aboutsummaryrefslogtreecommitdiff
path: root/core/runtime
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2021-10-20 17:00:59 +0100
committergingerBill <bill@gingerbill.org>2021-10-20 17:00:59 +0100
commitbb0855b35aca9e5ecef1c9d13abde14a358c66cc (patch)
treee96c4e9298a6326d1d5b6dc3a679aa31b75ace0d /core/runtime
parente6f725dc2c71d960defda3aa549b47e0cd043c70 (diff)
Add builtin procedures for matrix values: `determinant`, `adjugate`, `inverse`, `inverse_transpose`, `hermitian_adjoint`
Diffstat (limited to 'core/runtime')
-rw-r--r--core/runtime/core_builtin_matrix.odin317
1 files changed, 317 insertions, 0 deletions
diff --git a/core/runtime/core_builtin_matrix.odin b/core/runtime/core_builtin_matrix.odin
new file mode 100644
index 000000000..667c6f031
--- /dev/null
+++ b/core/runtime/core_builtin_matrix.odin
@@ -0,0 +1,317 @@
+package runtime
+
+import "core:intrinsics"
+_ :: intrinsics
+
+@(builtin)
+matrix1x1_determinant :: proc(m: $M/matrix[1, 1]$T) -> (det: T) {
+ return m[0, 0]
+}
+
+@(builtin)
+matrix2x2_determinant :: proc(m: $M/matrix[2, 2]$T) -> (det: T) {
+ return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]
+}
+@(builtin)
+matrix3x3_determinant :: proc(m: $M/matrix[3, 3]$T) -> (det: T) {
+ a := +m[0, 0] * (m[1, 1] * m[2, 2] - m[2, 1] * m[1, 2])
+ b := -m[1, 0] * (m[0, 1] * m[2, 2] - m[2, 1] * m[0, 2])
+ c := +m[2, 0] * (m[0, 1] * m[1, 2] - m[1, 1] * m[0, 2])
+ return a + b + c
+}
+@(builtin)
+matrix4x4_determinant :: proc(m: $M/matrix[4, 4]$T) -> (det: T) {
+ a := adjugate(m)
+ #no_bounds_check for i in 0..<4 {
+ det += m[0, i] * a[0, i]
+ }
+ return
+}
+
+@(builtin)
+matrix_determinant :: proc{
+ matrix1x1_determinant,
+ matrix2x2_determinant,
+ matrix3x3_determinant,
+ matrix4x4_determinant,
+}
+
+@(builtin)
+determinant :: proc{
+ matrix1x1_determinant,
+ matrix2x2_determinant,
+ matrix3x3_determinant,
+ matrix4x4_determinant,
+}
+
+
+@(builtin)
+matrix1x1_adjugate :: proc(x: $M/matrix[1, 1]$T) -> (y: M) {
+ y = x
+ return
+}
+
+@(builtin)
+matrix2x2_adjugate :: proc(x: $M/matrix[2, 2]$T) -> (y: M) {
+ y[0, 0] = +x[1, 1]
+ y[0, 1] = -x[1, 0]
+ y[1, 0] = -x[0, 1]
+ y[1, 1] = +x[0, 0]
+ return
+}
+
+@(builtin)
+matrix3x3_adjugate :: proc(x: $M/matrix[3, 3]$T) -> (y: M) {
+ y[0, 0] = +(x[1, 1] * x[2, 2] - x[1, 2] * x[2, 1])
+ y[0, 1] = -(x[1, 0] * x[2, 2] - x[1, 2] * x[2, 0])
+ y[0, 2] = +(x[1, 0] * x[2, 1] - x[1, 1] * x[2, 0])
+ y[1, 0] = -(x[0, 1] * x[2, 2] - x[0, 2] * x[2, 1])
+ y[1, 1] = +(x[0, 0] * x[2, 2] - x[0, 2] * x[2, 0])
+ y[1, 2] = -(x[0, 0] * x[2, 1] - x[0, 1] * x[2, 0])
+ y[2, 0] = +(x[0, 1] * x[1, 2] - x[0, 2] * x[1, 1])
+ y[2, 1] = -(x[0, 0] * x[1, 2] - x[0, 2] * x[1, 0])
+ y[2, 2] = +(x[0, 0] * x[1, 1] - x[0, 1] * x[1, 0])
+ return
+}
+
+@(builtin)
+matrix4x4_adjugate :: proc(x: $M/matrix[4, 4]$T) -> (y: M) {
+ minor :: proc(m: $M/matrix[4, 4]$T, row, column: i32) -> (minor: T) {
+ cut_down: matrix[3, 3]T
+ for col_idx in 0..<3 {
+ col := col_idx + int(col_idx >= column)
+ for row_idx in 0..<3 {
+ row := row_idx + int(row_idx >= row)
+ cut_down[row_idx, col_idx] = m[row, col]
+ }
+ }
+ return determinant(cut_down)
+ }
+ cofactor :: proc(m: $M/matrix[4, 4]$T, row, column: i32) -> (cofactor: T) {
+ sign: T = 1 if (row + column) % 2 == 0 else -1
+ return sign * matrix4x4_minor(m, row, column)
+ }
+
+ for i in 0..<4 {
+ for j in 0..<4 {
+ y[i, j] = matrix4x4_cofactor(x, i, j)
+ }
+ }
+ return
+}
+
+@(builtin)
+matrix_adjugate :: proc{
+ matrix1x1_adjugate,
+ matrix2x2_adjugate,
+ matrix3x3_adjugate,
+ matrix4x4_adjugate,
+}
+
+
+@(builtin)
+adjugate :: proc{
+ matrix1x1_adjugate,
+ matrix2x2_adjugate,
+ matrix3x3_adjugate,
+ matrix4x4_adjugate,
+}
+
+
+
+@(builtin)
+matrix1x1_inverse_transpose :: proc(x: $M/matrix[1, 1]$T) -> (y: M) {
+ y[0, 0] = 1/x[0, 0]
+ return
+}
+
+@(builtin)
+matrix2x2_inverse_transpose :: proc(x: $M/matrix[2, 2]$T) -> (y: M) {
+ d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
+ when intrinsics.type_is_integer(T) {
+ y[0, 0] = x[1, 1] / d
+ y[0, 1] = x[0, 1] / d
+ y[1, 0] = x[1, 0] / d
+ y[1, 1] = x[0, 0] / d
+ } else {
+ id := 1 / d
+ y[0, 0] = x[1, 1] * id
+ y[0, 1] = x[0, 1] * id
+ y[1, 0] = x[1, 0] * id
+ y[1, 1] = x[0, 0] * id
+ }
+ return
+}
+
+@(builtin)
+matrix3x3_inverse_transpose :: proc(x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
+ a := adjugate(x)
+ d := determinant(x)
+ when intrinsics.type_is_integer(T) {
+ for i in 0..<3 {
+ for j in 0..<3 {
+ inverse_transpose[i, j] = a[i, j] / d
+ }
+ }
+ } else {
+ id := 1/d
+ for i in 0..<3 {
+ for j in 0..<3 {
+ inverse_transpose[i, j] = a[i, j] * id
+ }
+ }
+ }
+ return
+}
+
+@(builtin)
+matrix4x4_inverse_transpose :: proc(x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
+ a := adjugate(x)
+ d: T
+ for i in 0..<4 {
+ d += x[0, i] * a[0, i]
+ }
+ when intrinsics.type_is_integer(T) {
+ for i in 0..<4 {
+ for j in 0..<4 {
+ inverse_transpose[i, j] = a[i, j] / d
+ }
+ }
+ } else {
+ id := 1/d
+ for i in 0..<4 {
+ for j in 0..<4 {
+ inverse_transpose[i, j] = a[i, j] * id
+ }
+ }
+ }
+ return
+}
+
+@(builtin)
+matrix_inverse_transpose :: proc{
+ matrix1x1_inverse_transpose,
+ matrix2x2_inverse_transpose,
+ matrix3x3_inverse_transpose,
+ matrix4x4_inverse_transpose,
+}
+
+@(builtin)
+inverse_transpose :: proc{
+ matrix1x1_inverse_transpose,
+ matrix2x2_inverse_transpose,
+ matrix3x3_inverse_transpose,
+ matrix4x4_inverse_transpose,
+}
+
+
+@(builtin)
+matrix1x1_inverse :: proc(x: $M/matrix[1, 1]$T) -> (y: M) {
+ y[0, 0] = 1/x[0, 0]
+ return
+}
+
+@(builtin)
+matrix2x2_inverse :: proc(x: $M/matrix[2, 2]$T) -> (y: M) {
+ d := x[0, 0]*x[1, 1] - x[0, 1]*x[1, 0]
+ when intrinsics.type_is_integer(T) {
+ y[0, 0] = x[1, 1] / d
+ y[0, 1] = x[1, 0] / d
+ y[1, 0] = x[0, 1] / d
+ y[1, 1] = x[0, 0] / d
+ } else {
+ id := 1 / d
+ y[0, 0] = x[1, 1] * id
+ y[0, 1] = x[1, 0] * id
+ y[1, 0] = x[0, 1] * id
+ y[1, 1] = x[0, 0] * id
+ }
+ return
+}
+
+@(builtin)
+matrix3x3_inverse :: proc(x: $M/matrix[3, 3]$T) -> (y: M) #no_bounds_check {
+ a := adjugate(x)
+ d := determinant(x)
+ when intrinsics.type_is_integer(T) {
+ for i in 0..<3 {
+ for j in 0..<3 {
+ inverse_transpose[i, j] = a[j, i] / d
+ }
+ }
+ } else {
+ id := 1/d
+ for i in 0..<3 {
+ for j in 0..<3 {
+ inverse_transpose[i, j] = a[j, i] * id
+ }
+ }
+ }
+ return
+}
+
+@(builtin)
+matrix4x4_inverse :: proc(x: $M/matrix[4, 4]$T) -> (y: M) #no_bounds_check {
+ a := adjugate(x)
+ d: T
+ for i in 0..<4 {
+ d += x[0, i] * a[0, i]
+ }
+ when intrinsics.type_is_integer(T) {
+ for i in 0..<4 {
+ for j in 0..<4 {
+ inverse_transpose[i, j] = a[j, i] / d
+ }
+ }
+ } else {
+ id := 1/d
+ for i in 0..<4 {
+ for j in 0..<4 {
+ inverse_transpose[i, j] = a[j, i] * id
+ }
+ }
+ }
+ return
+}
+
+
+@(builtin)
+matrix_inverse :: proc{
+ matrix1x1_inverse,
+ matrix2x2_inverse,
+ matrix3x3_inverse,
+ matrix4x4_inverse,
+}
+
+@(builtin)
+inverse :: proc{
+ matrix1x1_inverse,
+ matrix2x2_inverse,
+ matrix3x3_inverse,
+ matrix4x4_inverse,
+}
+
+@(builtin)
+matrix1x1_hermitian_adjoint :: proc(m: $M/matrix[1, 1]$T) -> M where intrinsics.type_is_complex(T) {
+ return conj(transpose(m))
+}
+@(builtin)
+matrix2x2_hermitian_adjoint :: proc(m: $M/matrix[2, 2]$T) -> M where intrinsics.type_is_complex(T) {
+ return conj(transpose(m))
+}
+@(builtin)
+matrix3x3_hermitian_adjoint :: proc(m: $M/matrix[3, 3]$T) -> M where intrinsics.type_is_complex(T) {
+ return conj(transpose(m))
+}
+@(builtin)
+matrix4x4_hermitian_adjoint :: proc(m: $M/matrix[4, 4]$T) -> M where intrinsics.type_is_complex(T) {
+ return conj(transpose(m))
+}
+
+@(builtin)
+hermitian_adjoint :: proc{
+ matrix1x1_hermitian_adjoint,
+ matrix2x2_hermitian_adjoint,
+ matrix3x3_hermitian_adjoint,
+ matrix4x4_hermitian_adjoint,
+} \ No newline at end of file