aboutsummaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorgingerBill <bill@gingerbill.org>2020-05-22 14:56:32 +0100
committergingerBill <bill@gingerbill.org>2020-05-22 14:56:32 +0100
commitfd6e2ed5def71732f9305d54eee012506dfdb38c (patch)
treec2e05c7fea2841eb797e006766a2ea2ce3224556 /examples
parent7bd1039a49e5fd771569cd1b5bca5b076d464a5f (diff)
Revert demo.odin
Diffstat (limited to 'examples')
-rw-r--r--examples/demo/demo.odin2003
1 files changed, 1980 insertions, 23 deletions
diff --git a/examples/demo/demo.odin b/examples/demo/demo.odin
index be20e690a..e6882fbcc 100644
--- a/examples/demo/demo.odin
+++ b/examples/demo/demo.odin
@@ -1,40 +1,1997 @@
package main
import "core:fmt"
+import "core:mem"
+import "core:os"
+import "core:thread"
+import "core:time"
+import "core:reflect"
+import "core:runtime"
+import "intrinsics"
-Foo :: struct {
- call0: proc(f: ^Foo, x: int) -> bool,
- call1: proc(f: Foo, x: int) -> bool,
- bar: int,
+/*
+ The Odin programming language is fast, concise, readable, pragmatic and open sourced.
+ It is designed with the intent of replacing C with the following goals:
+ * simplicity
+ * high performance
+ * built for modern systems
+ * joy of programming
+
+ # Installing Odin
+ Getting Started - https://odin-lang.org/docs/install/
+ Instructions for downloading and install the Odin compiler and libraries.
+
+ # Learning Odin
+ Overview of Odin - https://odin-lang.org/docs/overview/
+ An overview of the Odin programming language.
+ Frequently Asked Questions (FAQ) - https://odin-lang.org/docs/faq/
+ Answers to common questions about Odin.
+*/
+
+the_basics :: proc() {
+ fmt.println("\n# the basics");
+
+ { // The Basics
+ fmt.println("Hellope");
+
+ // Lexical elements and literals
+ // A comment
+
+ my_integer_variable: int; // A comment for documentaton
+
+ // Multi-line comments begin with /* and end with */. Multi-line comments can
+ // also be nested (unlike in C):
+ /*
+ You can have any text or code here and
+ have it be commented.
+ /*
+ NOTE: comments can be nested!
+ */
+ */
+
+ // String literals are enclosed in double quotes and character literals in single quotes.
+ // Special characters are escaped with a backslash \
+
+ some_string := "This is a string";
+ _ = 'A'; // unicode codepoint literal
+ _ = '\n';
+ _ = "C:\\Windows\\notepad.exe";
+ // Raw string literals are enclosed with single back ticks
+ _ = `C:\Windows\notepad.exe`;
+
+ // The length of a string in bytes can be found using the built-in `len` procedure:
+ _ = len("Foo");
+ _ = len(some_string);
+
+
+ // Numbers
+
+ // Numerical literals are written similar to most other programming languages.
+ // A useful feature in Odin is that underscores are allowed for better
+ // readability: 1_000_000_000 (one billion). A number that contains a dot is a
+ // floating point literal: 1.0e9 (one billion). If a number literal is suffixed
+ // with i, is an imaginary number literal: 2i (2 multiply the square root of -1).
+
+ // Binary literals are prefixed with 0b, octal literals with 0o, and hexadecimal
+ // literals 0x. A leading zero does not produce an octal constant (unlike C).
+
+ // In Odin, if a number constant is possible to be represented by a type without
+ // precision loss, it will automatically convert to that type.
+
+ x: int = 1.0; // A float literal but it can be represented by an integer without precision loss
+ // Constant literals are “untyped” which means that they can implicitly convert to a type.
+
+ y: int; // `y` is typed of type `int`
+ y = 1; // `1` is an untyped integer literal which can implicitly convert to `int`
+
+ z: f64; // `z` is typed of type `f64` (64-bit floating point number)
+ z = 1; // `1` is an untyped integer literals which can be implicity conver to `f64`
+ // No need for any suffixes or decimal places like in other languages
+ // CONSTANTS JUST WORK!!!
+
+
+ // Assignment statements
+ h: int = 123; // declares a new variable `h` with type `int` and assigns a value to it
+ h = 637; // assigns a new value to `h`
+
+ // `=` is the assignment operator
+
+ // You can assign multiple variables with it:
+ a, b := 1, "hello"; // declares `a` and `b` and infers the types from the assignments
+ b, a = "byte", 0;
+
+ // Note: `:=` is two tokens, `:` and `=`. The following are equivalent,
+ /*
+ i: int = 123;
+ i: = 123;
+ i := 123;
+ */
+
+ // Constant declarations
+ // Constants are entities (symbols) which have an assigned value.
+ // The constant’s value cannot be changed.
+ // The constant’s value must be able to be evaluated at compile time:
+ X :: "what"; // constant `X` has the untyped string value "what"
+
+ // Constants can be explicitly typed like a variable declaration:
+ Y : int : 123;
+ Z :: Y + 7; // constant computations are possible
+
+ _ = my_integer_variable;
+ _ = x;
+ }
}
-test0 :: proc(f: ^Foo, x: int) -> bool {
- fmt.println(#procedure, x);
- return true;
+control_flow :: proc() {
+ fmt.println("\n# control flow");
+ { // Control flow
+ // For loop
+ // Odin has only one loop statement, the `for` loop
+
+ // Basic for loop
+ for i := 0; i < 10; i += 1 {
+ fmt.println(i);
+ }
+
+ // NOTE: Unlike other languages like C, there are no parentheses `( )` surrounding the three components.
+ // Braces `{ }` or a `do` are always required>
+ for i := 0; i < 10; i += 1 { }
+ for i := 0; i < 10; i += 1 do fmt.print();
+
+ // The initial and post statements are optional
+ i := 0;
+ for ; i < 10; {
+ i += 1;
+ }
+
+ // These semicolons can be dropped. This `for` loop is equivalent to C's `while` loop
+ i = 0;
+ for i < 10 {
+ i += 1;
+ }
+
+ // If the condition is omitted, this produces an infinite loop:
+ for {
+ break;
+ }
+
+ // Range-based for loop
+ // The basic for loop
+ for j := 0; j < 10; j += 1 {
+ fmt.println(j);
+ }
+ // can also be written
+ for j in 0..<10 {
+ fmt.println(j);
+ }
+ for j in 0..9 {
+ fmt.println(j);
+ }
+
+ // Certain built-in types can be iterated over
+ some_string := "Hello, 世界";
+ for character in some_string { // Strings are assumed to be UTF-8
+ fmt.println(character);
+ }
+
+ some_array := [3]int{1, 4, 9};
+ for value in some_array {
+ fmt.println(value);
+ }
+
+ some_slice := []int{1, 4, 9};
+ for value in some_slice {
+ fmt.println(value);
+ }
+
+ some_dynamic_array := [dynamic]int{1, 4, 9};
+ defer delete(some_dynamic_array);
+ for value in some_dynamic_array {
+ fmt.println(value);
+ }
+
+
+ some_map := map[string]int{"A" = 1, "C" = 9, "B" = 4};
+ defer delete(some_map);
+ for key in some_map {
+ fmt.println(key);
+ }
+
+ // Alternatively a second index value can be added
+ for character, index in some_string {
+ fmt.println(index, character);
+ }
+ for value, index in some_array {
+ fmt.println(index, value);
+ }
+ for value, index in some_slice {
+ fmt.println(index, value);
+ }
+ for value, index in some_dynamic_array {
+ fmt.println(index, value);
+ }
+ for key, value in some_map {
+ fmt.println(key, value);
+ }
+
+ // The iterated values are copies and cannot be written to.
+ // The following idiom is useful for iterating over a container in a by-reference manner:
+ for _, idx in some_slice {
+ some_slice[idx] = (idx+1)*(idx+1);
+ }
+
+
+ // If statements
+ x := 123;
+ if x >= 0 {
+ fmt.println("x is positive");
+ }
+
+ if y := -34; y < 0 {
+ fmt.println("y is negative");
+ }
+
+ if y := 123; y < 0 {
+ fmt.println("y is negative");
+ } else if y == 0 {
+ fmt.println("y is zero");
+ } else {
+ fmt.println("y is positive");
+ }
+
+ // Switch statement
+ // A switch statement is another way to write a sequence of if-else statements.
+ // In Odin, the default case is denoted as a case without any expression.
+
+ switch arch := ODIN_ARCH; arch {
+ case "386":
+ fmt.println("32-bit");
+ case "amd64":
+ fmt.println("64-bit");
+ case: // default
+ fmt.println("Unsupported architecture");
+ }
+
+ // Odin’s `switch` is like one in C or C++, except that Odin only runs the selected case.
+ // This means that a `break` statement is not needed at the end of each case.
+ // Another important difference is that the case values need not be integers nor constants.
+
+ // To achieve a C-like fall through into the next case block, the keyword `fallthrough` can be used.
+ one_angry_dwarf :: proc() -> int {
+ fmt.println("one_angry_dwarf was called");
+ return 1;
+ }
+
+ switch j := 0; j {
+ case 0:
+ case one_angry_dwarf():
+ }
+
+ // A switch statement without a condition is the same as `switch true`.
+ // This can be used to write a clean and long if-else chain and have the
+ // ability to break if needed
+
+ switch {
+ case x < 0:
+ fmt.println("x is negative");
+ case x == 0:
+ fmt.println("x is zero");
+ case:
+ fmt.println("x is positive");
+ }
+
+ // A `switch` statement can also use ranges like a range-based loop:
+ switch c := 'j'; c {
+ case 'A'..'Z', 'a'..'z', '0'..'9':
+ fmt.println("c is alphanumeric");
+ }
+
+ switch x {
+ case 0..<10:
+ fmt.println("units");
+ case 10..<13:
+ fmt.println("pre-teens");
+ case 13..<20:
+ fmt.println("teens");
+ case 20..<30:
+ fmt.println("twenties");
+ }
+ }
+
+ { // Defer statement
+ // A defer statement defers the execution of a statement until the end of
+ // the scope it is in.
+
+ // The following will print 4 then 234:
+ {
+ x := 123;
+ defer fmt.println(x);
+ {
+ defer x = 4;
+ x = 2;
+ }
+ fmt.println(x);
+
+ x = 234;
+ }
+
+ // You can defer an entire block too:
+ {
+ bar :: proc() {}
+
+ defer {
+ fmt.println("1");
+ fmt.println("2");
+ }
+
+ cond := false;
+ defer if cond {
+ bar();
+ }
+ }
+
+ // Defer statements are executed in the reverse order that they were declared:
+ {
+ defer fmt.println("1");
+ defer fmt.println("2");
+ defer fmt.println("3");
+ }
+ // Will print 3, 2, and then 1.
+
+ if false {
+ f, err := os.open("my_file.txt");
+ if err != 0 {
+ // handle error
+ }
+ defer os.close(f);
+ // rest of code
+ }
+ }
+
+ { // When statement
+ /*
+ The when statement is almost identical to the if statement but with some differences:
+
+ * Each condition must be a constant expression as a when
+ statement is evaluated at compile time.
+ * The statements within a branch do not create a new scope
+ * The compiler checks the semantics and code only for statements
+ that belong to the first condition that is true
+ * An initial statement is not allowed in a when statement
+ * when statements are allowed at file scope
+ */
+
+ // Example
+ when ODIN_ARCH == "386" {
+ fmt.println("32 bit");
+ } else when ODIN_ARCH == "amd64" {
+ fmt.println("64 bit");
+ } else {
+ fmt.println("Unsupported architecture");
+ }
+ // The when statement is very useful for writing platform specific code.
+ // This is akin to the #if construct in C’s preprocessor however, in Odin,
+ // it is type checked.
+ }
+
+ { // Branch statements
+ cond, cond1, cond2 := false, false, false;
+ one_step :: proc() { fmt.println("one_step"); }
+ beyond :: proc() { fmt.println("beyond"); }
+
+ // Break statement
+ for cond {
+ switch {
+ case:
+ if cond {
+ break; // break out of the `switch` statement
+ }
+ }
+
+ break; // break out of the `for` statement
+ }
+
+ loop: for cond1 {
+ for cond2 {
+ break loop; // leaves both loops
+ }
+ }
+
+ // Continue statement
+ for cond {
+ if cond2 {
+ continue;
+ }
+ fmt.println("Hellope");
+ }
+
+ // Fallthrough statement
+
+ // Odin’s switch is like one in C or C++, except that Odin only runs the selected
+ // case. This means that a break statement is not needed at the end of each case.
+ // Another important difference is that the case values need not be integers nor
+ // constants.
+
+ // fallthrough can be used to explicitly fall through into the next case block:
+
+ switch i := 0; i {
+ case 0:
+ one_step();
+ fallthrough;
+ case 1:
+ beyond();
+ }
+ }
}
-test1 :: proc(f: Foo, x: int) -> bool {
- fmt.println(#procedure, x);
- return false;
+
+named_proc_return_parameters :: proc() {
+ fmt.println("\n# named proc return parameters");
+
+ foo0 :: proc() -> int {
+ return 123;
+ }
+ foo1 :: proc() -> (a: int) {
+ a = 123;
+ return;
+ }
+ foo2 :: proc() -> (a, b: int) {
+ // Named return values act like variables within the scope
+ a = 321;
+ b = 567;
+ return b, a;
+ }
+ fmt.println("foo0 =", foo0()); // 123
+ fmt.println("foo1 =", foo1()); // 123
+ fmt.println("foo2 =", foo2()); // 567 321
}
-main :: proc() {
- f := &Foo{
- call0 = test0,
- call1 = test1,
+
+explicit_procedure_overloading :: proc() {
+ fmt.println("\n# explicit procedure overloading");
+
+ add_ints :: proc(a, b: int) -> int {
+ x := a + b;
+ fmt.println("add_ints", x);
+ return x;
+ }
+ add_floats :: proc(a, b: f32) -> f32 {
+ x := a + b;
+ fmt.println("add_floats", x);
+ return x;
+ }
+ add_numbers :: proc(a: int, b: f32, c: u8) -> int {
+ x := int(a) + int(b) + int(c);
+ fmt.println("add_numbers", x);
+ return x;
+ }
+
+ add :: proc{add_ints, add_floats, add_numbers};
+
+ add(int(1), int(2));
+ add(f32(1), f32(2));
+ add(int(1), f32(2), u8(3));
+
+ add(1, 2); // untyped ints coerce to int tighter than f32
+ add(1.0, 2.0); // untyped floats coerce to f32 tighter than int
+ add(1, 2, 3); // three parameters
+
+ // Ambiguous answers
+ // add(1.0, 2);
+ // add(1, 2.0);
+}
+
+struct_type :: proc() {
+ fmt.println("\n# struct type");
+ // A struct is a record type in Odin. It is a collection of fields.
+ // Struct fields are accessed by using a dot:
+ {
+ Vector2 :: struct {
+ x: f32,
+ y: f32,
+ };
+ v := Vector2{1, 2};
+ v.x = 4;
+ fmt.println(v.x);
+
+ // Struct fields can be accessed through a struct pointer:
+
+ v = Vector2{1, 2};
+ p := &v;
+ p.x = 1335;
+ fmt.println(v);
+
+ // We could write p^.x, however, it is to nice abstract the ability
+ // to not explicitly dereference the pointer. This is very useful when
+ // refactoring code to use a pointer rather than a value, and vice versa.
+ }
+ {
+ // A struct literal can be denoted by providing the struct’s type
+ // followed by {}. A struct literal must either provide all the
+ // arguments or none:
+ Vector3 :: struct {
+ x, y, z: f32,
+ };
+ v: Vector3;
+ v = Vector3{}; // Zero value
+ v = Vector3{1, 4, 9};
+
+ // You can list just a subset of the fields if you specify the
+ // field by name (the order of the named fields does not matter):
+ v = Vector3{z=1, y=2};
+ assert(v.x == 0);
+ assert(v.y == 2);
+ assert(v.z == 1);
+ }
+ {
+ // Structs can tagged with different memory layout and alignment requirements:
+
+ a :: struct #align 4 {}; // align to 4 bytes
+ b :: struct #packed {}; // remove padding between fields
+ c :: struct #raw_union {}; // all fields share the same offset (0). This is the same as C's union
+ }
+
+}
+
+
+union_type :: proc() {
+ fmt.println("\n# union type");
+ {
+ val: union{int, bool};
+ val = 137;
+ if i, ok := val.(int); ok {
+ fmt.println(i);
+ }
+ val = true;
+ fmt.println(val);
+
+ val = nil;
+
+ switch v in val {
+ case int: fmt.println("int", v);
+ case bool: fmt.println("bool", v);
+ case: fmt.println("nil");
+ }
+ }
+ {
+ // There is a duality between `any` and `union`
+ // An `any` has a pointer to the data and allows for any type (open)
+ // A `union` has as binary blob to store the data and allows only certain types (closed)
+ // The following code is with `any` but has the same syntax
+ val: any;
+ val = 137;
+ if i, ok := val.(int); ok {
+ fmt.println(i);
+ }
+ val = true;
+ fmt.println(val);
+
+ val = nil;
+
+ switch v in val {
+ case int: fmt.println("int", v);
+ case bool: fmt.println("bool", v);
+ case: fmt.println("nil");
+ }
+ }
+
+ Vector3 :: distinct [3]f32;
+ Quaternion :: distinct quaternion128;
+
+ // More realistic examples
+ {
+ // NOTE(bill): For the above basic examples, you may not have any
+ // particular use for it. However, my main use for them is not for these
+ // simple cases. My main use is for hierarchical types. Many prefer
+ // subtyping, embedding the base data into the derived types. Below is
+ // an example of this for a basic game Entity.
+
+ Entity :: struct {
+ id: u64,
+ name: string,
+ position: Vector3,
+ orientation: Quaternion,
+
+ derived: any,
+ };
+
+ Frog :: struct {
+ using entity: Entity,
+ jump_height: f32,
+ };
+
+ Monster :: struct {
+ using entity: Entity,
+ is_robot: bool,
+ is_zombie: bool,
+ };
+
+ // See `parametric_polymorphism` procedure for details
+ new_entity :: proc($T: typeid) -> ^Entity {
+ t := new(T);
+ t.derived = t^;
+ return t;
+ }
+
+ entity := new_entity(Monster);
+
+ switch e in entity.derived {
+ case Frog:
+ fmt.println("Ribbit");
+ case Monster:
+ if e.is_robot do fmt.println("Robotic");
+ if e.is_zombie do fmt.println("Grrrr!");
+ fmt.println("I'm a monster");
+ }
+ }
+
+ {
+ // NOTE(bill): A union can be used to achieve something similar. Instead
+ // of embedding the base data into the derived types, the derived data
+ // in embedded into the base type. Below is the same example of the
+ // basic game Entity but using an union.
+
+ Entity :: struct {
+ id: u64,
+ name: string,
+ position: Vector3,
+ orientation: Quaternion,
+
+ derived: union {Frog, Monster},
+ };
+
+ Frog :: struct {
+ using entity: ^Entity,
+ jump_height: f32,
+ };
+
+ Monster :: struct {
+ using entity: ^Entity,
+ is_robot: bool,
+ is_zombie: bool,
+ };
+
+ // See `parametric_polymorphism` procedure for details
+ new_entity :: proc($T: typeid) -> ^Entity {
+ t := new(Entity);
+ t.derived = T{entity = t};
+ return t;
+ }
+
+ entity := new_entity(Monster);
+
+ switch e in entity.derived {
+ case Frog:
+ fmt.println("Ribbit");
+ case Monster:
+ if e.is_robot do fmt.println("Robotic");
+ if e.is_zombie do fmt.println("Grrrr!");
+ }
+
+ // NOTE(bill): As you can see, the usage code has not changed, only its
+ // memory layout. Both approaches have their own advantages but they can
+ // be used together to achieve different results. The subtyping approach
+ // can allow for a greater control of the memory layout and memory
+ // allocation, e.g. storing the derivatives together. However, this is
+ // also its disadvantage. You must either preallocate arrays for each
+ // derivative separation (which can be easily missed) or preallocate a
+ // bunch of "raw" memory; determining the maximum size of the derived
+ // types would require the aid of metaprogramming. Unions solve this
+ // particular problem as the data is stored with the base data.
+ // Therefore, it is possible to preallocate, e.g. [100]Entity.
+
+ // It should be noted that the union approach can have the same memory
+ // layout as the any and with the same type restrictions by using a
+ // pointer type for the derivatives.
+
+ /*
+ Entity :: struct {
+ ...
+ derived: union{^Frog, ^Monster},
+ }
+
+ Frog :: struct {
+ using entity: Entity,
+ ...
+ }
+ Monster :: struct {
+ using entity: Entity,
+ ...
+
+ }
+ new_entity :: proc(T: type) -> ^Entity {
+ t := new(T);
+ t.derived = t;
+ return t;
+ }
+ */
+ }
+}
+
+using_statement :: proc() {
+ fmt.println("\n# using statement");
+ // using can used to bring entities declared in a scope/namespace
+ // into the current scope. This can be applied to import declarations,
+ // import names, struct fields, procedure fields, and struct values.
+
+ Vector3 :: struct{x, y, z: f32};
+ {
+ Entity :: struct {
+ position: Vector3,
+ orientation: quaternion128,
+ };
+
+ // It can used like this:
+ foo0 :: proc(entity: ^Entity) {
+ fmt.println(entity.position.x, entity.position.y, entity.position.z);
+ }
+
+ // The entity members can be brought into the procedure scope by using it:
+ foo1 :: proc(entity: ^Entity) {
+ using entity;
+ fmt.println(position.x, position.y, position.z);
+ }
+
+ // The using can be applied to the parameter directly:
+ foo2 :: proc(using entity: ^Entity) {
+ fmt.println(position.x, position.y, position.z);
+ }
+
+ // It can also be applied to sub-fields:
+ foo3 :: proc(entity: ^Entity) {
+ using entity.position;
+ fmt.println(x, y, z);
+ }
+ }
+ {
+ // We can also apply the using statement to the struct fields directly,
+ // making all the fields of position appear as if they on Entity itself:
+ Entity :: struct {
+ using position: Vector3,
+ orientation: quaternion128,
+ };
+ foo :: proc(entity: ^Entity) {
+ fmt.println(entity.x, entity.y, entity.z);
+ }
+
+
+ // Subtype polymorphism
+ // It is possible to get subtype polymorphism, similar to inheritance-like
+ // functionality in C++, but without the requirement of vtables or unknown
+ // struct layout:
+
+ Colour :: struct {r, g, b, a: u8};
+ Frog :: struct {
+ ribbit_volume: f32,
+ using entity: Entity,
+ colour: Colour,
+ };
+
+ frog: Frog;
+ // Both work
+ foo(&frog.entity);
+ foo(&frog);
+ frog.x = 123;
+
+ // Note: using can be applied to arbitrarily many things, which allows
+ // the ability to have multiple subtype polymorphism (but also its issues).
+
+ // Note: using’d fields can still be referred by name.
+ }
+ { // using on an enum declaration
+
+ using Foo :: enum {A, B, C};
+
+ f0 := A;
+ f1 := B;
+ f2 := C;
+ fmt.println(f0, f1, f2);
+ fmt.println(len(Foo));
+ }
+}
+
+
+implicit_context_system :: proc() {
+ fmt.println("\n# implicit context system");
+ // In each scope, there is an implicit value named context. This
+ // context variable is local to each scope and is implicitly passed
+ // by pointer to any procedure call in that scope (if the procedure
+ // has the Odin calling convention).
+
+ // The main purpose of the implicit context system is for the ability
+ // to intercept third-party code and libraries and modify their
+ // functionality. One such case is modifying how a library allocates
+ // something or logs something. In C, this was usually achieved with
+ // the library defining macros which could be overridden so that the
+ // user could define what he wanted. However, not many libraries
+ // supported this in many languages by default which meant intercepting
+ // third-party code to see what it does and to change how it does it is
+ // not possible.
+
+ c := context; // copy the current scope's context
+
+ context.user_index = 456;
+ {
+ context.allocator = my_custom_allocator();
+ context.user_index = 123;
+ what_a_fool_believes(); // the `context` for this scope is implicitly passed to `what_a_fool_believes`
+ }
+
+ // `context` value is local to the scope it is in
+ assert(context.user_index == 456);
+
+ what_a_fool_believes :: proc() {
+ c := context; // this `context` is the same as the parent procedure that it was called from
+ // From this example, context.user_index == 123
+ // An context.allocator is assigned to the return value of `my_custom_allocator()`
+ assert(context.user_index == 123);
+
+ // The memory management procedure use the `context.allocator` by
+ // default unless explicitly specified otherwise
+ china_grove := new(int);
+ free(china_grove);
+
+ _ = c;
+ }
+
+ my_custom_allocator :: mem.nil_allocator;
+ _ = c;
+
+ // By default, the context value has default values for its parameters which is
+ // decided in the package runtime. What the defaults are are compiler specific.
+
+ // To see what the implicit context value contains, please see the following
+ // definition in package runtime.
+}
+
+parametric_polymorphism :: proc() {
+ fmt.println("\n# parametric polymorphism");
+
+ print_value :: proc(value: $T) {
+ fmt.printf("print_value: %T %v\n", value, value);
+ }
+
+ v1: int = 1;
+ v2: f32 = 2.1;
+ v3: f64 = 3.14;
+ v4: string = "message";
+
+ print_value(v1);
+ print_value(v2);
+ print_value(v3);
+ print_value(v4);
+
+ fmt.println();
+
+ add :: proc(p, q: $T) -> T {
+ x: T = p + q;
+ return x;
+ }
+
+ a := add(3, 4);
+ fmt.printf("a: %T = %v\n", a, a);
+
+ b := add(3.2, 4.3);
+ fmt.printf("b: %T = %v\n", b, b);
+
+ // This is how `new` is implemented
+ alloc_type :: proc($T: typeid) -> ^T {
+ t := cast(^T)alloc(size_of(T), align_of(T));
+ t^ = T{}; // Use default initialization value
+ return t;
+ }
+
+ copy_slice :: proc(dst, src: []$T) -> int {
+ n := min(len(dst), len(src));
+ if n > 0 {
+ mem.copy(&dst[0], &src[0], n*size_of(T));
+ }
+ return n;
+ }
+
+ double_params :: proc(a: $A, b: $B) -> A {
+ return a + A(b);
+ }
+
+ fmt.println(double_params(12, 1.345));
+
+
+
+ { // Polymorphic Types and Type Specialization
+ Table_Slot :: struct(Key, Value: typeid) {
+ occupied: bool,
+ hash: u32,
+ key: Key,
+ value: Value,
+ };
+ TABLE_SIZE_MIN :: 32;
+ Table :: struct(Key, Value: typeid) {
+ count: int,
+ allocator: mem.Allocator,
+ slots: []Table_Slot(Key, Value),
+ };
+
+ // Only allow types that are specializations of a (polymorphic) slice
+ make_slice :: proc($T: typeid/[]$E, len: int) -> T {
+ return make(T, len);
+ }
+
+ // Only allow types that are specializations of `Table`
+ allocate :: proc(table: ^$T/Table, capacity: int) {
+ c := context;
+ if table.allocator.procedure != nil do c.allocator = table.allocator;
+ context = c;
+
+ table.slots = make_slice(type_of(table.slots), max(capacity, TABLE_SIZE_MIN));
+ }
+
+ expand :: proc(table: ^$T/Table) {
+ c := context;
+ if table.allocator.procedure != nil do c.allocator = table.allocator;
+ context = c;
+
+ old_slots := table.slots;
+ defer delete(old_slots);
+
+ cap := max(2*len(table.slots), TABLE_SIZE_MIN);
+ allocate(table, cap);
+
+ for s in old_slots do if s.occupied {
+ put(table, s.key, s.value);
+ }
+ }
+
+ // Polymorphic determination of a polymorphic struct
+ // put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
+ put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
+ hash := get_hash(key); // Ad-hoc method which would fail in a different scope
+ index := find_index(table, key, hash);
+ if index < 0 {
+ if f64(table.count) >= 0.75*f64(len(table.slots)) {
+ expand(table);
+ }
+ assert(table.count <= len(table.slots));
+
+ index = int(hash % u32(len(table.slots)));
+
+ for table.slots[index].occupied {
+ if index += 1; index >= len(table.slots) {
+ index = 0;
+ }
+ }
+
+ table.count += 1;
+ }
+
+ slot := &table.slots[index];
+ slot.occupied = true;
+ slot.hash = hash;
+ slot.key = key;
+ slot.value = value;
+ }
+
+
+ // find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
+ find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
+ hash := get_hash(key);
+ index := find_index(table, key, hash);
+ if index < 0 {
+ return Value{}, false;
+ }
+ return table.slots[index].value, true;
+ }
+
+ find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
+ if len(table.slots) <= 0 do return -1;
+
+ index := int(hash % u32(len(table.slots)));
+ for table.slots[index].occupied {
+ if table.slots[index].hash == hash {
+ if table.slots[index].key == key {
+ return index;
+ }
+ }
+
+ if index += 1; index >= len(table.slots) {
+ index = 0;
+ }
+ }
+
+ return -1;
+ }
+
+ get_hash :: proc(s: string) -> u32 { // fnv32a
+ h: u32 = 0x811c9dc5;
+ for i in 0..<len(s) {
+ h = (h ~ u32(s[i])) * 0x01000193;
+ }
+ return h;
+ }
+
+
+ table: Table(string, int);
+
+ for i in 0..36 do put(&table, "Hellope", i);
+ for i in 0..42 do put(&table, "World!", i);
+
+ found, _ := find(&table, "Hellope");
+ fmt.printf("`found` is %v\n", found);
+
+ found, _ = find(&table, "World!");
+ fmt.printf("`found` is %v\n", found);
+
+ // I would not personally design a hash table like this in production
+ // but this is a nice basic example
+ // A better approach would either use a `u64` or equivalent for the key
+ // and let the user specify the hashing function or make the user store
+ // the hashing procedure with the table
+ }
+
+ { // Parametric polymorphic union
+ Error :: enum {
+ Foo0,
+ Foo1,
+ Foo2,
+ Foo3,
+ };
+ Para_Union :: union(T: typeid) {T, Error};
+ r: Para_Union(int);
+ fmt.println(typeid_of(type_of(r)));
+
+ fmt.println(r);
+ r = 123;
+ fmt.println(r);
+ r = Error.Foo0; // r = .Foo0; is allow too, see implicit selector expressions below
+ fmt.println(r);
+ }
+
+ { // Polymorphic names
+ foo :: proc($N: $I, $T: typeid) -> (res: [N]T) {
+ // `N` is the constant value passed
+ // `I` is the type of N
+ // `T` is the type passed
+ fmt.printf("Generating an array of type %v from the value %v of type %v\n",
+ typeid_of(type_of(res)), N, typeid_of(I));
+ for i in 0..<N {
+ res[i] = T(i*i);
+ }
+ return;
+ }
+
+ T :: int;
+ array := foo(4, T);
+ for v, i in array {
+ assert(v == T(i*i));
+ }
+
+ // Matrix multiplication
+ mul :: proc(a: [$M][$N]$T, b: [N][$P]T) -> (c: [M][P]T) {
+ for i in 0..<M {
+ for j in 0..<P {
+ for k in 0..<N {
+ c[i][j] += a[i][k] * b[k][j];
+ }
+ }
+ }
+ return;
+ }
+
+ x := [2][3]f32{
+ {1, 2, 3},
+ {3, 2, 1},
+ };
+ y := [3][2]f32{
+ {0, 8},
+ {6, 2},
+ {8, 4},
+ };
+ z := mul(x, y);
+ assert(z == {{36, 24}, {20, 32}});
+ }
+}
+
+
+prefix_table := [?]string{
+ "White",
+ "Red",
+ "Green",
+ "Blue",
+ "Octarine",
+ "Black",
+};
+
+threading_example :: proc() {
+ fmt.println("\n# threading_example");
+
+ { // Basic Threads
+ fmt.println("\n## Basic Threads");
+ worker_proc :: proc(t: ^thread.Thread) {
+ for iteration in 1..5 {
+ fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
+ fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
+ time.sleep(1 * time.Millisecond);
+ }
+ }
+
+ threads := make([dynamic]^thread.Thread, 0, len(prefix_table));
+ defer delete(threads);
+
+ for in prefix_table {
+ if t := thread.create(worker_proc); t != nil {
+ t.init_context = context;
+ t.use_init_context = true;
+ t.user_index = len(threads);
+ append(&threads, t);
+ thread.start(t);
+ }
+ }
+
+ for len(threads) > 0 {
+ for i := 0; i < len(threads); /**/ {
+ if t := threads[i]; thread.is_done(t) {
+ fmt.printf("Thread %d is done\n", t.user_index);
+ thread.destroy(t);
+
+ ordered_remove(&threads, i);
+ } else {
+ i += 1;
+ }
+ }
+ }
+ }
+
+ { // Thread Pool
+ fmt.println("\n## Thread Pool");
+ task_proc :: proc(t: ^thread.Task) {
+ index := t.user_index % len(prefix_table);
+ for iteration in 1..5 {
+ fmt.printf("Worker Task %d is on iteration %d\n", t.user_index, iteration);
+ fmt.printf("`%s`: iteration %d\n", prefix_table[index], iteration);
+ time.sleep(1 * time.Millisecond);
+ }
+ }
+
+ pool: thread.Pool;
+ thread.pool_init(pool=&pool, thread_count=3);
+ defer thread.pool_destroy(&pool);
+
+
+ for i in 0..<30 {
+ thread.pool_add_task(pool=&pool, procedure=task_proc, data=nil, user_index=i);
+ }
+
+ thread.pool_start(&pool);
+ thread.pool_wait_and_process(&pool);
+ }
+}
+
+
+array_programming :: proc() {
+ fmt.println("\n# array programming");
+ {
+ a := [3]f32{1, 2, 3};
+ b := [3]f32{5, 6, 7};
+ c := a * b;
+ d := a + b;
+ e := 1 + (c - d) / 2;
+ fmt.printf("%.1f\n", e); // [0.5, 3.0, 6.5]
+ }
+
+ {
+ a := [3]f32{1, 2, 3};
+ b := swizzle(a, 2, 1, 0);
+ assert(b == [3]f32{3, 2, 1});
+
+ c := swizzle(a, 0, 0);
+ assert(c == [2]f32{1, 1});
+ assert(c == 1);
+ }
+
+ {
+ Vector3 :: distinct [3]f32;
+ a := Vector3{1, 2, 3};
+ b := Vector3{5, 6, 7};
+ c := (a * b)/2 + 1;
+ d := c.x + c.y + c.z;
+ fmt.printf("%.1f\n", d); // 22.0
+
+ cross :: proc(a, b: Vector3) -> Vector3 {
+ i := swizzle(a, 1, 2, 0) * swizzle(b, 2, 0, 1);
+ j := swizzle(a, 2, 0, 1) * swizzle(b, 1, 2, 0);
+ return i - j;
+ }
+
+ blah :: proc(a: Vector3) -> f32 {
+ return a.x + a.y + a.z;
+ }
+
+ x := cross(a, b);
+ fmt.println(x);
+ fmt.println(blah(x));
+ }
+}
+
+map_type :: proc() {
+ fmt.println("\n# map type");
+
+ m := make(map[string]int);
+ defer delete(m);
+
+ m["Bob"] = 2;
+ m["Ted"] = 5;
+ fmt.println(m["Bob"]);
+
+ delete_key(&m, "Ted");
+
+ // If an element of a key does not exist, the zero value of the
+ // element will be returned. To check to see if an element exists
+ // can be done in two ways:
+ elem, ok := m["Bob"];
+ exists := "Bob" in m;
+ _, _ = elem, ok;
+ _ = exists;
+}
+
+implicit_selector_expression :: proc() {
+ fmt.println("\n# implicit selector expression");
+
+ Foo :: enum {A, B, C};
+
+ f: Foo;
+ f = Foo.A;
+ f = .A;
+
+ BAR :: bit_set[Foo]{.B, .C};
+
+ switch f {
+ case .A:
+ fmt.println("HITHER");
+ case .B:
+ fmt.println("NEVER");
+ case .C:
+ fmt.println("FOREVER");
+ }
+
+ my_map := make(map[Foo]int);
+ defer delete(my_map);
+
+ my_map[.A] = 123;
+ my_map[Foo.B] = 345;
+
+ fmt.println(my_map[.A] + my_map[Foo.B] + my_map[.C]);
+}
+
+
+partial_switch :: proc() {
+ fmt.println("\n# partial_switch");
+ { // enum
+ Foo :: enum {
+ A,
+ B,
+ C,
+ D,
+ };
+
+ f := Foo.A;
+ switch f {
+ case .A: fmt.println("A");
+ case .B: fmt.println("B");
+ case .C: fmt.println("C");
+ case .D: fmt.println("D");
+ case: fmt.println("?");
+ }
+
+ #partial switch f {
+ case .A: fmt.println("A");
+ case .D: fmt.println("D");
+ }
+ }
+ { // union
+ Foo :: union {int, bool};
+ f: Foo = 123;
+ switch in f {
+ case int: fmt.println("int");
+ case bool: fmt.println("bool");
+ case:
+ }
+
+ #partial switch in f {
+ case bool: fmt.println("bool");
+ }
+ }
+}
+
+cstring_example :: proc() {
+ fmt.println("\n# cstring_example");
+
+ W :: "Hellope";
+ X :: cstring(W);
+ Y :: string(X);
+
+ w := W;
+ _ = w;
+ x: cstring = X;
+ y: string = Y;
+ z := string(x);
+ fmt.println(x, y, z);
+ fmt.println(len(x), len(y), len(z));
+ fmt.println(len(W), len(X), len(Y));
+ // IMPORTANT NOTE for cstring variables
+ // len(cstring) is O(N)
+ // cast(string)cstring is O(N)
+}
+
+bit_set_type :: proc() {
+ fmt.println("\n# bit_set type");
+
+ {
+ using Day :: enum {
+ Sunday,
+ Monday,
+ Tuesday,
+ Wednesday,
+ Thursday,
+ Friday,
+ Saturday,
+ };
+
+ Days :: distinct bit_set[Day];
+ WEEKEND :: Days{Sunday, Saturday};
+
+ d: Days;
+ d = {Sunday, Monday};
+ e := d | WEEKEND;
+ e |= {Monday};
+ fmt.println(d, e);
+
+ ok := Saturday in e; // `in` is only allowed for `map` and `bit_set` types
+ fmt.println(ok);
+ if Saturday in e {
+ fmt.println("Saturday in", e);
+ }
+ X :: Saturday in WEEKEND; // Constant evaluation
+ fmt.println(X);
+ fmt.println("Cardinality:", card(e));
+ }
+ {
+ x: bit_set['A'..'Z'];
+ #assert(size_of(x) == size_of(u32));
+ y: bit_set[0..8; u16];
+ fmt.println(typeid_of(type_of(x))); // bit_set[A..Z]
+ fmt.println(typeid_of(type_of(y))); // bit_set[0..8; u16]
+
+ incl(&x, 'F');
+ assert('F' in x);
+ excl(&x, 'F');
+ assert('F' not_in x);
+
+ y |= {1, 4, 2};
+ assert(2 in y);
+ }
+ {
+ Letters :: bit_set['A'..'Z'];
+ a := Letters{'A', 'B'};
+ b := Letters{'A', 'B', 'C', 'D', 'F'};
+ c := Letters{'A', 'B'};
+
+ assert(a <= b); // 'a' is a subset of 'b'
+ assert(b >= a); // 'b' is a superset of 'a'
+ assert(a < b); // 'a' is a strict subset of 'b'
+ assert(b > a); // 'b' is a strict superset of 'a'
+
+ assert(!(a < c)); // 'a' is a not strict subset of 'c'
+ assert(!(c > a)); // 'c' is a not strict superset of 'a'
+ }
+}
+
+deferred_procedure_associations :: proc() {
+ fmt.println("\n# deferred procedure associations");
+
+ @(deferred_out=closure)
+ open :: proc(s: string) -> bool {
+ fmt.println(s);
+ return true;
+ }
+
+ closure :: proc(ok: bool) {
+ fmt.println("Goodbye?", ok);
+ }
+
+ if open("Welcome") {
+ fmt.println("Something in the middle, mate.");
+ }
+}
+
+reflection :: proc() {
+ fmt.println("\n# reflection");
+
+ Foo :: struct {
+ x: int `tag1`,
+ y: string `json:"y_field"`,
+ z: bool, // no tag
};
- f->call0(123); // f.call0(f, 123);
- f->call1(456); // f.call1(f^, 456);
- f->call0(x=456); // f.call0(f=f, x=456);
+ id := typeid_of(Foo);
+ names := reflect.struct_field_names(id);
+ types := reflect.struct_field_types(id);
+ tags := reflect.struct_field_tags(id);
+
+ assert(len(names) == len(types) && len(names) == len(tags));
+
+ fmt.println("Foo :: struct {");
+ for tag, i in tags {
+ name, type := names[i], types[i];
+ if tag != "" {
+ fmt.printf("\t%s: %T `%s`,\n", name, type, tag);
+ } else {
+ fmt.printf("\t%s: %T,\n", name, type);
+ }
+ }
+ fmt.println("}");
+
+
+ for tag, i in tags {
+ if val, ok := reflect.struct_tag_lookup(tag, "json"); ok {
+ fmt.printf("json: %s -> %s\n", names[i], val);
+ }
+ }
+}
+
+quaternions :: proc() {
+ // Not just an April Fool's Joke any more, but a fully working thing!
+ fmt.println("\n# quaternions");
+
+ { // Quaternion operations
+ q := 1 + 2i + 3j + 4k;
+ r := quaternion(5, 6, 7, 8);
+ t := q * r;
+ fmt.printf("(%v) * (%v) = %v\n", q, r, t);
+ v := q / r;
+ fmt.printf("(%v) / (%v) = %v\n", q, r, v);
+ u := q + r;
+ fmt.printf("(%v) + (%v) = %v\n", q, r, u);
+ s := q - r;
+ fmt.printf("(%v) - (%v) = %v\n", q, r, s);
+ }
+ { // The quaternion types
+ q128: quaternion128; // 4xf32
+ q256: quaternion256; // 4xf64
+ q128 = quaternion(1, 0, 0, 0);
+ q256 = 1; // quaternion(1, 0, 0, 0);
+ }
+ { // Built-in procedures
+ q := 1 + 2i + 3j + 4k;
+ fmt.println("q =", q);
+ fmt.println("real(q) =", real(q));
+ fmt.println("imag(q) =", imag(q));
+ fmt.println("jmag(q) =", jmag(q));
+ fmt.println("kmag(q) =", kmag(q));
+ fmt.println("conj(q) =", conj(q));
+ fmt.println("abs(q) =", abs(q));
+ }
+ { // Conversion of a complex type to a quaternion type
+ c := 1 + 2i;
+ q := quaternion256(c);
+ fmt.println(c);
+ fmt.println(q);
+ }
+ { // Memory layout of Quaternions
+ q := 1 + 2i + 3j + 4k;
+ a := transmute([4]f64)q;
+ fmt.println("Quaternion memory layout: xyzw/(ijkr)");
+ fmt.println(q); // 1.000+2.000i+3.000j+4.000k
+ fmt.println(a); // [2.000, 3.000, 4.000, 1.000]
+ }
+}
- v := Foo{
- call0 = test0,
- call1 = test1,
+inline_for_statement :: proc() {
+ fmt.println("\n#inline for statements");
+
+ // 'inline for' works the same as if the 'inline' prefix did not
+ // exist but these ranged loops are explicitly unrolled which can
+ // be very very useful for certain optimizations
+
+ fmt.println("Ranges");
+ inline for x, i in 1..<4 {
+ fmt.println(x, i);
+ }
+
+ fmt.println("Strings");
+ inline for r, i in "Hello, 世界" {
+ fmt.println(r, i);
+ }
+
+ fmt.println("Arrays");
+ inline for elem, idx in ([4]int{1, 4, 9, 16}) {
+ fmt.println(elem, idx);
+ }
+
+
+ Foo_Enum :: enum {
+ A = 1,
+ B,
+ C = 6,
+ D,
};
+ fmt.println("Enum types");
+ inline for elem, idx in Foo_Enum {
+ fmt.println(elem, idx);
+ }
+}
+
+where_clauses :: proc() {
+ fmt.println("\n#procedure 'where' clauses");
+
+ { // Sanity checks
+ simple_sanity_check :: proc(x: [2]int)
+ where len(x) > 1,
+ type_of(x) == [2]int {
+ fmt.println(x);
+ }
+ }
+ { // Parametric polymorphism checks
+ cross_2d :: proc(a, b: $T/[2]$E) -> E
+ where intrinsics.type_is_numeric(E) {
+ return a.x*b.y - a.y*b.x;
+ }
+ cross_3d :: proc(a, b: $T/[3]$E) -> T
+ where intrinsics.type_is_numeric(E) {
+ x := a.y*b.z - a.z*b.y;
+ y := a.z*b.x - a.x*b.z;
+ z := a.x*b.y - a.y*b.z;
+ return T{x, y, z};
+ }
+
+ a := [2]int{1, 2};
+ b := [2]int{5, -3};
+ fmt.println(cross_2d(a, b));
+
+ x := [3]f32{1, 4, 9};
+ y := [3]f32{-5, 0, 3};
+ fmt.println(cross_3d(x, y));
- v->call0(123); // v.call0(&v, 123);
- v->call1(456); // v.call1(v, 456);
- v->call1(x=456); // f.call1(f=v, x=456);
+ // Failure case
+ // i := [2]bool{true, false};
+ // j := [2]bool{false, true};
+ // fmt.println(cross_2d(i, j));
+
+ }
+
+ { // Procedure groups usage
+ foo :: proc(x: [$N]int) -> bool
+ where N > 2 {
+ fmt.println(#procedure, "was called with the parameter", x);
+ return true;
+ }
+
+ bar :: proc(x: [$N]int) -> bool
+ where 0 < N,
+ N <= 2 {
+ fmt.println(#procedure, "was called with the parameter", x);
+ return false;
+ }
+
+ baz :: proc{foo, bar};
+
+ x := [3]int{1, 2, 3};
+ y := [2]int{4, 9};
+ ok_x := baz(x);
+ ok_y := baz(y);
+ assert(ok_x == true);
+ assert(ok_y == false);
+ }
+
+ { // Record types
+ Foo :: struct(T: typeid, N: int)
+ where intrinsics.type_is_integer(T),
+ N > 2 {
+ x: [N]T,
+ y: [N-2]T,
+ };
+
+ T :: i32;
+ N :: 5;
+ f: Foo(T, N);
+ #assert(size_of(f) == (N+N-2)*size_of(T));
+ }
+}
+
+
+when ODIN_OS == "windows" do foreign import kernel32 "system:kernel32.lib"
+
+foreign_system :: proc() {
+ fmt.println("\n#foreign system");
+ when ODIN_OS == "windows" {
+ // It is sometimes necessarily to interface with foreign code,
+ // such as a C library. In Odin, this is achieved through the
+ // foreign system. You can “import” a library into the code
+ // using the same semantics as a normal import declaration.
+
+ // This foreign import declaration will create a
+ // “foreign import name” which can then be used to associate
+ // entities within a foreign block.
+
+ foreign kernel32 {
+ ExitProcess :: proc "stdcall" (exit_code: u32) ---
+ }
+
+ // Foreign procedure declarations have the cdecl/c calling
+ // convention by default unless specified otherwise. Due to
+ // foreign procedures do not have a body declared within this
+ // code, you need append the --- symbol to the end to distinguish
+ // it as a procedure literal without a body and not a procedure type.
+
+ // The attributes system can be used to change specific properties
+ // of entities declared within a block:
+
+ @(default_calling_convention = "std")
+ foreign kernel32 {
+ @(link_name="GetLastError") get_last_error :: proc() -> i32 ---
+ }
+
+ // Example using the link_prefix attribute
+ @(default_calling_convention = "std")
+ @(link_prefix = "Get")
+ foreign kernel32 {
+ LastError :: proc() -> i32 ---
+ }
+ }
+}
+
+ranged_fields_for_array_compound_literals :: proc() {
+ fmt.println("\n#ranged fields for array compound literals");
+ { // Normal Array Literal
+ foo := [?]int{1, 4, 9, 16};
+ fmt.println(foo);
+ }
+ { // Indexed
+ foo := [?]int{
+ 3 = 16,
+ 1 = 4,
+ 2 = 9,
+ 0 = 1,
+ };
+ fmt.println(foo);
+ }
+ { // Ranges
+ i := 2;
+ foo := [?]int {
+ 0 = 123,
+ 5..9 = 54,
+ 10..<16 = i*3 + (i-1)*2,
+ };
+ #assert(len(foo) == 16);
+ fmt.println(foo); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
+ }
+ { // Slice and Dynamic Array support
+ i := 2;
+ foo_slice := []int {
+ 0 = 123,
+ 5..9 = 54,
+ 10..<16 = i*3 + (i-1)*2,
+ };
+ assert(len(foo_slice) == 16);
+ fmt.println(foo_slice); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
+
+ foo_dynamic_array := [dynamic]int {
+ 0 = 123,
+ 5..9 = 54,
+ 10..<16 = i*3 + (i-1)*2,
+ };
+ assert(len(foo_dynamic_array) == 16);
+ fmt.println(foo_dynamic_array); // [123, 0, 0, 0, 0, 54, 54, 54, 54, 54, 8, 8, 8, 8, 8]
+ }
+}
+
+deprecated_attribute :: proc() {
+ @(deprecated="Use foo_v2 instead")
+ foo_v1 :: proc(x: int) {
+ fmt.println("foo_v1");
+ }
+ foo_v2 :: proc(x: int) {
+ fmt.println("foo_v2");
+ }
+
+ // NOTE: Uncomment to see the warning messages
+ // foo_v1(1);
+}
+
+range_statements_with_multiple_return_values :: proc() {
+ // IMPORTANT NOTE(bill, 2019-11-02): This feature is subject to be changed/removed
+ fmt.println("\n#range statements with multiple return values");
+ My_Iterator :: struct {
+ index: int,
+ data: []i32,
+ };
+ make_my_iterator :: proc(data: []i32) -> My_Iterator {
+ return My_Iterator{data = data};
+ }
+ my_iterator :: proc(it: ^My_Iterator) -> (val: i32, idx: int, cond: bool) {
+ if cond = it.index < len(it.data); cond {
+ val = it.data[it.index];
+ idx = it.index;
+ it.index += 1;
+ }
+ return;
+ }
+
+ data := make([]i32, 6);
+ for _, i in data {
+ data[i] = i32(i*i);
+ }
+
+ {
+ it := make_my_iterator(data);
+ for val in my_iterator(&it) {
+ fmt.println(val);
+ }
+ }
+ {
+ it := make_my_iterator(data);
+ for val, idx in my_iterator(&it) {
+ fmt.println(val, idx);
+ }
+ }
+ {
+ it := make_my_iterator(data);
+ for {
+ val, _, cond := my_iterator(&it);
+ if !cond do break;
+ fmt.println(val);
+ }
+ }
+}
+
+
+soa_struct_layout :: proc() {
+ // IMPORTANT NOTE(bill, 2019-11-03): This feature is subject to be changed/removed
+ // NOTE(bill): Most likely #soa [N]T
+ fmt.println("\n#SOA Struct Layout");
+
+ {
+ Vector3 :: struct {x, y, z: f32};
+
+ N :: 2;
+ v_aos: [N]Vector3;
+ v_aos[0].x = 1;
+ v_aos[0].y = 4;
+ v_aos[0].z = 9;
+
+ fmt.println(len(v_aos));
+ fmt.println(v_aos[0]);
+ fmt.println(v_aos[0].x);
+ fmt.println(&v_aos[0].x);
+
+ v_aos[1] = {0, 3, 4};
+ v_aos[1].x = 2;
+ fmt.println(v_aos[1]);
+ fmt.println(v_aos);
+
+ v_soa: #soa[N]Vector3;
+
+ v_soa[0].x = 1;
+ v_soa[0].y = 4;
+ v_soa[0].z = 9;
+
+
+ // Same syntax as AOS and treat as if it was an array
+ fmt.println(len(v_soa));
+ fmt.println(v_soa[0]);
+ fmt.println(v_soa[0].x);
+ fmt.println(&v_soa[0].x);
+ v_soa[1] = {0, 3, 4};
+ v_soa[1].x = 2;
+ fmt.println(v_soa[1]);
+
+ // Can use SOA syntax if necessary
+ v_soa.x[0] = 1;
+ v_soa.y[0] = 4;
+ v_soa.z[0] = 9;
+ fmt.println(v_soa.x[0]);
+
+ // Same pointer addresses with both syntaxes
+ assert(&v_soa[0].x == &v_soa.x[0]);
+
+
+ // Same fmt printing
+ fmt.println(v_aos);
+ fmt.println(v_soa);
+ }
+ {
+ // Works with arrays of length <= 4 which have the implicit fields xyzw/rgba
+ Vector3 :: distinct [3]f32;
+
+ N :: 2;
+ v_aos: [N]Vector3;
+ v_aos[0].x = 1;
+ v_aos[0].y = 4;
+ v_aos[0].z = 9;
+
+ v_soa: #soa[N]Vector3;
+
+ v_soa[0].x = 1;
+ v_soa[0].y = 4;
+ v_soa[0].z = 9;
+ }
+ {
+ // SOA Slices
+ // Vector3 :: struct {x, y, z: f32};
+ Vector3 :: struct {x: i8, y: i16, z: f32};
+
+ N :: 3;
+ v: #soa[N]Vector3;
+ v[0].x = 1;
+ v[0].y = 4;
+ v[0].z = 9;
+
+ s: #soa[]Vector3;
+ s = v[:];
+ assert(len(s) == N);
+ fmt.println(s);
+ fmt.println(s[0].x);
+
+ a := s[1:2];
+ assert(len(a) == 1);
+ fmt.println(a);
+
+ d: #soa[dynamic]Vector3;
+
+ append_soa(&d, Vector3{1, 2, 3}, Vector3{4, 5, 9}, Vector3{-4, -4, 3});
+ fmt.println(d);
+ fmt.println(len(d));
+ fmt.println(cap(d));
+ fmt.println(d[:]);
+ }
+}
+
+constant_literal_expressions :: proc() {
+ fmt.println("\n#constant literal expressions");
+
+ Bar :: struct {x, y: f32};
+ Foo :: struct {a, b: int, using c: Bar};
+
+ FOO_CONST :: Foo{b = 2, a = 1, c = {3, 4}};
+
+
+ fmt.println(FOO_CONST.a);
+ fmt.println(FOO_CONST.b);
+ fmt.println(FOO_CONST.c);
+ fmt.println(FOO_CONST.c.x);
+ fmt.println(FOO_CONST.c.y);
+ fmt.println(FOO_CONST.x); // using works as expected
+ fmt.println(FOO_CONST.y);
+
+ fmt.println("-------");
+
+ ARRAY_CONST :: [3]int{1 = 4, 2 = 9, 0 = 1};
+
+ fmt.println(ARRAY_CONST[0]);
+ fmt.println(ARRAY_CONST[1]);
+ fmt.println(ARRAY_CONST[2]);
+
+ fmt.println("-------");
+
+ FOO_ARRAY_DEFAULTS :: [3]Foo{{}, {}, {}};
+ fmt.println(FOO_ARRAY_DEFAULTS[2].x);
+
+ fmt.println("-------");
+
+ Baz :: enum{A=5, B, C, D};
+ ENUM_ARRAY_CONST :: [Baz]int{.A .. .C = 1, .D = 16};
+
+ fmt.println(ENUM_ARRAY_CONST[.A]);
+ fmt.println(ENUM_ARRAY_CONST[.B]);
+ fmt.println(ENUM_ARRAY_CONST[.C]);
+ fmt.println(ENUM_ARRAY_CONST[.D]);
+
+ fmt.println("-------");
+
+ Partial_Baz :: enum{A=5, B, C, D=16};
+ #assert(len(Partial_Baz) < len(#partial [Partial_Baz]int));
+ PARTIAL_ENUM_ARRAY_CONST :: #partial [Partial_Baz]int{.A .. .C = 1, .D = 16};
+
+ fmt.println(PARTIAL_ENUM_ARRAY_CONST[.A]);
+ fmt.println(PARTIAL_ENUM_ARRAY_CONST[.B]);
+ fmt.println(PARTIAL_ENUM_ARRAY_CONST[.C]);
+ fmt.println(PARTIAL_ENUM_ARRAY_CONST[.D]);
+
+ fmt.println("-------");
+
+
+ STRING_CONST :: "Hellope!";
+
+ fmt.println(STRING_CONST[0]);
+ fmt.println(STRING_CONST[2]);
+ fmt.println(STRING_CONST[3]);
+
+ fmt.println(STRING_CONST[0:5]);
+ fmt.println(STRING_CONST[3:][:4]);
+}
+
+union_maybe :: proc() {
+ fmt.println("\n#union #maybe");
+
+ Maybe :: union(T: typeid) #maybe {T};
+
+ i: Maybe(u8);
+ p: Maybe(^u8); // No tag is stored for pointers, nil is the sentinel value
+
+ #assert(size_of(i) == size_of(u8) + size_of(u8));
+ #assert(size_of(p) == size_of(^u8));
+
+ i = 123;
+ x := i.?;
+ y, y_ok := p.?;
+ p = &x;
+ z, z_ok := p.?;
+
+ fmt.println(i, p);
+ fmt.println(x, &x);
+ fmt.println(y, y_ok);
+ fmt.println(z, z_ok);
+}
+
+dummy_procedure :: proc() {
+ fmt.println("dummy_procedure");
+}
+
+explicit_context_definition :: proc "c" () {
+ // Try commenting the following statement out below
+ context = runtime.default_context();
+
+ fmt.println("\n#explicit context definition");
+ dummy_procedure();
+}
+
+relative_data_types :: proc() {
+ fmt.println("\n#relative data types");
+
+ x: int = 123;
+ ptr: #relative(i16) ^int;
+ ptr = &x;
+ fmt.println(ptr^);
+
+ arr := [3]int{1, 2, 3};
+ s := arr[:];
+ rel_slice: #relative(i16) []int;
+ rel_slice = s;
+ fmt.println(rel_slice);
+ fmt.println(rel_slice[:]);
+ fmt.println(rel_slice[1]);
+}
+
+main :: proc() {
+ when true {
+ the_basics();
+ control_flow();
+ named_proc_return_parameters();
+ explicit_procedure_overloading();
+ struct_type();
+ union_type();
+ using_statement();
+ implicit_context_system();
+ parametric_polymorphism();
+ array_programming();
+ map_type();
+ implicit_selector_expression();
+ partial_switch();
+ cstring_example();
+ bit_set_type();
+ deferred_procedure_associations();
+ reflection();
+ quaternions();
+ inline_for_statement();
+ where_clauses();
+ foreign_system();
+ ranged_fields_for_array_compound_literals();
+ deprecated_attribute();
+ range_statements_with_multiple_return_values();
+ threading_example();
+ soa_struct_layout();
+ constant_literal_expressions();
+ union_maybe();
+ explicit_context_definition();
+ relative_data_types();
+ }
}