aboutsummaryrefslogtreecommitdiff
path: root/core
diff options
context:
space:
mode:
authorJeroen van Rijn <Kelimion@users.noreply.github.com>2021-09-03 01:25:18 +0200
committerJeroen van Rijn <Kelimion@users.noreply.github.com>2021-09-03 01:25:18 +0200
commiteecc786bd2d7d3717b84d2828f535e19c92fc66b (patch)
treea5e53e5d3af279511d7d9886ef246d8f740e9dfe /core
parent7fa04fa018297bafb148533581bf9756b560c256 (diff)
big: Add Frobenius-Underwood.
Diffstat (limited to 'core')
-rw-r--r--core/math/big/build.bat2
-rw-r--r--core/math/big/example.odin15
-rw-r--r--core/math/big/internal.odin12
-rw-r--r--core/math/big/prime.odin106
4 files changed, 117 insertions, 18 deletions
diff --git a/core/math/big/build.bat b/core/math/big/build.bat
index d9495e612..43ece1054 100644
--- a/core/math/big/build.bat
+++ b/core/math/big/build.bat
@@ -1,5 +1,5 @@
@echo off
-odin run . -vet
+odin run . -vet -define:MATH_BIG_USE_FROBENIUS_TEST=true
set TEST_ARGS=-fast-tests
:set TEST_ARGS=
diff --git a/core/math/big/example.odin b/core/math/big/example.odin
index b2e3f82bd..fb1e51053 100644
--- a/core/math/big/example.odin
+++ b/core/math/big/example.odin
@@ -84,7 +84,7 @@ print :: proc(name: string, a: ^Int, base := i8(10), print_name := true, newline
}
}
-// printf :: fmt.printf;
+printf :: fmt.printf;
demo :: proc() {
a, b, c, d, e, f, res := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
@@ -93,16 +93,15 @@ demo :: proc() {
err: Error;
prime: bool;
- trials := 1;
-
- set(c, "3317044064679887385961981");
-
+ set(a, "3317044064679887385961981"); // Composite: 1287836182261 × 2575672364521
+ trials := number_of_rabin_miller_trials(internal_count_bits(a));
{
SCOPED_TIMING(.is_prime);
- prime, err = internal_int_is_prime(c, trials);
+ prime, err = internal_int_is_prime(a, trials);
}
- //print("prime: ", c);
- fmt.printf("%v %v\n", prime, err);
+ print("Candidate prime: ", a);
+ fmt.printf("%v Miller-Rabin trials needed.\n", trials);
+ fmt.printf("Is prime: %v, Error: %v\n", prime, err);
}
main :: proc() {
diff --git a/core/math/big/internal.odin b/core/math/big/internal.odin
index c603dcdd8..6ae2f4284 100644
--- a/core/math/big/internal.odin
+++ b/core/math/big/internal.odin
@@ -2019,8 +2019,18 @@ internal_invmod :: proc{ internal_int_inverse_modulo, };
/*
Helpers to extract values from the `Int`.
*/
+internal_int_bitfield_extract_bool :: proc(a: ^Int, offset: int) -> (val: bool, err: Error) {
+ limb := offset / _DIGIT_BITS;
+ if limb < 0 || limb >= a.used { return false, .Invalid_Argument; }
+ i := _WORD(1 << _WORD((offset % _DIGIT_BITS)));
+ return bool(_WORD(a.digit[limb]) & i), nil;
+}
+
internal_int_bitfield_extract_single :: proc(a: ^Int, offset: int) -> (bit: _WORD, err: Error) {
- return #force_inline int_bitfield_extract(a, offset, 1);
+ limb := offset / _DIGIT_BITS;
+ if limb < 0 || limb >= a.used { return 0, .Invalid_Argument; }
+ i := _WORD(1 << _WORD((offset % _DIGIT_BITS)));
+ return 1 if ((_WORD(a.digit[limb]) & i) != 0) else 0, nil;
}
internal_int_bitfield_extract :: proc(a: ^Int, offset, count: int) -> (res: _WORD, err: Error) #no_bounds_check {
diff --git a/core/math/big/prime.odin b/core/math/big/prime.odin
index 47a9b2974..48c72de0d 100644
--- a/core/math/big/prime.odin
+++ b/core/math/big/prime.odin
@@ -366,13 +366,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
if !miller_rabin_only {
if miller_rabin_trials >= 0 {
when MATH_BIG_USE_FROBENIUS_TEST {
-// err = mp_prime_frobenius_underwood(a, &res);
-// if ((err != MP_OKAY) && (err != MP_ITER)) {
-// goto LBL_B;
-// }
-// if (!res) {
-// goto LBL_B;
-// }
+ if !internal_int_prime_frobenius_underwood(a) or_return { return; }
} else {
// if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
// goto LBL_B;
@@ -506,6 +500,102 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
return true, nil;
}
+/*
+ * floor of positive solution of (2^16) - 1 = (a + 4) * (2 * a + 5)
+ * TODO: Both values are smaller than N^(1/4), would have to use a bigint
+ * for `a` instead, but any `a` bigger than about 120 are already so rare that
+ * it is possible to ignore them and still get enough pseudoprimes.
+ * But it is still a restriction of the set of available pseudoprimes
+ * which makes this implementation less secure if used stand-alone.
+ */
+_FROBENIUS_UNDERWOOD_A :: 32764;
+
+internal_int_prime_frobenius_underwood :: proc(N: ^Int, allocator := context.allocator) -> (result: bool, err: Error) {
+ context.allocator = allocator;
+
+ T1z, T2z, Np1z, sz, tz := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
+ defer internal_destroy(T1z, T2z, Np1z, sz, tz);
+
+ internal_init_multi(T1z, T2z, Np1z, sz, tz) or_return;
+
+ a, ap2: int;
+
+ frob: for a = 0; a < _FROBENIUS_UNDERWOOD_A; a += 1 {
+ switch a {
+ case 2, 4, 7, 8, 10, 14, 18, 23, 26, 28:
+ continue frob;
+ }
+
+ internal_set(T1z, i32((a * a) - 4));
+ j := internal_int_kronecker(T1z, N) or_return;
+
+ switch j {
+ case -1: break frob;
+ case 0: return false, nil;
+ }
+ }
+
+ // Tell it a composite and set return value accordingly.
+ if a >= _FROBENIUS_UNDERWOOD_A { return false, .Max_Iterations_Reached; }
+
+ // Composite if N and (a+4)*(2*a+5) are not coprime.
+ internal_set(T1z, u32((a + 4) * ((2 * a) + 5)));
+ internal_int_gcd_lcm(T1z, nil, T1z, N) or_return;
+
+ if !(T1z.used == 1 && T1z.digit[0] == 1) {
+ // Composite.
+ return false, nil;
+ }
+
+ ap2 = a + 2;
+ internal_add(Np1z, N, 1) or_return;
+
+ internal_set(sz, 1) or_return;
+ internal_set(tz, 2) or_return;
+
+ for i := internal_count_bits(Np1z) - 2; i >= 0; i -= 1 {
+ // temp = (sz * (a * sz + 2 * tz)) % N;
+ // tz = ((tz - sz) * (tz + sz)) % N;
+ // sz = temp;
+
+ internal_int_shl1(T2z, tz) or_return;
+
+ // a = 0 at about 50% of the cases (non-square and odd input)
+ if a != 0 {
+ internal_mul(T1z, sz, DIGIT(a)) or_return;
+ internal_add(T2z, T2z, T1z) or_return;
+ }
+
+ internal_mul(T1z, T2z, sz) or_return;
+ internal_sub(T2z, tz, sz) or_return;
+ internal_add(sz, sz, tz) or_return;
+ internal_mul(tz, sz, T2z) or_return;
+ internal_mod(tz, tz, N) or_return;
+ internal_mod(sz, T1z, N) or_return;
+
+ if bit, _ := internal_int_bitfield_extract_bool(Np1z, i); bit {
+ // temp = (a+2) * sz + tz
+ // tz = 2 * tz - sz
+ // sz = temp
+ if a == 0 {
+ internal_int_shl1(T1z, sz) or_return;
+ } else {
+ internal_mul(T1z, sz, DIGIT(ap2)) or_return;
+ }
+ internal_add(T1z, T1z, tz) or_return;
+ internal_int_shl1(T2z, tz) or_return;
+ internal_sub(tz, T2z, sz);
+ internal_swap(sz, T1z);
+ }
+ }
+
+ internal_set(T1z, u32((2 * a) + 5)) or_return;
+ internal_mod(T1z, T1z, N) or_return;
+
+ result = internal_is_zero(sz) && internal_eq(tz, T1z);
+
+ return;
+}
/*
Returns the number of Rabin-Miller trials needed for a given bit size.
@@ -513,7 +603,7 @@ internal_int_is_prime :: proc(a: ^Int, miller_rabin_trials := int(-1), miller_ra
number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
switch {
case bit_size <= 80:
- return - 1; /* Use deterministic algorithm for size <= 80 bits */
+ return -1; /* Use deterministic algorithm for size <= 80 bits */
case bit_size >= 81 && bit_size < 96:
return 37; /* max. error = 2^(-96) */
case bit_size >= 96 && bit_size < 128: