aboutsummaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2018-02-25 12:10:19 +0000
committergingerBill <bill@gingerbill.org>2018-02-25 12:10:19 +0000
commit652da98c700c26ca22c8b1a916ce5228feab4426 (patch)
treef9184c985c672ce9290f30c06f37f35a1a685e59 /examples
parente14e2c3b4d460887056c68f3926f2b96f276777a (diff)
Fix slice bounds checking
Diffstat (limited to 'examples')
-rw-r--r--examples/demo.odin759
1 files changed, 5 insertions, 754 deletions
diff --git a/examples/demo.odin b/examples/demo.odin
index 466eb625e..95a0535bb 100644
--- a/examples/demo.odin
+++ b/examples/demo.odin
@@ -20,759 +20,10 @@ when ODIN_OS == "windows" {
import win32 "core:sys/windows.odin"
}
-@(link_name="general_stuff")
-general_stuff :: proc() {
- fmt.println("# general_stuff");
- { // `do` for inline statements rather than block
- foo :: proc() do fmt.println("Foo!");
- if false do foo();
- for false do foo();
- when false do foo();
-
- if false do foo();
- else do foo();
- }
-
- { // Removal of `++` and `--` (again)
- x: int;
- x += 1;
- x -= 1;
- }
- { // Casting syntaxes
- i := i32(137);
- ptr := &i;
-
- _ = (^f32)(ptr);
- // ^f32(ptr) == ^(f32(ptr))
- _ = cast(^f32)ptr;
-
- _ = (^f32)(ptr)^;
- _ = (cast(^f32)ptr)^;
-
- // Questions: Should there be two ways to do it?
- }
-
- /*
- * Remove *_val_of built-in procedures
- * size_of, align_of, offset_of
- * type_of, type_info_of
- */
-
- { // `expand_to_tuple` built-in procedure
- Foo :: struct {
- x: int,
- b: bool,
- }
- f := Foo{137, true};
- x, b := expand_to_tuple(f);
- fmt.println(f);
- fmt.println(x, b);
- fmt.println(expand_to_tuple(f));
- }
-
- {
- // .. half-closed range
- // ... open range
-
- for in 0..2 {} // 0, 1
- for in 0...2 {} // 0, 1, 2
- }
-
- { // Multiple sized booleans
-
- x0: bool; // default
- x1: b8 = true;
- x2: b16 = false;
- x3: b32 = true;
- x4: b64 = false;
-
- fmt.printf("x1: %T = %v;\n", x1, x1);
- fmt.printf("x2: %T = %v;\n", x2, x2);
- fmt.printf("x3: %T = %v;\n", x3, x3);
- fmt.printf("x4: %T = %v;\n", x4, x4);
-
- // Having specific sized booleans is very useful when dealing with foreign code
- // and to enforce specific alignment for a boolean, especially within a struct
- }
-
- { // `distinct` types
- // Originally, all type declarations would create a distinct type unless #type_alias was present.
- // Now the behaviour has been reversed. All type declarations create a type alias unless `distinct` is present.
- // If the type expression is `struct`, `union`, `enum`, `proc`, or `bit_field`, the types will always been distinct.
-
- Int32 :: i32;
- #assert(Int32 == i32);
-
- My_Int32 :: distinct i32;
- #assert(My_Int32 != i32);
-
- My_Struct :: struct{x: int};
- #assert(My_Struct != struct{x: int});
- }
-}
-
-default_struct_values :: proc() {
- fmt.println("# default_struct_values");
- {
- Vector3 :: struct {
- x: f32,
- y: f32,
- z: f32,
- }
- v: Vector3;
- fmt.println(v);
- }
- {
- // Default values must be constants
- Vector3 :: struct {
- x: f32 = 1,
- y: f32 = 4,
- z: f32 = 9,
- }
- v: Vector3;
- fmt.println(v);
-
- v = Vector3{};
- fmt.println(v);
-
- // Uses the same semantics as a default values in a procedure
- v = Vector3{137};
- fmt.println(v);
-
- v = Vector3{z = 137};
- fmt.println(v);
- }
-
- {
- Vector3 :: struct {
- x := 1.0,
- y := 4.0,
- z := 9.0,
- }
- stack_default: Vector3;
- stack_literal := Vector3{};
- heap_one := new(Vector3); defer free(heap_one);
- heap_two := new_clone(Vector3{}); defer free(heap_two);
-
- fmt.println("stack_default - ", stack_default);
- fmt.println("stack_literal - ", stack_literal);
- fmt.println("heap_one - ", heap_one^);
- fmt.println("heap_two - ", heap_two^);
-
-
- N :: 4;
- stack_array: [N]Vector3;
- heap_array := new([N]Vector3); defer free(heap_array);
- heap_slice := make([]Vector3, N); defer free(heap_slice);
- fmt.println("stack_array[1] - ", stack_array[1]);
- fmt.println("heap_array[1] - ", heap_array[1]);
- fmt.println("heap_slice[1] - ", heap_slice[1]);
- }
-}
-
-
-
-
-union_type :: proc() {
- fmt.println("\n# union_type");
- {
- val: union{int, bool};
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
-
- val = nil;
-
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
- {
- // There is a duality between `any` and `union`
- // An `any` has a pointer to the data and allows for any type (open)
- // A `union` has as binary blob to store the data and allows only certain types (closed)
- // The following code is with `any` but has the same syntax
- val: any;
- val = 137;
- if i, ok := val.(int); ok {
- fmt.println(i);
- }
- val = true;
- fmt.println(val);
-
- val = nil;
-
- switch v in val {
- case int: fmt.println("int", v);
- case bool: fmt.println("bool", v);
- case: fmt.println("nil");
- }
- }
-
- Vector3 :: struct {x, y, z: f32};
- Quaternion :: struct {x, y, z: f32, w: f32 = 1};
-
- // More realistic examples
- {
- // NOTE(bill): For the above basic examples, you may not have any
- // particular use for it. However, my main use for them is not for these
- // simple cases. My main use is for hierarchical types. Many prefer
- // subtyping, embedding the base data into the derived types. Below is
- // an example of this for a basic game Entity.
-
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
-
- derived: any,
- }
-
- Frog :: struct {
- using entity: Entity,
- jump_height: f32,
- }
-
- Monster :: struct {
- using entity: Entity,
- is_robot: bool,
- is_zombie: bool,
- }
-
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T);
- t.derived = t^;
- return t;
- }
-
- entity := new_entity(Monster);
-
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot do fmt.println("Robotic");
- if e.is_zombie do fmt.println("Grrrr!");
- }
- }
-
- {
- // NOTE(bill): A union can be used to achieve something similar. Instead
- // of embedding the base data into the derived types, the derived data
- // in embedded into the base type. Below is the same example of the
- // basic game Entity but using an union.
-
- Entity :: struct {
- id: u64,
- name: string,
- position: Vector3,
- orientation: Quaternion,
-
- derived: union {Frog, Monster},
- }
-
- Frog :: struct {
- using entity: ^Entity,
- jump_height: f32,
- }
-
- Monster :: struct {
- using entity: ^Entity,
- is_robot: bool,
- is_zombie: bool,
- }
-
- // See `parametric_polymorphism` procedure for details
- new_entity :: proc(T: type) -> ^Entity {
- t := new(Entity);
- t.derived = T{entity = t};
- return t;
- }
-
- entity := new_entity(Monster);
-
- switch e in entity.derived {
- case Frog:
- fmt.println("Ribbit");
- case Monster:
- if e.is_robot do fmt.println("Robotic");
- if e.is_zombie do fmt.println("Grrrr!");
- }
-
- // NOTE(bill): As you can see, the usage code has not changed, only its
- // memory layout. Both approaches have their own advantages but they can
- // be used together to achieve different results. The subtyping approach
- // can allow for a greater control of the memory layout and memory
- // allocation, e.g. storing the derivatives together. However, this is
- // also its disadvantage. You must either preallocate arrays for each
- // derivative separation (which can be easily missed) or preallocate a
- // bunch of "raw" memory; determining the maximum size of the derived
- // types would require the aid of metaprogramming. Unions solve this
- // particular problem as the data is stored with the base data.
- // Therefore, it is possible to preallocate, e.g. [100]Entity.
-
- // It should be noted that the union approach can have the same memory
- // layout as the any and with the same type restrictions by using a
- // pointer type for the derivatives.
-
- /*
- Entity :: struct {
- ...
- derived: union{^Frog, ^Monster},
- }
-
- Frog :: struct {
- using entity: Entity,
- ...
- }
- Monster :: struct {
- using entity: Entity,
- ...
-
- }
- new_entity :: proc(T: type) -> ^Entity {
- t := new(T);
- t.derived = t;
- return t;
- }
- */
- }
-}
-
-parametric_polymorphism :: proc() {
- fmt.println("# parametric_polymorphism");
-
- print_value :: proc(value: $T) {
- fmt.printf("print_value: %T %v\n", value, value);
- }
-
- v1: int = 1;
- v2: f32 = 2.1;
- v3: f64 = 3.14;
- v4: string = "message";
-
- print_value(v1);
- print_value(v2);
- print_value(v3);
- print_value(v4);
-
- fmt.println();
-
- add :: proc(p, q: $T) -> T {
- x: T = p + q;
- return x;
- }
-
- a := add(3, 4);
- fmt.printf("a: %T = %v\n", a, a);
-
- b := add(3.2, 4.3);
- fmt.printf("b: %T = %v\n", b, b);
-
- // This is how `new` is implemented
- alloc_type :: proc(T: type) -> ^T {
- t := cast(^T)alloc(size_of(T), align_of(T));
- t^ = T{}; // Use default initialization value
- return t;
- }
-
- copy_slice :: proc(dst, src: []$T) -> int {
- return mem.copy(&dst[0], &src[0], n*size_of(T));
- }
-
- double_params :: proc(a: $A, b: $B) -> A {
- return a + A(b);
- }
-
- fmt.println(double_params(12, 1.345));
-
-
-
- { // Polymorphic Types and Type Specialization
- Table_Slot :: struct(Key, Value: type) {
- occupied: bool,
- hash: u32,
- key: Key,
- value: Value,
- }
- TABLE_SIZE_MIN :: 32;
- Table :: struct(Key, Value: type) {
- count: int,
- allocator: Allocator,
- slots: []Table_Slot(Key, Value),
- }
-
- // Only allow types that are specializations of a (polymorphic) slice
- make_slice :: proc(T: type/[]$E, len: int) -> T {
- return make(T, len);
- }
-
-
- // Only allow types that are specializations of `Table`
- allocate :: proc(table: ^$T/Table, capacity: int) {
- c := context;
- if table.allocator.procedure != nil do c.allocator = table.allocator;
-
- context <- c {
- table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
- }
- }
-
- expand :: proc(table: ^$T/Table) {
- c := context;
- if table.allocator.procedure != nil do c.allocator = table.allocator;
-
- context <- c {
- old_slots := table.slots;
-
- cap := max(2*len(table.slots), TABLE_SIZE_MIN);
- allocate(table, cap);
-
- for s in old_slots do if s.occupied {
- put(table, s.key, s.value);
- }
-
- free(old_slots);
- }
- }
-
- // Polymorphic determination of a polymorphic struct
- // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
- put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
- hash := get_hash(key); // Ad-hoc method which would fail in a different scope
- index := find_index(table, key, hash);
- if index < 0 {
- if f64(table.count) >= 0.75*f64(len(table.slots)) {
- expand(table);
- }
- assert(table.count <= len(table.slots));
-
- hash := get_hash(key);
- index = int(hash % u32(len(table.slots)));
-
- for table.slots[index].occupied {
- if index += 1; index >= len(table.slots) {
- index = 0;
- }
- }
-
- table.count += 1;
- }
-
- slot := &table.slots[index];
- slot.occupied = true;
- slot.hash = hash;
- slot.key = key;
- slot.value = value;
- }
-
-
- // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
- find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
- hash := get_hash(key);
- index := find_index(table, key, hash);
- if index < 0 {
- return Value{}, false;
- }
- return table.slots[index].value, true;
- }
-
- find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
- if len(table.slots) <= 0 do return -1;
-
- index := int(hash % u32(len(table.slots)));
- for table.slots[index].occupied {
- if table.slots[index].hash == hash {
- if table.slots[index].key == key {
- return index;
- }
- }
-
- if index += 1; index >= len(table.slots) {
- index = 0;
- }
- }
-
- return -1;
- }
-
- get_hash :: proc(s: string) -> u32 { // fnv32a
- h: u32 = 0x811c9dc5;
- for i in 0..len(s) {
- h = (h ~ u32(s[i])) * 0x01000193;
- }
- return h;
- }
-
-
- table: Table(string, int);
-
- for i in 0..36 do put(&table, "Hellope", i);
- for i in 0..42 do put(&table, "World!", i);
-
- found, _ := find(&table, "Hellope");
- fmt.printf("`found` is %v\n", found);
-
- found, _ = find(&table, "World!");
- fmt.printf("`found` is %v\n", found);
-
- // I would not personally design a hash table like this in production
- // but this is a nice basic example
- // A better approach would either use a `u64` or equivalent for the key
- // and let the user specify the hashing function or make the user store
- // the hashing procedure with the table
- }
-}
-
-
-
-
-prefix_table := [?]string{
- "White",
- "Red",
- "Green",
- "Blue",
- "Octarine",
- "Black",
-};
-
-threading_example :: proc() {
- when ODIN_OS == "windows" {
- fmt.println("# threading_example");
-
- unordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
- __bounds_check_error_loc(loc, index, len(array));
- array[index] = array[len(array)-1];
- pop(array);
- }
- ordered_remove :: proc(array: ^[dynamic]$T, index: int, loc := #caller_location) {
- __bounds_check_error_loc(loc, index, len(array));
- copy(array[index..], array[index+1..]);
- pop(array);
- }
-
- worker_proc :: proc(t: ^thread.Thread) -> int {
- for iteration in 1...5 {
- fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
- fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
- // win32.sleep(1);
- }
- return 0;
- }
-
- threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
- defer free(threads);
-
- for in prefix_table {
- if t := thread.create(worker_proc); t != nil {
- t.init_context = context;
- t.use_init_context = true;
- t.user_index = len(threads);
- append(&threads, t);
- thread.start(t);
- }
- }
-
- for len(threads) > 0 {
- for i := 0; i < len(threads); /**/ {
- if t := threads[i]; thread.is_done(t) {
- fmt.printf("Thread %d is done\n", t.user_index);
- thread.destroy(t);
-
- ordered_remove(&threads, i);
- } else {
- i += 1;
- }
- }
- }
- }
-}
-
-array_programming :: proc() {
- fmt.println("# array_programming");
- {
- a := [3]f32{1, 2, 3};
- b := [3]f32{5, 6, 7};
- c := a * b;
- d := a + b;
- e := 1 + (c - d) / 2;
- fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
- }
-
- {
- a := [3]f32{1, 2, 3};
- b := swizzle(a, 2, 1, 0);
- assert(b == [3]f32{3, 2, 1});
-
- c := swizzle(a, 0, 0);
- assert(c == [2]f32{1, 1});
- assert(c == 1);
- }
-
- {
- Vector3 :: distinct [3]f32;
- a := Vector3{1, 2, 3};
- b := Vector3{5, 6, 7};
- c := (a * b)/2 + 1;
- d := c.x + c.y + c.z;
- fmt.printf("%.1f\n", d); // 22.0
-
- cross :: proc(a, b: Vector3) -> Vector3 {
- i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
- j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
- return i - j;
- }
-
- blah :: proc(a: Vector3) -> f32 {
- return a.x + a.y + a.z;
- }
-
- x := cross(a, b);
- fmt.println(x);
- fmt.println(blah(x));
- }
-}
-
-
-using println in import "core:fmt.odin"
-
-using_in :: proc() {
- fmt.println("# using in");
- using print in fmt;
-
- println("Hellope1");
- print("Hellope2\n");
-
- Foo :: struct {
- x, y: int,
- b: bool,
- }
- f: Foo;
- f.x, f.y = 123, 321;
- println(f);
- using x, y in f;
- x, y = 456, 654;
- println(f);
-}
-
-named_proc_return_parameters :: proc() {
- fmt.println("# named proc return parameters");
-
- foo0 :: proc() -> int {
- return 123;
- }
- foo1 :: proc() -> (a: int) {
- a = 123;
- return;
- }
- foo2 :: proc() -> (a, b: int) {
- // Named return values act like variables within the scope
- a = 321;
- b = 567;
- return b, a;
- }
- fmt.println("foo0 =", foo0()); // 123
- fmt.println("foo1 =", foo1()); // 123
- fmt.println("foo2 =", foo2()); // 567 321
-}
-
-
-enum_export :: proc() {
- fmt.println("# enum #export");
-
- Foo :: enum #export {A, B, C};
-
- f0 := A;
- f1 := B;
- f2 := C;
- fmt.println(f0, f1, f2);
-}
-
-explicit_procedure_overloading :: proc() {
- fmt.println("# explicit procedure overloading");
-
- add_ints :: proc(a, b: int) -> int {
- x := a + b;
- fmt.println("add_ints", x);
- return x;
- }
- add_floats :: proc(a, b: f32) -> f32 {
- x := a + b;
- fmt.println("add_floats", x);
- return x;
- }
- add_numbers :: proc(a: int, b: f32, c: u8) -> int {
- x := int(a) + int(b) + int(c);
- fmt.println("add_numbers", x);
- return x;
- }
-
- add :: proc[add_ints, add_floats, add_numbers];
-
- add(int(1), int(2));
- add(f32(1), f32(2));
- add(int(1), f32(2), u8(3));
-
- add(1, 2); // untyped ints coerce to int tighter than f32
- add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
- add(1, 2, 3); // three parameters
-
- // Ambiguous answers
- // add(1.0, 2);
- // add(1, 2.0);
-}
-
-complete_switch :: proc() {
- fmt.println("# complete_switch");
- { // enum
- Foo :: enum #export {
- A,
- B,
- C,
- D,
- }
-
- b := Foo.B;
- f := Foo.A;
- #complete switch f {
- case A: fmt.println("A");
- case B: fmt.println("B");
- case C: fmt.println("C");
- case D: fmt.println("D");
- case: fmt.println("?");
- }
- }
- { // union
- Foo :: union {int, bool};
- f: Foo = 123;
- #complete switch in f {
- case int: fmt.println("int");
- case bool: fmt.println("bool");
- case:
- }
- }
-}
-
-
main :: proc() {
- when true {
- general_stuff();
- default_struct_values();
- union_type();
- parametric_polymorphism();
- threading_example();
- array_programming();
- using_in();
- named_proc_return_parameters();
- enum_export();
- explicit_procedure_overloading();
- complete_switch();
- }
+ fmt.println("Hellope");
+
+ i := -10;
+ x := make([dynamic]int, 0, i);
+ fmt.println(x);
}