diff options
| author | gingerBill <bill@gingerbill.org> | 2020-11-01 15:10:06 +0000 |
|---|---|---|
| committer | gingerBill <bill@gingerbill.org> | 2020-11-01 15:10:06 +0000 |
| commit | 54fbdabc380905a925ab5e922749fa2b1ccb2621 (patch) | |
| tree | 4830e6ad4c519a6fe20750f64913f2df943aef4f /examples | |
| parent | 75e8e5e06f0b2739cef7a76a4b59d4d95ff397bd (diff) | |
Add experimental `-insert-semicolon` functionality to tokenizer and parser
Diffstat (limited to 'examples')
| -rw-r--r-- | examples/demo_insert_semicolon/demo.odin | 2024 |
1 files changed, 2024 insertions, 0 deletions
diff --git a/examples/demo_insert_semicolon/demo.odin b/examples/demo_insert_semicolon/demo.odin new file mode 100644 index 000000000..807a2bed1 --- /dev/null +++ b/examples/demo_insert_semicolon/demo.odin @@ -0,0 +1,2024 @@ +package main + +import "core:fmt" +import "core:mem" +import "core:os" +import "core:thread" +import "core:time" +import "core:reflect" +import "core:runtime" +import "intrinsics" + +/* + The Odin programming language is fast, concise, readable, pragmatic and open sourced. + It is designed with the intent of replacing C with the following goals: + * simplicity + * high performance + * built for modern systems + * joy of programming + + # Installing Odin + Getting Started - https://odin-lang.org/docs/install/ + Instructions for downloading and install the Odin compiler and libraries. + + # Learning Odin + Overview of Odin - https://odin-lang.org/docs/overview/ + An overview of the Odin programming language. + Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/ + Answers to common questions about Odin. +*/ + +the_basics :: proc() { + fmt.println("\n# the basics") + + { // The Basics + fmt.println("Hellope") + + // Lexical elements and literals + // A comment + + my_integer_variable: int // A comment for documentaton + + // Multi-line comments begin with /* and end with */. Multi-line comments can + // also be nested (unlike in C): + /* + You can have any text or code here and + have it be commented. + /* + NOTE: comments can be nested! + */ + */ + + // String literals are enclosed in double quotes and character literals in single quotes. + // Special characters are escaped with a backslash \ + + some_string := "This is a string" + _ = 'A' // unicode codepoint literal + _ = '\n' + _ = "C:\\Windows\\notepad.exe" + // Raw string literals are enclosed with single back ticks + _ = `C:\Windows\notepad.exe` + + // The length of a string in bytes can be found using the built-in `len` procedure: + _ = len("Foo") + _ = len(some_string) + + + // Numbers + + // Numerical literals are written similar to most other programming languages. + // A useful feature in Odin is that underscores are allowed for better + // readability: 1_000_000_000 (one billion). A number that contains a dot is a + // floating point literal: 1.0e9 (one billion). If a number literal is suffixed + // with i, is an imaginary number literal: 2i (2 multiply the square root of -1). + + // Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal + // literals 0x. A leading zero does not produce an octal constant (unlike C). + + // In Odin, if a number constant is possible to be represented by a type without + // precision loss, it will automatically convert to that type. + + x: int = 1.0 // A float literal but it can be represented by an integer without precision loss + // Constant literals are “untyped” which means that they can implicitly convert to a type. + + y: int // `y` is typed of type `int` + y = 1 // `1` is an untyped integer literal which can implicitly convert to `int` + + z: f64 // `z` is typed of type `f64` (64-bit floating point number) + z = 1 // `1` is an untyped integer literals which can be implicity conver to `f64` + // No need for any suffixes or decimal places like in other languages + // CONSTANTS JUST WORK!!! + + + // Assignment statements + h: int = 123 // declares a new variable `h` with type `int` and assigns a value to it + h = 637 // assigns a new value to `h` + + // `=` is the assignment operator + + // You can assign multiple variables with it: + a, b := 1, "hello" // declares `a` and `b` and infers the types from the assignments + b, a = "byte", 0 + + // Note: `:=` is two tokens, `:` and `=`. The following are equivalent, + /* + i: int = 123 + i: = 123 + i := 123 + */ + + // Constant declarations + // Constants are entities (symbols) which have an assigned value. + // The constant’s value cannot be changed. + // The constant’s value must be able to be evaluated at compile time: + X :: "what" // constant `X` has the untyped string value "what" + + // Constants can be explicitly typed like a variable declaration: + Y : int : 123 + Z :: Y + 7 // constant computations are possible + + _ = my_integer_variable + _ = x + } +} + +control_flow :: proc() { + fmt.println("\n# control flow") + { // Control flow + // For loop + // Odin has only one loop statement, the `for` loop + + // Basic for loop + for i := 0; i < 10; i += 1 { + fmt.println(i) + } + + // NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components. + // Braces `{ }` or a `do` are always required + for i := 0; i < 10; i += 1 { } + // for i := 0; i < 10; i += 1 do fmt.print() + + // The initial and post statements are optional + i := 0 + for ; i < 10; { + i += 1 + } + + // These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop + i = 0 + for i < 10 { + i += 1 + } + + // If the condition is omitted, this produces an infinite loop: + for { + break + } + + // Range-based for loop + // The basic for loop + for j := 0; j < 10; j += 1 { + fmt.println(j) + } + // can also be written + for j in 0..<10 { + fmt.println(j) + } + for j in 0..9 { + fmt.println(j) + } + + // Certain built-in types can be iterated over + some_string := "Hello, 世界" + for character in some_string { // Strings are assumed to be UTF-8 + fmt.println(character) + } + + some_array := [3]int{1, 4, 9} + for value in some_array { + fmt.println(value) + } + + some_slice := []int{1, 4, 9} + for value in some_slice { + fmt.println(value) + } + + some_dynamic_array := [dynamic]int{1, 4, 9} + defer delete(some_dynamic_array) + for value in some_dynamic_array { + fmt.println(value) + } + + + some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4} + defer delete(some_map) + for key in some_map { + fmt.println(key) + } + + // Alternatively a second index value can be added + for character, index in some_string { + fmt.println(index, character) + } + for value, index in some_array { + fmt.println(index, value) + } + for value, index in some_slice { + fmt.println(index, value) + } + for value, index in some_dynamic_array { + fmt.println(index, value) + } + for key, value in some_map { + fmt.println(key, value) + } + + // The iterated values are copies and cannot be written to. + // The following idiom is useful for iterating over a container in a by-reference manner: + for _, idx in some_slice { + some_slice[idx] = (idx+1)*(idx+1) + } + + + // If statements + x := 123 + if x >= 0 { + fmt.println("x is positive") + } + + if y := -34; y < 0 { + fmt.println("y is negative") + } + + if y := 123; y < 0 { + fmt.println("y is negative") + } else if y == 0 { + fmt.println("y is zero") + } else { + fmt.println("y is positive") + } + + // Switch statement + // A switch statement is another way to write a sequence of if-else statements. + // In Odin, the default case is denoted as a case without any expression. + + switch arch := ODIN_ARCH; arch { + case "386": + fmt.println("32-bit") + case "amd64": + fmt.println("64-bit") + case: // default + fmt.println("Unsupported architecture") + } + + // Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case. + // This means that a `break` statement is not needed at the end of each case. + // Another important difference is that the case values need not be integers nor constants. + + // To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used. + one_angry_dwarf :: proc() -> int { + fmt.println("one_angry_dwarf was called") + return 1 + } + + switch j := 0; j { + case 0: + case one_angry_dwarf(): + } + + // A switch statement without a condition is the same as `switch true`. + // This can be used to write a clean and long if-else chain and have the + // ability to break if needed + + switch { + case x < 0: + fmt.println("x is negative") + case x == 0: + fmt.println("x is zero") + case: + fmt.println("x is positive") + } + + // A `switch` statement can also use ranges like a range-based loop: + switch c := 'j'; c { + case 'A'..'Z', 'a'..'z', '0'..'9': + fmt.println("c is alphanumeric") + } + + switch x { + case 0..<10: + fmt.println("units") + case 10..<13: + fmt.println("pre-teens") + case 13..<20: + fmt.println("teens") + case 20..<30: + fmt.println("twenties") + } + } + + { // Defer statement + // A defer statement defers the execution of a statement until the end of + // the scope it is in. + + // The following will print 4 then 234: + { + x := 123 + defer fmt.println(x) + { + defer x = 4 + x = 2 + } + fmt.println(x) + + x = 234 + } + + // You can defer an entire block too: + { + bar :: proc() {} + + defer { + fmt.println("1") + fmt.println("2") + } + + cond := false + defer if cond { + bar() + } + } + + // Defer statements are executed in the reverse order that they were declared: + { + defer fmt.println("1") + defer fmt.println("2") + defer fmt.println("3") + } + // Will print 3, 2, and then 1. + + if false { + f, err := os.open("my_file.txt") + if err != 0 { + // handle error + } + defer os.close(f) + // rest of code + } + } + + { // When statement + /* + The when statement is almost identical to the if statement but with some differences: + + * Each condition must be a constant expression as a when + statement is evaluated at compile time. + * The statements within a branch do not create a new scope + * The compiler checks the semantics and code only for statements + that belong to the first condition that is true + * An initial statement is not allowed in a when statement + * when statements are allowed at file scope + */ + + // Example + when ODIN_ARCH == "386" { + fmt.println("32 bit") + } else when ODIN_ARCH == "amd64" { + fmt.println("64 bit") + } else { + fmt.println("Unsupported architecture") + } + // The when statement is very useful for writing platform specific code. + // This is akin to the #if construct in C’s preprocessor however, in Odin, + // it is type checked. + } + + { // Branch statements + cond, cond1, cond2 := false, false, false + one_step :: proc() { fmt.println("one_step") } + beyond :: proc() { fmt.println("beyond") } + + // Break statement + for cond { + switch { + case: + if cond { + break // break out of the `switch` statement + } + } + + break // break out of the `for` statement + } + + loop: for cond1 { + for cond2 { + break loop // leaves both loops + } + } + + // Continue statement + for cond { + if cond2 { + continue + } + fmt.println("Hellope") + } + + // Fallthrough statement + + // Odin’s switch is like one in C or C++, except that Odin only runs the selected + // case. This means that a break statement is not needed at the end of each case. + // Another important difference is that the case values need not be integers nor + // constants. + + // fallthrough can be used to explicitly fall through into the next case block: + + switch i := 0; i { + case 0: + one_step() + fallthrough + case 1: + beyond() + } + } +} + + +named_proc_return_parameters :: proc() { + fmt.println("\n# named proc return parameters") + + foo0 :: proc() -> int { + return 123 + } + foo1 :: proc() -> (a: int) { + a = 123 + return + } + foo2 :: proc() -> (a, b: int) { + // Named return values act like variables within the scope + a = 321 + b = 567 + return b, a + } + fmt.println("foo0 =", foo0()) // 123 + fmt.println("foo1 =", foo1()) // 123 + fmt.println("foo2 =", foo2()) // 567 321 +} + + +explicit_procedure_overloading :: proc() { + fmt.println("\n# explicit procedure overloading") + + add_ints :: proc(a, b: int) -> int { + x := a + b + fmt.println("add_ints", x) + return x + } + add_floats :: proc(a, b: f32) -> f32 { + x := a + b + fmt.println("add_floats", x) + return x + } + add_numbers :: proc(a: int, b: f32, c: u8) -> int { + x := int(a) + int(b) + int(c) + fmt.println("add_numbers", x) + return x + } + + add :: proc{add_ints, add_floats, add_numbers} + + add(int(1), int(2)) + add(f32(1), f32(2)) + add(int(1), f32(2), u8(3)) + + add(1, 2) // untyped ints coerce to int tighter than f32 + add(1.0, 2.0) // untyped floats coerce to f32 tighter than int + add(1, 2, 3) // three parameters + + // Ambiguous answers + // add(1.0, 2) + // add(1, 2.0) +} + +struct_type :: proc() { + fmt.println("\n# struct type") + // A struct is a record type in Odin. It is a collection of fields. + // Struct fields are accessed by using a dot: + { + Vector2 :: struct { + x: f32, + y: f32, + } + v := Vector2{1, 2} + v.x = 4 + fmt.println(v.x) + + // Struct fields can be accessed through a struct pointer: + + v = Vector2{1, 2} + p := &v + p.x = 1335 + fmt.println(v) + + // We could write p^.x, however, it is to nice abstract the ability + // to not explicitly dereference the pointer. This is very useful when + // refactoring code to use a pointer rather than a value, and vice versa. + } + { + // A struct literal can be denoted by providing the struct’s type + // followed by {}. A struct literal must either provide all the + // arguments or none: + Vector3 :: struct { + x, y, z: f32, + } + v: Vector3 + v = Vector3{} // Zero value + v = Vector3{1, 4, 9} + + // You can list just a subset of the fields if you specify the + // field by name (the order of the named fields does not matter): + v = Vector3{z=1, y=2} + assert(v.x == 0) + assert(v.y == 2) + assert(v.z == 1) + } + { + // Structs can tagged with different memory layout and alignment requirements: + + a :: struct #align 4 {} // align to 4 bytes + b :: struct #packed {} // remove padding between fields + c :: struct #raw_union {} // all fields share the same offset (0). This is the same as C's union + } + +} + + +union_type :: proc() { + fmt.println("\n# union type") + { + val: union{int, bool} + val = 137 + if i, ok := val.(int); ok { + fmt.println(i) + } + val = true + fmt.println(val) + + val = nil + + switch v in val { + case int: fmt.println("int", v) + case bool: fmt.println("bool", v) + case: fmt.println("nil") + } + } + { + // There is a duality between `any` and `union` + // An `any` has a pointer to the data and allows for any type (open) + // A `union` has as binary blob to store the data and allows only certain types (closed) + // The following code is with `any` but has the same syntax + val: any + val = 137 + if i, ok := val.(int); ok { + fmt.println(i) + } + val = true + fmt.println(val) + + val = nil + + switch v in val { + case int: fmt.println("int", v) + case bool: fmt.println("bool", v) + case: fmt.println("nil") + } + } + + Vector3 :: distinct [3]f32 + Quaternion :: distinct quaternion128 + + // More realistic examples + { + // NOTE(bill): For the above basic examples, you may not have any + // particular use for it. However, my main use for them is not for these + // simple cases. My main use is for hierarchical types. Many prefer + // subtyping, embedding the base data into the derived types. Below is + // an example of this for a basic game Entity. + + Entity :: struct { + id: u64, + name: string, + position: Vector3, + orientation: Quaternion, + + derived: any, + } + + Frog :: struct { + using entity: Entity, + jump_height: f32, + } + + Monster :: struct { + using entity: Entity, + is_robot: bool, + is_zombie: bool, + } + + // See `parametric_polymorphism` procedure for details + new_entity :: proc($T: typeid) -> ^Entity { + t := new(T) + t.derived = t^ + return t + } + + entity := new_entity(Monster) + + switch e in entity.derived { + case Frog: + fmt.println("Ribbit") + case Monster: + if e.is_robot { fmt.println("Robotic") } + if e.is_zombie { fmt.println("Grrrr!") } + fmt.println("I'm a monster") + } + } + + { + // NOTE(bill): A union can be used to achieve something similar. Instead + // of embedding the base data into the derived types, the derived data + // in embedded into the base type. Below is the same example of the + // basic game Entity but using an union. + + Entity :: struct { + id: u64, + name: string, + position: Vector3, + orientation: Quaternion, + + derived: union {Frog, Monster}, + } + + Frog :: struct { + using entity: ^Entity, + jump_height: f32, + } + + Monster :: struct { + using entity: ^Entity, + is_robot: bool, + is_zombie: bool, + } + + // See `parametric_polymorphism` procedure for details + new_entity :: proc($T: typeid) -> ^Entity { + t := new(Entity) + t.derived = T{entity = t} + return t + } + + entity := new_entity(Monster) + + switch e in entity.derived { + case Frog: + fmt.println("Ribbit") + case Monster: + if e.is_robot { fmt.println("Robotic") } + if e.is_zombie { fmt.println("Grrrr!") } + } + + // NOTE(bill): As you can see, the usage code has not changed, only its + // memory layout. Both approaches have their own advantages but they can + // be used together to achieve different results. The subtyping approach + // can allow for a greater control of the memory layout and memory + // allocation, e.g. storing the derivatives together. However, this is + // also its disadvantage. You must either preallocate arrays for each + // derivative separation (which can be easily missed) or preallocate a + // bunch of "raw" memory; determining the maximum size of the derived + // types would require the aid of metaprogramming. Unions solve this + // particular problem as the data is stored with the base data. + // Therefore, it is possible to preallocate, e.g. [100]Entity. + + // It should be noted that the union approach can have the same memory + // layout as the any and with the same type restrictions by using a + // pointer type for the derivatives. + + /* + Entity :: struct { + ... + derived: union{^Frog, ^Monster}, + } + + Frog :: struct { + using entity: Entity, + ... + } + Monster :: struct { + using entity: Entity, + ... + + } + new_entity :: proc(T: type) -> ^Entity { + t := new(T) + t.derived = t + return t + } + */ + } +} + +using_statement :: proc() { + fmt.println("\n# using statement") + // using can used to bring entities declared in a scope/namespace + // into the current scope. This can be applied to import names, struct + // fields, procedure fields, and struct values. + + Vector3 :: struct{x, y, z: f32} + { + Entity :: struct { + position: Vector3, + orientation: quaternion128, + } + + // It can used like this: + foo0 :: proc(entity: ^Entity) { + fmt.println(entity.position.x, entity.position.y, entity.position.z) + } + + // The entity members can be brought into the procedure scope by using it: + foo1 :: proc(entity: ^Entity) { + using entity + fmt.println(position.x, position.y, position.z) + } + + // The using can be applied to the parameter directly: + foo2 :: proc(using entity: ^Entity) { + fmt.println(position.x, position.y, position.z) + } + + // It can also be applied to sub-fields: + foo3 :: proc(entity: ^Entity) { + using entity.position + fmt.println(x, y, z) + } + } + { + // We can also apply the using statement to the struct fields directly, + // making all the fields of position appear as if they on Entity itself: + Entity :: struct { + using position: Vector3, + orientation: quaternion128, + } + foo :: proc(entity: ^Entity) { + fmt.println(entity.x, entity.y, entity.z) + } + + + // Subtype polymorphism + // It is possible to get subtype polymorphism, similar to inheritance-like + // functionality in C++, but without the requirement of vtables or unknown + // struct layout: + + Colour :: struct {r, g, b, a: u8} + Frog :: struct { + ribbit_volume: f32, + using entity: Entity, + colour: Colour, + } + + frog: Frog + // Both work + foo(&frog.entity) + foo(&frog) + frog.x = 123 + + // Note: using can be applied to arbitrarily many things, which allows + // the ability to have multiple subtype polymorphism (but also its issues). + + // Note: using’d fields can still be referred by name. + } + { // using on an enum declaration + + using Foo :: enum {A, B, C} + + f0 := A + f1 := B + f2 := C + fmt.println(f0, f1, f2) + fmt.println(len(Foo)) + } +} + + +implicit_context_system :: proc() { + fmt.println("\n# implicit context system") + // In each scope, there is an implicit value named context. This + // context variable is local to each scope and is implicitly passed + // by pointer to any procedure call in that scope (if the procedure + // has the Odin calling convention). + + // The main purpose of the implicit context system is for the ability + // to intercept third-party code and libraries and modify their + // functionality. One such case is modifying how a library allocates + // something or logs something. In C, this was usually achieved with + // the library defining macros which could be overridden so that the + // user could define what he wanted. However, not many libraries + // supported this in many languages by default which meant intercepting + // third-party code to see what it does and to change how it does it is + // not possible. + + c := context // copy the current scope's context + + context.user_index = 456 + { + context.allocator = my_custom_allocator() + context.user_index = 123 + what_a_fool_believes() // the `context` for this scope is implicitly passed to `what_a_fool_believes` + } + + // `context` value is local to the scope it is in + assert(context.user_index == 456) + + what_a_fool_believes :: proc() { + c := context // this `context` is the same as the parent procedure that it was called from + // From this example, context.user_index == 123 + // An context.allocator is assigned to the return value of `my_custom_allocator()` + assert(context.user_index == 123) + + // The memory management procedure use the `context.allocator` by + // default unless explicitly specified otherwise + china_grove := new(int) + free(china_grove) + + _ = c + } + + my_custom_allocator :: mem.nil_allocator + _ = c + + // By default, the context value has default values for its parameters which is + // decided in the package runtime. What the defaults are are compiler specific. + + // To see what the implicit context value contains, please see the following + // definition in package runtime. +} + +parametric_polymorphism :: proc() { + fmt.println("\n# parametric polymorphism") + + print_value :: proc(value: $T) { + fmt.printf("print_value: %T %v\n", value, value) + } + + v1: int = 1 + v2: f32 = 2.1 + v3: f64 = 3.14 + v4: string = "message" + + print_value(v1) + print_value(v2) + print_value(v3) + print_value(v4) + + fmt.println() + + add :: proc(p, q: $T) -> T { + x: T = p + q + return x + } + + a := add(3, 4) + fmt.printf("a: %T = %v\n", a, a) + + b := add(3.2, 4.3) + fmt.printf("b: %T = %v\n", b, b) + + // This is how `new` is implemented + alloc_type :: proc($T: typeid) -> ^T { + t := cast(^T)alloc(size_of(T), align_of(T)) + t^ = T{} // Use default initialization value + return t + } + + copy_slice :: proc(dst, src: []$T) -> int { + n := min(len(dst), len(src)) + if n > 0 { + mem.copy(&dst[0], &src[0], n*size_of(T)) + } + return n + } + + double_params :: proc(a: $A, b: $B) -> A { + return a + A(b) + } + + fmt.println(double_params(12, 1.345)) + + + + { // Polymorphic Types and Type Specialization + Table_Slot :: struct(Key, Value: typeid) { + occupied: bool, + hash: u32, + key: Key, + value: Value, + } + TABLE_SIZE_MIN :: 32 + Table :: struct(Key, Value: typeid) { + count: int, + allocator: mem.Allocator, + slots: []Table_Slot(Key, Value), + } + + // Only allow types that are specializations of a (polymorphic) slice + make_slice :: proc($T: typeid/[]$E, len: int) -> T { + return make(T, len) + } + + // Only allow types that are specializations of `Table` + allocate :: proc(table: ^$T/Table, capacity: int) { + c := context + if table.allocator.procedure != nil { + c.allocator = table.allocator + } + context = c + + table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN)) + } + + expand :: proc(table: ^$T/Table) { + c := context + if table.allocator.procedure != nil { + c.allocator = table.allocator + } + context = c + + old_slots := table.slots + defer delete(old_slots) + + cap := max(2*len(table.slots), TABLE_SIZE_MIN) + allocate(table, cap) + + for s in old_slots { + if s.occupied { + put(table, s.key, s.value) + } + } + } + + // Polymorphic determination of a polymorphic struct + // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) { + put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) { + hash := get_hash(key) // Ad-hoc method which would fail in a different scope + index := find_index(table, key, hash) + if index < 0 { + if f64(table.count) >= 0.75*f64(len(table.slots)) { + expand(table) + } + assert(table.count <= len(table.slots)) + + index = int(hash % u32(len(table.slots))) + + for table.slots[index].occupied { + if index += 1; index >= len(table.slots) { + index = 0 + } + } + + table.count += 1 + } + + slot := &table.slots[index] + slot.occupied = true + slot.hash = hash + slot.key = key + slot.value = value + } + + + // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) { + find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) { + hash := get_hash(key) + index := find_index(table, key, hash) + if index < 0 { + return Value{}, false + } + return table.slots[index].value, true + } + + find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int { + if len(table.slots) <= 0 { + return -1 + } + + index := int(hash % u32(len(table.slots))) + for table.slots[index].occupied { + if table.slots[index].hash == hash { + if table.slots[index].key == key { + return index + } + } + + if index += 1; index >= len(table.slots) { + index = 0 + } + } + + return -1 + } + + get_hash :: proc(s: string) -> u32 { // fnv32a + h: u32 = 0x811c9dc5 + for i in 0..<len(s) { + h = (h ~ u32(s[i])) * 0x01000193 + } + return h + } + + + table: Table(string, int) + + for i in 0..36 { put(&table, "Hellope", i) } + for i in 0..42 { put(&table, "World!", i) } + + found, _ := find(&table, "Hellope") + fmt.printf("`found` is %v\n", found) + + found, _ = find(&table, "World!") + fmt.printf("`found` is %v\n", found) + + // I would not personally design a hash table like this in production + // but this is a nice basic example + // A better approach would either use a `u64` or equivalent for the key + // and let the user specify the hashing function or make the user store + // the hashing procedure with the table + } + + { // Parametric polymorphic union + Error :: enum { + Foo0, + Foo1, + Foo2, + Foo3, + } + Para_Union :: union(T: typeid) {T, Error} + r: Para_Union(int) + fmt.println(typeid_of(type_of(r))) + + fmt.println(r) + r = 123 + fmt.println(r) + r = Error.Foo0 // r = .Foo0; is allow too, see implicit selector expressions below + fmt.println(r) + } + + { // Polymorphic names + foo :: proc($N: $I, $T: typeid) -> (res: [N]T) { + // `N` is the constant value passed + // `I` is the type of N + // `T` is the type passed + fmt.printf("Generating an array of type %v from the value %v of type %v\n", + typeid_of(type_of(res)), N, typeid_of(I)) + for i in 0..<N { + res[i] = T(i*i) + } + return + } + + T :: int + array := foo(4, T) + for v, i in array { + assert(v == T(i*i)) + } + + // Matrix multiplication + mul :: proc(a: [$M][$N]$T, b: [N][$P]T) -> (c: [M][P]T) { + for i in 0..<M { + for j in 0..<P { + for k in 0..<N { + c[i][j] += a[i][k] * b[k][j] + } + } + } + return + } + + x := [2][3]f32{ + {1, 2, 3}, + {3, 2, 1}, + } + y := [3][2]f32{ + {0, 8}, + {6, 2}, + {8, 4}, + } + z := mul(x, y) + assert(z == {{36, 24}, {20, 32}}) + } +} + + +prefix_table := [?]string{ + "White", + "Red", + "Green", + "Blue", + "Octarine", + "Black", +} + +threading_example :: proc() { + fmt.println("\n# threading_example") + + { // Basic Threads + fmt.println("\n## Basic Threads") + worker_proc :: proc(t: ^thread.Thread) { + for iteration in 1..5 { + fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration) + fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration) + time.sleep(1 * time.Millisecond) + } + } + + threads := make([dynamic]^thread.Thread, 0, len(prefix_table)) + defer delete(threads) + + for in prefix_table { + if t := thread.create(worker_proc); t != nil { + t.init_context = context + t.user_index = len(threads) + append(&threads, t) + thread.start(t) + } + } + + for len(threads) > 0 { + for i := 0; i < len(threads); /**/ { + if t := threads[i]; thread.is_done(t) { + fmt.printf("Thread %d is done\n", t.user_index) + thread.destroy(t) + + ordered_remove(&threads, i) + } else { + i += 1 + } + } + } + } + + { // Thread Pool + fmt.println("\n## Thread Pool") + task_proc :: proc(t: ^thread.Task) { + index := t.user_index % len(prefix_table) + for iteration in 1..5 { + fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration) + fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration) + time.sleep(1 * time.Millisecond) + } + } + + pool: thread.Pool + thread.pool_init(pool=&pool, thread_count=3) + defer thread.pool_destroy(&pool) + + + for i in 0..<30 { + thread.pool_add_task(pool=&pool, procedure=task_proc, data=nil, user_index=i) + } + + thread.pool_start(&pool) + thread.pool_wait_and_process(&pool) + } +} + + +array_programming :: proc() { + fmt.println("\n# array programming") + { + a := [3]f32{1, 2, 3} + b := [3]f32{5, 6, 7} + c := a * b + d := a + b + e := 1 + (c - d) / 2 + fmt.printf("%.1f\n", e) // [0.5, 3.0, 6.5] + } + + { + a := [3]f32{1, 2, 3} + b := swizzle(a, 2, 1, 0) + assert(b == [3]f32{3, 2, 1}) + + c := swizzle(a, 0, 0) + assert(c == [2]f32{1, 1}) + assert(c == 1) + } + + { + Vector3 :: distinct [3]f32 + a := Vector3{1, 2, 3} + b := Vector3{5, 6, 7} + c := (a * b)/2 + 1 + d := c.x + c.y + c.z + fmt.printf("%.1f\n", d) // 22.0 + + cross :: proc(a, b: Vector3) -> Vector3 { + i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1) + j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0) + return i - j + } + + blah :: proc(a: Vector3) -> f32 { + return a.x + a.y + a.z + } + + x := cross(a, b) + fmt.println(x) + fmt.println(blah(x)) + } +} + +map_type :: proc() { + fmt.println("\n# map type") + + m := make(map[string]int) + defer delete(m) + + m["Bob"] = 2 + m["Ted"] = 5 + fmt.println(m["Bob"]) + + delete_key(&m, "Ted") + + // If an element of a key does not exist, the zero value of the + // element will be returned. To check to see if an element exists + // can be done in two ways: + elem, ok := m["Bob"] + exists := "Bob" in m + _, _ = elem, ok + _ = exists +} + +implicit_selector_expression :: proc() { + fmt.println("\n# implicit selector expression") + + Foo :: enum {A, B, C} + + f: Foo + f = Foo.A + f = .A + + BAR :: bit_set[Foo]{.B, .C} + + switch f { + case .A: + fmt.println("HITHER") + case .B: + fmt.println("NEVER") + case .C: + fmt.println("FOREVER") + } + + my_map := make(map[Foo]int) + defer delete(my_map) + + my_map[.A] = 123 + my_map[Foo.B] = 345 + + fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C]) +} + + +partial_switch :: proc() { + fmt.println("\n# partial_switch") + { // enum + Foo :: enum { + A, + B, + C, + D, + } + + f := Foo.A + switch f { + case .A: fmt.println("A") + case .B: fmt.println("B") + case .C: fmt.println("C") + case .D: fmt.println("D") + case: fmt.println("?") + } + + #partial switch f { + case .A: fmt.println("A") + case .D: fmt.println("D") + } + } + { // union + Foo :: union {int, bool} + f: Foo = 123 + switch in f { + case int: fmt.println("int") + case bool: fmt.println("bool") + case: + } + + #partial switch in f { + case bool: fmt.println("bool") + } + } +} + +cstring_example :: proc() { + fmt.println("\n# cstring_example") + + W :: "Hellope" + X :: cstring(W) + Y :: string(X) + + w := W + _ = w + x: cstring = X + y: string = Y + z := string(x) + fmt.println(x, y, z) + fmt.println(len(x), len(y), len(z)) + fmt.println(len(W), len(X), len(Y)) + // IMPORTANT NOTE for cstring variables + // len(cstring) is O(N) + // cast(string)cstring is O(N) +} + +bit_set_type :: proc() { + fmt.println("\n# bit_set type") + + { + using Day :: enum { + Sunday, + Monday, + Tuesday, + Wednesday, + Thursday, + Friday, + Saturday, + } + + Days :: distinct bit_set[Day] + WEEKEND :: Days{Sunday, Saturday} + + d: Days + d = {Sunday, Monday} + e := d | WEEKEND + e |= {Monday} + fmt.println(d, e) + + ok := Saturday in e // `in` is only allowed for `map` and `bit_set` types + fmt.println(ok) + if Saturday in e { + fmt.println("Saturday in", e) + } + X :: Saturday in WEEKEND // Constant evaluation + fmt.println(X) + fmt.println("Cardinality:", card(e)) + } + { + x: bit_set['A'..'Z'] + #assert(size_of(x) == size_of(u32)) + y: bit_set[0..8; u16] + fmt.println(typeid_of(type_of(x))) // bit_set[A..Z] + fmt.println(typeid_of(type_of(y))) // bit_set[0..8; u16] + + incl(&x, 'F') + assert('F' in x) + excl(&x, 'F') + assert('F' not_in x) + + y |= {1, 4, 2} + assert(2 in y) + } + { + Letters :: bit_set['A'..'Z'] + a := Letters{'A', 'B'} + b := Letters{'A', 'B', 'C', 'D', 'F'} + c := Letters{'A', 'B'} + + assert(a <= b) // 'a' is a subset of 'b' + assert(b >= a) // 'b' is a superset of 'a' + assert(a < b) // 'a' is a strict subset of 'b' + assert(b > a) // 'b' is a strict superset of 'a' + + assert(!(a < c)) // 'a' is a not strict subset of 'c' + assert(!(c > a)) // 'c' is a not strict superset of 'a' + } +} + +deferred_procedure_associations :: proc() { + fmt.println("\n# deferred procedure associations") + + @(deferred_out=closure) + open :: proc(s: string) -> bool { + fmt.println(s) + return true + } + + closure :: proc(ok: bool) { + fmt.println("Goodbye?", ok) + } + + if open("Welcome") { + fmt.println("Something in the middle, mate.") + } +} + +reflection :: proc() { + fmt.println("\n# reflection") + + Foo :: struct { + x: int `tag1`, + y: string `json:"y_field"`, + z: bool, // no tag + } + + id := typeid_of(Foo) + names := reflect.struct_field_names(id) + types := reflect.struct_field_types(id) + tags := reflect.struct_field_tags(id) + + assert(len(names) == len(types) && len(names) == len(tags)) + + fmt.println("Foo :: struct {") + for tag, i in tags { + name, type := names[i], types[i] + if tag != "" { + fmt.printf("\t%s: %T `%s`,\n", name, type, tag) + } else { + fmt.printf("\t%s: %T,\n", name, type) + } + } + fmt.println("}") + + + for tag, i in tags { + if val, ok := reflect.struct_tag_lookup(tag, "json"); ok { + fmt.printf("json: %s -> %s\n", names[i], val) + } + } +} + +quaternions :: proc() { + // Not just an April Fool's Joke any more, but a fully working thing! + fmt.println("\n# quaternions") + + { // Quaternion operations + q := 1 + 2i + 3j + 4k + r := quaternion(5, 6, 7, 8) + t := q * r + fmt.printf("(%v) * (%v) = %v\n", q, r, t) + v := q / r + fmt.printf("(%v) / (%v) = %v\n", q, r, v) + u := q + r + fmt.printf("(%v) + (%v) = %v\n", q, r, u) + s := q - r + fmt.printf("(%v) - (%v) = %v\n", q, r, s) + } + { // The quaternion types + q128: quaternion128 // 4xf32 + q256: quaternion256 // 4xf64 + q128 = quaternion(1, 0, 0, 0) + q256 = 1 // quaternion(1, 0, 0, 0) + } + { // Built-in procedures + q := 1 + 2i + 3j + 4k + fmt.println("q =", q) + fmt.println("real(q) =", real(q)) + fmt.println("imag(q) =", imag(q)) + fmt.println("jmag(q) =", jmag(q)) + fmt.println("kmag(q) =", kmag(q)) + fmt.println("conj(q) =", conj(q)) + fmt.println("abs(q) =", abs(q)) + } + { // Conversion of a complex type to a quaternion type + c := 1 + 2i + q := quaternion256(c) + fmt.println(c) + fmt.println(q) + } + { // Memory layout of Quaternions + q := 1 + 2i + 3j + 4k + a := transmute([4]f64)q + fmt.println("Quaternion memory layout: xyzw/(ijkr)") + fmt.println(q) // 1.000+2.000i+3.000j+4.000k + fmt.println(a) // [2.000, 3.000, 4.000, 1.000] + } +} + +inline_for_statement :: proc() { + fmt.println("\n#inline for statements") + + // 'inline for' works the same as if the 'inline' prefix did not + // exist but these ranged loops are explicitly unrolled which can + // be very very useful for certain optimizations + + fmt.println("Ranges") + inline for x, i in 1..<4 { + fmt.println(x, i) + } + + fmt.println("Strings") + inline for r, i in "Hello, 世界" { + fmt.println(r, i) + } + + fmt.println("Arrays") + inline for elem, idx in ([4]int{1, 4, 9, 16}) { + fmt.println(elem, idx) + } + + + Foo_Enum :: enum { + A = 1, + B, + C = 6, + D, + } + fmt.println("Enum types") + inline for elem, idx in Foo_Enum { + fmt.println(elem, idx) + } +} + +where_clauses :: proc() { + fmt.println("\n#procedure 'where' clauses") + + { // Sanity checks + simple_sanity_check :: proc(x: [2]int) + where len(x) > 1, + type_of(x) == [2]int { + fmt.println(x) + } + } + { // Parametric polymorphism checks + cross_2d :: proc(a, b: $T/[2]$E) -> E + where intrinsics.type_is_numeric(E) { + return a.x*b.y - a.y*b.x + } + cross_3d :: proc(a, b: $T/[3]$E) -> T + where intrinsics.type_is_numeric(E) { + x := a.y*b.z - a.z*b.y + y := a.z*b.x - a.x*b.z + z := a.x*b.y - a.y*b.z + return T{x, y, z} + } + + a := [2]int{1, 2} + b := [2]int{5, -3} + fmt.println(cross_2d(a, b)) + + x := [3]f32{1, 4, 9} + y := [3]f32{-5, 0, 3} + fmt.println(cross_3d(x, y)) + + // Failure case + // i := [2]bool{true, false} + // j := [2]bool{false, true} + // fmt.println(cross_2d(i, j)) + + } + + { // Procedure groups usage + foo :: proc(x: [$N]int) -> bool + where N > 2 { + fmt.println(#procedure, "was called with the parameter", x) + return true + } + + bar :: proc(x: [$N]int) -> bool + where 0 < N, + N <= 2 { + fmt.println(#procedure, "was called with the parameter", x) + return false + } + + baz :: proc{foo, bar} + + x := [3]int{1, 2, 3} + y := [2]int{4, 9} + ok_x := baz(x) + ok_y := baz(y) + assert(ok_x == true) + assert(ok_y == false) + } + + { // Record types + Foo :: struct(T: typeid, N: int) + where intrinsics.type_is_integer(T), + N > 2 { + x: [N]T, + y: [N-2]T, + } + + T :: i32 + N :: 5 + f: Foo(T, N) + #assert(size_of(f) == (N+N-2)*size_of(T)) + } +} + + +when ODIN_OS == "windows" { + foreign import kernel32 "system:kernel32.lib" +} + +foreign_system :: proc() { + fmt.println("\n#foreign system") + when ODIN_OS == "windows" { + // It is sometimes necessarily to interface with foreign code, + // such as a C library. In Odin, this is achieved through the + // foreign system. You can “import” a library into the code + // using the same semantics as a normal import declaration. + + // This foreign import declaration will create a + // “foreign import name” which can then be used to associate + // entities within a foreign block. + + foreign kernel32 { + ExitProcess :: proc "stdcall" (exit_code: u32) --- + } + + // Foreign procedure declarations have the cdecl/c calling + // convention by default unless specified otherwise. Due to + // foreign procedures do not have a body declared within this + // code, you need append the --- symbol to the end to distinguish + // it as a procedure literal without a body and not a procedure type. + + // The attributes system can be used to change specific properties + // of entities declared within a block: + + @(default_calling_convention = "std") + foreign kernel32 { + @(link_name="GetLastError") get_last_error :: proc() -> i32 --- + } + + // Example using the link_prefix attribute + @(default_calling_convention = "std") + @(link_prefix = "Get") + foreign kernel32 { + LastError :: proc() -> i32 --- + } + } +} + +ranged_fields_for_array_compound_literals :: proc() { + fmt.println("\n#ranged fields for array compound literals") + { // Normal Array Literal + foo := [?]int{1, 4, 9, 16} + fmt.println(foo) + } + { // Indexed + foo := [?]int{ + 3 = 16, + 1 = 4, + 2 = 9, + 0 = 1, + } + fmt.println(foo) + } + { // Ranges + i := 2 + foo := [?]int { + 0 = 123, + 5..9 = 54, + 10..<16 = i*3 + (i-1)*2, + } + #assert(len(foo) == 16) + fmt.println(foo); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] + } + { // Slice and Dynamic Array support + i := 2 + foo_slice := []int { + 0 = 123, + 5..9 = 54, + 10..<16 = i*3 + (i-1)*2, + } + assert(len(foo_slice) == 16) + fmt.println(foo_slice); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] + + foo_dynamic_array := [dynamic]int { + 0 = 123, + 5..9 = 54, + 10..<16 = i*3 + (i-1)*2, + } + assert(len(foo_dynamic_array) == 16) + fmt.println(foo_dynamic_array); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8] + } +} + +deprecated_attribute :: proc() { + @(deprecated="Use foo_v2 instead") + foo_v1 :: proc(x: int) { + fmt.println("foo_v1") + } + foo_v2 :: proc(x: int) { + fmt.println("foo_v2") + } + + // NOTE: Uncomment to see the warning messages + // foo_v1(1) +} + +range_statements_with_multiple_return_values :: proc() { + // IMPORTANT NOTE(bill, 2019-11-02): This feature is subject to be changed/removed + fmt.println("\n#range statements with multiple return values") + My_Iterator :: struct { + index: int, + data: []i32, + } + make_my_iterator :: proc(data: []i32) -> My_Iterator { + return My_Iterator{data = data} + } + my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) { + if cond = it.index < len(it.data); cond { + val = it.data[it.index] + idx = it.index + it.index += 1 + } + return + } + + data := make([]i32, 6) + for _, i in data { + data[i] = i32(i*i) + } + + { + it := make_my_iterator(data) + for val in my_iterator(&it) { + fmt.println(val) + } + } + { + it := make_my_iterator(data) + for val, idx in my_iterator(&it) { + fmt.println(val, idx) + } + } + { + it := make_my_iterator(data) + for { + val, _, cond := my_iterator(&it) + if !cond { + break + } + fmt.println(val) + } + } +} + + +soa_struct_layout :: proc() { + // IMPORTANT NOTE(bill, 2019-11-03): This feature is subject to be changed/removed + // NOTE(bill): Most likely #soa [N]T + fmt.println("\n#SOA Struct Layout") + + { + Vector3 :: struct {x, y, z: f32} + + N :: 2 + v_aos: [N]Vector3 + v_aos[0].x = 1 + v_aos[0].y = 4 + v_aos[0].z = 9 + + fmt.println(len(v_aos)) + fmt.println(v_aos[0]) + fmt.println(v_aos[0].x) + fmt.println(&v_aos[0].x) + + v_aos[1] = {0, 3, 4} + v_aos[1].x = 2 + fmt.println(v_aos[1]) + fmt.println(v_aos) + + v_soa: #soa[N]Vector3 + + v_soa[0].x = 1 + v_soa[0].y = 4 + v_soa[0].z = 9 + + + // Same syntax as AOS and treat as if it was an array + fmt.println(len(v_soa)) + fmt.println(v_soa[0]) + fmt.println(v_soa[0].x) + fmt.println(&v_soa[0].x) + v_soa[1] = {0, 3, 4} + v_soa[1].x = 2 + fmt.println(v_soa[1]) + + // Can use SOA syntax if necessary + v_soa.x[0] = 1 + v_soa.y[0] = 4 + v_soa.z[0] = 9 + fmt.println(v_soa.x[0]) + + // Same pointer addresses with both syntaxes + assert(&v_soa[0].x == &v_soa.x[0]) + + + // Same fmt printing + fmt.println(v_aos) + fmt.println(v_soa) + } + { + // Works with arrays of length <= 4 which have the implicit fields xyzw/rgba + Vector3 :: distinct [3]f32 + + N :: 2 + v_aos: [N]Vector3 + v_aos[0].x = 1 + v_aos[0].y = 4 + v_aos[0].z = 9 + + v_soa: #soa[N]Vector3 + + v_soa[0].x = 1 + v_soa[0].y = 4 + v_soa[0].z = 9 + } + { + // SOA Slices + // Vector3 :: struct {x, y, z: f32} + Vector3 :: struct {x: i8, y: i16, z: f32} + + N :: 3 + v: #soa[N]Vector3 + v[0].x = 1 + v[0].y = 4 + v[0].z = 9 + + s: #soa[]Vector3 + s = v[:] + assert(len(s) == N) + fmt.println(s) + fmt.println(s[0].x) + + a := s[1:2] + assert(len(a) == 1) + fmt.println(a) + + d: #soa[dynamic]Vector3 + + append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3}) + fmt.println(d) + fmt.println(len(d)) + fmt.println(cap(d)) + fmt.println(d[:]) + } +} + +constant_literal_expressions :: proc() { + fmt.println("\n#constant literal expressions") + + Bar :: struct {x, y: f32} + Foo :: struct {a, b: int, using c: Bar} + + FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}} + + + fmt.println(FOO_CONST.a) + fmt.println(FOO_CONST.b) + fmt.println(FOO_CONST.c) + fmt.println(FOO_CONST.c.x) + fmt.println(FOO_CONST.c.y) + fmt.println(FOO_CONST.x); // using works as expected + fmt.println(FOO_CONST.y) + + fmt.println("-------") + + ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1} + + fmt.println(ARRAY_CONST[0]) + fmt.println(ARRAY_CONST[1]) + fmt.println(ARRAY_CONST[2]) + + fmt.println("-------") + + FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}} + fmt.println(FOO_ARRAY_DEFAULTS[2].x) + + fmt.println("-------") + + Baz :: enum{A=5, B, C, D} + ENUM_ARRAY_CONST :: [Baz]int{.A .. .C = 1, .D = 16} + + fmt.println(ENUM_ARRAY_CONST[.A]) + fmt.println(ENUM_ARRAY_CONST[.B]) + fmt.println(ENUM_ARRAY_CONST[.C]) + fmt.println(ENUM_ARRAY_CONST[.D]) + + fmt.println("-------") + + Partial_Baz :: enum{A=5, B, C, D=16} + #assert(len(Partial_Baz) < len(#partial [Partial_Baz]int)) + PARTIAL_ENUM_ARRAY_CONST :: #partial [Partial_Baz]int{.A .. .C = 1, .D = 16} + + fmt.println(PARTIAL_ENUM_ARRAY_CONST[.A]) + fmt.println(PARTIAL_ENUM_ARRAY_CONST[.B]) + fmt.println(PARTIAL_ENUM_ARRAY_CONST[.C]) + fmt.println(PARTIAL_ENUM_ARRAY_CONST[.D]) + + fmt.println("-------") + + + STRING_CONST :: "Hellope!" + + fmt.println(STRING_CONST[0]) + fmt.println(STRING_CONST[2]) + fmt.println(STRING_CONST[3]) + + fmt.println(STRING_CONST[0:5]) + fmt.println(STRING_CONST[3:][:4]) +} + +union_maybe :: proc() { + fmt.println("\n#union #maybe") + + Maybe :: union(T: typeid) #maybe {T} + + i: Maybe(u8) + p: Maybe(^u8); // No tag is stored for pointers, nil is the sentinel value + + #assert(size_of(i) == size_of(u8) + size_of(u8)) + #assert(size_of(p) == size_of(^u8)) + + i = 123 + x := i.? + y, y_ok := p.? + p = &x + z, z_ok := p.? + + fmt.println(i, p) + fmt.println(x, &x) + fmt.println(y, y_ok) + fmt.println(z, z_ok) +} + +dummy_procedure :: proc() { + fmt.println("dummy_procedure") +} + +explicit_context_definition :: proc "c" () { + // Try commenting the following statement out below + context = runtime.default_context() + + fmt.println("\n#explicit context definition") + dummy_procedure() +} + +relative_data_types :: proc() { + fmt.println("\n#relative data types") + + x: int = 123 + ptr: #relative(i16) ^int + ptr = &x + fmt.println(ptr^) + + arr := [3]int{1, 2, 3} + s := arr[:] + rel_slice: #relative(i16) []int + rel_slice = s + fmt.println(rel_slice) + fmt.println(rel_slice[:]) + fmt.println(rel_slice[1]) +} + +pure_procedures :: proc() { + fmt.println("\n#pure procedures") + + square :: proc "pure" (x: int) -> int { + return x*x + 1 + } + + do_math :: proc "pure" (x: int) -> int { + // Only "pure" procedure calls are allowed within a "pure" procedure + return square(x) + 1 + } + + x := do_math(5) + fmt.println(x) +} + +main :: proc() { + when true { + the_basics() + control_flow() + named_proc_return_parameters() + explicit_procedure_overloading() + struct_type() + union_type() + using_statement() + implicit_context_system() + parametric_polymorphism() + array_programming() + map_type() + implicit_selector_expression() + partial_switch() + cstring_example() + bit_set_type() + deferred_procedure_associations() + reflection() + quaternions() + inline_for_statement() + where_clauses() + foreign_system() + ranged_fields_for_array_compound_literals() + deprecated_attribute() + range_statements_with_multiple_return_values() + threading_example() + soa_struct_layout() + constant_literal_expressions() + union_maybe() + explicit_context_definition() + relative_data_types() + pure_procedures() + } +} |