f64") fmuladd_f64 :: proc(a, b, c: f64) -> f64 --- - @(link_name="llvm.log.f16") - ln_f16 :: proc(x: f16) -> f16 --- - @(link_name="llvm.log.f32") - ln_f32 :: proc(x: f32) -> f32 --- - @(link_name="llvm.log.f64") - ln_f64 :: proc(x: f64) -> f64 --- - @(link_name="llvm.exp.f16") exp_f16 :: proc(x: f16) -> f16 --- @(link_name="llvm.exp.f32") @@ -57,3 +50,120 @@ sqrt_f32 :: proc "contextless" (x: f32) -> f32 { sqrt_f64 :: proc "contextless" (x: f64) -> f64 { return intrinsics.sqrt(x) } + + + +ln_f64 :: proc "contextless" (x: f64) -> f64 { + // The original C code, the long comment, and the constants + // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c + // and came with this notice. + // + // ==================================================== + // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + // + // Developed at SunPro, a Sun Microsystems, Inc. business. + // Permission to use, copy, modify, and distribute this + // software is freely granted, provided that this notice + // is preserved. + // ==================================================== + // + // __ieee754_log(x) + // Return the logarithm of x + // + // Method : + // 1. Argument Reduction: find k and f such that + // x = 2**k * (1+f), + // where sqrt(2)/2 < 1+f < sqrt(2) . + // + // 2. Approximation of log(1+f). + // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + // = 2s + 2/3 s**3 + 2/5 s**5 + ....., + // = 2s + s*R + // We use a special Reme algorithm on [0,0.1716] to generate + // a polynomial of degree 14 to approximate R. The maximum error + // of this polynomial approximation is bounded by 2**-58.45. In + // other words, + // 2 4 6 8 10 12 14 + // R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s + // (the values of L1 to L7 are listed in the program) and + // | 2 14 | -58.45 + // | L1*s +...+L7*s - R(z) | <= 2 + // | | + // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + // In order to guarantee error in log below 1ulp, we compute log by + // log(1+f) = f - s*(f - R) (if f is not too large) + // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + // + // 3. Finally, log(x) = k*Ln2 + log(1+f). + // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo))) + // Here Ln2 is split into two floating point number: + // Ln2_hi + Ln2_lo, + // where n*Ln2_hi is always exact for |n| < 2000. + // + // Special cases: + // log(x) is NaN with signal if x < 0 (including -INF) ; + // log(+INF) is +INF; log(0) is -INF with signal; + // log(NaN) is that NaN with no signal. + // + // Accuracy: + // according to an error analysis, the error is always less than + // 1 ulp (unit in the last place). + // + // Constants: + // The hexadecimal values are the intended ones for the following + // constants. The decimal values may be used, provided that the + // compiler will convert from decimal to binary accurately enough + // to produce the hexadecimal values shown. + + LN2_HI :: 0h3fe62e42_fee00000 // 6.93147180369123816490e-01 + LN2_LO :: 0h3dea39ef_35793c76 // 1.90821492927058770002e-10 + L1 :: 0h3fe55555_55555593 // 6.666666666666735130e-01 + L2 :: 0h3fd99999_9997fa04 // 3.999999999940941908e-01 + L3 :: 0h3fd24924_94229359 // 2.857142874366239149e-01 + L4 :: 0h3fcc71c5_1d8e78af // 2.222219843214978396e-01 + L5 :: 0h3fc74664_96cb03de // 1.818357216161805012e-01 + L6 :: 0h3fc39a09_d078c69f // 1.531383769920937332e-01 + L7 :: 0h3fc2f112_df3e5244 // 1.479819860511658591e-01 + + switch { + case is_nan(x) || is_inf(x, 1): + return x + case x < 0: + return nan_f64() + case x == 0: + return inf_f64(-1) + } + + // reduce + f1, ki := frexp(x) + if f1 < SQRT_TWO/2 { + f1 *= 2 + ki -= 1 + } + f := f1 - 1 + k := f64(ki) + + // compute + s := f / (2 + f) + s2 := s * s + s4 := s2 * s2 + t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) + t2 := s4 * (L2 + s4*(L4+s4*L6)) + R := t1 + t2 + hfsq := 0.5 * f * f + return k*Ln2Hi_ - ((hfsq - (s*(hfsq+R) + k*LN2_LO)) - f) +} + +ln_f16 :: proc "contextless" (x: f16) -> f16 { return #force_inline f16(ln_f64(f64(x))) } +ln_f32 :: proc "contextless" (x: f32) -> f32 { return #force_inline f32(ln_f64(f64(x))) } +ln_f16le :: proc "contextless" (x: f16le) -> f16le { return #force_inline f16le(ln_f64(f64(x))) } +ln_f16be :: proc "contextless" (x: f16be) -> f16be { return #force_inline f16be(ln_f64(f64(x))) } +ln_f32le :: proc "contextless" (x: f32le) -> f32le { return #force_inline f32le(ln_f64(f64(x))) } +ln_f32be :: proc "contextless" (x: f32be) -> f32be { return #force_inline f32be(ln_f64(f64(x))) } +ln_f64le :: proc "contextless" (x: f64le) -> f64le { return #force_inline f64le(ln_f64(f64(x))) } +ln_f64be :: proc "contextless" (x: f64be) -> f64be { return #force_inline f64be(ln_f64(f64(x))) } +ln :: proc{ + ln_f16, ln_f16le, ln_f16be, + ln_f32, ln_f32le, ln_f32be, + ln_f64, ln_f64le, ln_f64be, +}
\ No newline at end of file |