aboutsummaryrefslogtreecommitdiff
path: root/src/check_expr.cpp
diff options
context:
space:
mode:
authorMikkel Hjortshoej <Hjortshoej@handmade.network>2017-06-11 19:47:05 +0200
committerMikkel Hjortshoej <Hjortshoej@handmade.network>2017-06-11 19:47:05 +0200
commit47c03e376de85348abf1c11517b8873db9b76a1a (patch)
tree8bf638b513851f8a77d7748dfca73def2360fea1 /src/check_expr.cpp
parent8e32276283451a22cf42defe72de77b968afc91a (diff)
parent366b306df04e14a5841868a40016cd844e120d99 (diff)
Merge branch 'master' of github.com:gingerBill/Odin
Diffstat (limited to 'src/check_expr.cpp')
-rw-r--r--src/check_expr.cpp6664
1 files changed, 6664 insertions, 0 deletions
diff --git a/src/check_expr.cpp b/src/check_expr.cpp
new file mode 100644
index 000000000..a8453f0cb
--- /dev/null
+++ b/src/check_expr.cpp
@@ -0,0 +1,6664 @@
+void check_expr (Checker *c, Operand *operand, AstNode *expression);
+void check_multi_expr (Checker *c, Operand *operand, AstNode *expression);
+void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression);
+ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint);
+Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL);
+void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def);
+Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint);
+void check_not_tuple (Checker *c, Operand *operand);
+void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level);
+gbString expr_to_string (AstNode *expression);
+void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type);
+void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type);
+void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body);
+void update_expr_type (Checker *c, AstNode *e, Type *type, bool final);
+bool check_is_terminating (AstNode *node);
+bool check_has_break (AstNode *stmt, bool implicit);
+void check_stmt (Checker *c, AstNode *node, u32 flags);
+void check_stmt_list (Checker *c, Array<AstNode *> stmts, u32 flags);
+void check_init_constant (Checker *c, Entity *e, Operand *operand);
+bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value);
+Type * check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call);
+
+
+void error_operand_not_expression(Operand *o) {
+ if (o->mode == Addressing_Type) {
+ gbString err = expr_to_string(o->expr);
+ error_node(o->expr, "`%s` is not an expression but a type", err);
+ gb_string_free(err);
+ o->mode = Addressing_Invalid;
+ }
+}
+
+void error_operand_no_value(Operand *o) {
+ if (o->mode == Addressing_NoValue) {
+ gbString err = expr_to_string(o->expr);
+ error_node(o->expr, "`%s` used as value", err);
+ gb_string_free(err);
+ o->mode = Addressing_Invalid;
+ }
+}
+
+
+void check_scope_decls(Checker *c, Array<AstNode *> nodes, isize reserve_size) {
+ Scope *s = c->context.scope;
+ GB_ASSERT(!s->is_file);
+
+ check_collect_entities(c, nodes, false);
+
+ for_array(i, s->elements.entries) {
+ Entity *e = s->elements.entries[i].value;
+ switch (e->kind) {
+ case Entity_Constant:
+ case Entity_TypeName:
+ case Entity_Procedure:
+ break;
+ default:
+ continue;
+ }
+ DeclInfo **found = map_get(&c->info.entities, hash_pointer(e));
+ if (found != NULL) {
+ DeclInfo *d = *found;
+ check_entity_decl(c, e, d, NULL);
+ }
+ }
+
+ for_array(i, s->elements.entries) {
+ Entity *e = s->elements.entries[i].value;
+ if (e->kind != Entity_Procedure) {
+ continue;
+ }
+ check_procedure_overloading(c, e);
+ }
+}
+
+
+bool check_is_assignable_to_using_subtype(Type *src, Type *dst) {
+ bool src_is_ptr = false;
+ Type *prev_src = src;
+ src = type_deref(src);
+ src_is_ptr = src != prev_src;
+ src = base_type(src);
+
+ if (!is_type_struct(src) && !is_type_union(src)) {
+ return false;
+ }
+
+ for (isize i = 0; i < src->Record.field_count; i++) {
+ Entity *f = src->Record.fields[i];
+ if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) {
+ continue;
+ }
+
+ if (are_types_identical(f->type, dst)) {
+ return true;
+ }
+ if (src_is_ptr && is_type_pointer(dst)) {
+ if (are_types_identical(f->type, type_deref(dst))) {
+ return true;
+ }
+ }
+ bool ok = check_is_assignable_to_using_subtype(f->type, dst);
+ if (ok) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+// IMPORTANT TODO(bill): figure out the exact distance rules
+// -1 is not convertable
+// 0 is exact
+// >0 is convertable
+
+i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) {
+ if (operand->mode == Addressing_Invalid ||
+ type == t_invalid) {
+ return 0;
+ }
+
+ if (operand->mode == Addressing_Builtin) {
+ return -1;
+ }
+
+ Type *s = operand->type;
+
+ if (are_types_identical(s, type)) {
+ return 0;
+ }
+
+ Type *src = base_type(s);
+ Type *dst = base_type(type);
+
+ if (is_type_untyped_nil(src)) {
+ if (type_has_nil(dst)) {
+ return 1;
+ }
+ return -1;
+ }
+ if (is_type_untyped(src)) {
+ if (is_type_any(dst)) {
+ // NOTE(bill): Anything can cast to `Any`
+ add_type_info_type(c, s);
+ return 10;
+ }
+ if (dst->kind == Type_Basic) {
+ if (operand->mode == Addressing_Constant) {
+ if (check_representable_as_constant(c, operand->value, dst, NULL)) {
+ if (is_type_typed(dst) && src->kind == Type_Basic) {
+ switch (src->Basic.kind) {
+ case Basic_UntypedInteger:
+ if (is_type_integer(dst) || is_type_rune(dst)) {
+ return 1;
+ }
+ break;
+ case Basic_UntypedFloat:
+ if (is_type_float(dst)) {
+ return 1;
+ }
+ break;
+ case Basic_UntypedComplex:
+ if (is_type_complex(dst)) {
+ return 1;
+ }
+ break;
+ }
+ }
+ return 2;
+ }
+ return -1;
+ }
+ if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) {
+ if (is_type_boolean(dst)) {
+ if (is_type_typed(type)) {
+ return 2;
+ }
+ return 1;
+ }
+ return -1;
+ }
+ }
+ }
+
+ if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) {
+ return 1;
+ }
+
+
+ if (is_type_bit_field_value(operand->type) && is_type_integer(type)) {
+ Type *bfv = base_type(operand->type);
+ i32 bits = bfv->BitFieldValue.bits;
+ i32 size = next_pow2((bits+7)/8);
+ i32 dst_size = type_size_of(c->allocator, type);
+ i32 diff = gb_abs(dst_size - size);
+ // TODO(bill): figure out a decent rule here
+ return 1;
+ }
+
+
+ if (check_is_assignable_to_using_subtype(operand->type, type)) {
+ return 4;
+ }
+
+ // ^T <- rawptr
+#if 0
+ // TODO(bill): Should C-style (not C++) pointer cast be allowed?
+ if (is_type_pointer(dst) && is_type_rawptr(src)) {
+ return true;
+ }
+#endif
+#if 1
+
+
+ // TODO(bill): Should I allow this implicit conversion at all?!
+ // rawptr <- ^T
+ if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) {
+ return 5;
+ }
+#endif
+
+ if (is_type_union(dst)) {
+ for (isize i = 0; i < dst->Record.variant_count; i++) {
+ Entity *f = dst->Record.variants[i];
+ if (are_types_identical(f->type, s)) {
+ return 1;
+ }
+ }
+ }
+
+ if (is_type_proc(dst)) {
+ if (are_types_identical(src, dst)) {
+ return 3;
+ }
+ }
+
+ if (is_type_vector(dst)) {
+ Type *elem = base_vector_type(dst);
+ i64 distance = check_distance_between_types(c, operand, elem);
+ if (distance >= 0) {
+ return distance + 5;
+ }
+ }
+
+
+ if (is_type_any(dst)) {
+ // NOTE(bill): Anything can cast to `Any`
+ add_type_info_type(c, s);
+ return 10;
+ }
+
+
+
+ return -1;
+}
+
+
+i64 assign_score_function(i64 distance) {
+ // TODO(bill): A decent score function
+ return gb_max(1000000 - distance*distance, 0);
+}
+
+
+bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) {
+ i64 score = 0;
+ i64 distance = check_distance_between_types(c, operand, type);
+ bool ok = distance >= 0;
+ if (ok) {
+ score = assign_score_function(distance);
+ }
+ if (score_) *score_ = score;
+ return ok;
+}
+
+
+bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) {
+ i64 score = 0;
+ return check_is_assignable_to_with_score(c, operand, type, &score);
+}
+
+
+// NOTE(bill): `content_name` is for debugging and error messages
+void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) {
+ check_not_tuple(c, operand);
+ if (operand->mode == Addressing_Invalid) {
+ return;
+ }
+
+ if (is_type_untyped(operand->type)) {
+ Type *target_type = type;
+ if (type == NULL || is_type_any(type)) {
+ if (type == NULL && is_type_untyped_nil(operand->type)) {
+ error_node(operand->expr, "Use of untyped nil in %.*s", LIT(context_name));
+ operand->mode = Addressing_Invalid;
+ return;
+ }
+ target_type = default_type(operand->type);
+ if (type != NULL && !is_type_any(type)) {
+ GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type));
+ }
+ add_type_info_type(c, type);
+ add_type_info_type(c, target_type);
+ }
+
+ if (target_type != NULL && is_type_vector(target_type)) {
+ // NOTE(bill): continue to below
+ } else {
+ convert_to_typed(c, operand, target_type, 0);
+ if (operand->mode == Addressing_Invalid) {
+ return;
+ }
+ }
+ }
+
+ if (type == NULL) {
+ return;
+ }
+
+ if (!check_is_assignable_to(c, operand, type)) {
+ gbString type_str = type_to_string(type);
+ gbString op_type_str = type_to_string(operand->type);
+ gbString expr_str = expr_to_string(operand->expr);
+
+ if (operand->mode == Addressing_Builtin) {
+ // TODO(bill): is this a good enough error message?
+ // TODO(bill): Actually allow built in procedures to be passed around and thus be created on use
+ error_node(operand->expr,
+ "Cannot assign built-in procedure `%s` in %.*s",
+ expr_str,
+ LIT(context_name));
+ } else {
+ // TODO(bill): is this a good enough error message?
+ error_node(operand->expr,
+ "Cannot assign value `%s` of type `%s` to `%s` in %.*s",
+ expr_str,
+ op_type_str,
+ type_str,
+ LIT(context_name));
+ }
+ operand->mode = Addressing_Invalid;
+
+ gb_string_free(expr_str);
+ gb_string_free(op_type_str);
+ gb_string_free(type_str);
+ return;
+ }
+}
+
+
+void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map<Entity *> *entity_map) {
+ t = base_type(type_deref(t));
+ gbString str = NULL;
+ if (node != NULL) {
+ expr_to_string(node);
+ }
+
+ if (t->kind == Type_Record) {
+ for (isize i = 0; i < t->Record.field_count; i++) {
+ Entity *f = t->Record.fields[i];
+ GB_ASSERT(f->kind == Entity_Variable);
+ String name = f->token.string;
+ HashKey key = hash_string(name);
+ Entity **found = map_get(entity_map, key);
+ if (found != NULL) {
+ Entity *e = *found;
+ // TODO(bill): Better type error
+ if (str != NULL) {
+ error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str);
+ } else {
+ error(e->token, "`%.*s` is already declared`", LIT(name));
+ }
+ } else {
+ map_set(entity_map, key, f);
+ add_entity(c, c->context.scope, NULL, f);
+ if (f->flags & EntityFlag_Using) {
+ populate_using_entity_map(c, node, f->type, entity_map);
+ }
+ }
+ }
+ }
+
+ gb_string_free(str);
+}
+
+
+// Returns filled field_count
+isize check_fields(Checker *c, AstNode *node, Array<AstNode *> decls,
+ Entity **fields, isize field_count,
+ String context) {
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+
+ Map<Entity *> entity_map = {};
+ map_init_with_reserve(&entity_map, c->tmp_allocator, 2*field_count);
+
+ Entity *using_index_expr = NULL;
+
+ if (node != NULL) {
+ GB_ASSERT(node->kind != AstNode_UnionType);
+ }
+
+ isize field_index = 0;
+ for_array(decl_index, decls) {
+ AstNode *decl = decls[decl_index];
+ if (decl->kind != AstNode_Field) {
+ continue;
+ }
+ ast_node(f, Field, decl);
+
+ Type *type = check_type(c, f->type);
+ bool is_using = (f->flags&FieldFlag_using) != 0;
+
+ if (is_using) {
+ if (f->names.count > 1) {
+ error_node(f->names[0], "Cannot apply `using` to more than one of the same type");
+ is_using = false;
+ }
+ }
+
+ for_array(name_index, f->names) {
+ AstNode *name = f->names[name_index];
+ if (!ast_node_expect(name, AstNode_Ident)) {
+ continue;
+ }
+
+ Token name_token = name->Ident;
+
+ Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, is_using, cast(i32)field_index);
+ e->identifier = name;
+ if (name_token.string == "_") {
+ fields[field_index++] = e;
+ } else if (name_token.string == "__tag") {
+ error_node(name, "`__tag` is a reserved identifier for fields");
+ } else {
+ HashKey key = hash_string(name_token.string);
+ Entity **found = map_get(&entity_map, key);
+ if (found != NULL) {
+ Entity *e = *found;
+ // NOTE(bill): Scope checking already checks the declaration but in many cases, this can happen so why not?
+ // This may be a little janky but it's not really that much of a problem
+ error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string));
+ error(e->token, "\tpreviously declared");
+ } else {
+ map_set(&entity_map, key, e);
+ fields[field_index++] = e;
+ add_entity(c, c->context.scope, name, e);
+ }
+ add_entity_use(c, name, e);
+ }
+ }
+
+
+ if (is_using) {
+ Type *t = base_type(type_deref(type));
+ if (!is_type_struct(t) && !is_type_raw_union(t) && !is_type_bit_field(t) &&
+ f->names.count >= 1 &&
+ f->names[0]->kind == AstNode_Ident) {
+ Token name_token = f->names[0]->Ident;
+ if (is_type_indexable(t)) {
+ bool ok = true;
+ for_array(emi, entity_map.entries) {
+ Entity *e = entity_map.entries[emi].value;
+ if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) {
+ if (is_type_indexable(e->type)) {
+ if (e->identifier != f->names[0]) {
+ ok = false;
+ using_index_expr = e;
+ break;
+ }
+ }
+ }
+ }
+ if (ok) {
+ using_index_expr = fields[field_index-1];
+ } else {
+ fields[field_index-1]->flags &= ~EntityFlag_Using;
+ error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string));
+ }
+ } else {
+ gbString type_str = type_to_string(type);
+ error(name_token, "`using` cannot be applied to the field `%.*s` of type `%s`", LIT(name_token.string), type_str);
+ gb_string_free(type_str);
+ continue;
+ }
+ }
+
+ populate_using_entity_map(c, node, type, &entity_map);
+ }
+ }
+
+ gb_temp_arena_memory_end(tmp);
+
+ return field_index;
+}
+
+
+// TODO(bill): Cleanup struct field reordering
+// TODO(bill): Inline sorting procedure?
+gb_global gbAllocator __checker_allocator = {};
+
+GB_COMPARE_PROC(cmp_reorder_struct_fields) {
+ // Rule:
+ // `using` over non-`using`
+ // Biggest to smallest alignment
+ // if same alignment: biggest to smallest size
+ // if same size: order by source order
+ Entity *x = *(Entity **)a;
+ Entity *y = *(Entity **)b;
+ GB_ASSERT(x != NULL);
+ GB_ASSERT(y != NULL);
+ GB_ASSERT(x->kind == Entity_Variable);
+ GB_ASSERT(y->kind == Entity_Variable);
+ bool xu = (x->flags & EntityFlag_Using) != 0;
+ bool yu = (y->flags & EntityFlag_Using) != 0;
+ i64 xa = type_align_of(__checker_allocator, x->type);
+ i64 ya = type_align_of(__checker_allocator, y->type);
+ i64 xs = type_size_of(__checker_allocator, x->type);
+ i64 ys = type_size_of(__checker_allocator, y->type);
+
+ if (xu != yu) {
+ return xu ? -1 : +1;
+ }
+
+ if (xa != ya) {
+ return xa > ya ? -1 : xa < ya;
+ }
+ if (xs != ys) {
+ return xs > ys ? -1 : xs < ys;
+ }
+ i32 diff = x->Variable.field_index - y->Variable.field_index;
+ return diff < 0 ? -1 : diff > 0;
+}
+
+Entity *make_names_field_for_record(Checker *c, Scope *scope) {
+ Entity *e = make_entity_field(c->allocator, scope,
+ make_token_ident(str_lit("names")), t_string_slice, false, 0);
+ e->Variable.is_immutable = true;
+ e->flags |= EntityFlag_TypeField;
+ return e;
+}
+
+void check_struct_type(Checker *c, Type *struct_type, AstNode *node) {
+ GB_ASSERT(is_type_struct(struct_type));
+ ast_node(st, StructType, node);
+
+ isize field_count = 0;
+ for_array(field_index, st->fields) {
+ AstNode *field = st->fields[field_index];
+ switch (field->kind) {
+ case_ast_node(f, Field, field);
+ field_count += f->names.count;
+ case_end;
+ }
+ }
+
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
+
+ field_count = check_fields(c, node, st->fields, fields, field_count, str_lit("struct"));
+
+ struct_type->Record.is_packed = st->is_packed;
+ struct_type->Record.is_ordered = st->is_ordered;
+ struct_type->Record.fields = fields;
+ struct_type->Record.fields_in_src_order = fields;
+ struct_type->Record.field_count = field_count;
+ struct_type->Record.names = make_names_field_for_record(c, c->context.scope);
+
+ type_set_offsets(c->allocator, struct_type);
+
+
+ if (!struct_type->failure && !st->is_packed && !st->is_ordered) {
+ struct_type->failure = false;
+ struct_type->Record.are_offsets_set = false;
+ struct_type->Record.offsets = NULL;
+ // NOTE(bill): Reorder fields for reduced size/performance
+
+ Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count);
+ for (isize i = 0; i < field_count; i++) {
+ reordered_fields[i] = struct_type->Record.fields_in_src_order[i];
+ }
+
+ // NOTE(bill): Hacky thing
+ // TODO(bill): Probably make an inline sorting procedure rather than use global variables
+ __checker_allocator = c->allocator;
+ // NOTE(bill): compound literal order must match source not layout
+ gb_sort_array(reordered_fields, field_count, cmp_reorder_struct_fields);
+
+ for (isize i = 0; i < field_count; i++) {
+ reordered_fields[i]->Variable.field_index = i;
+ }
+
+ struct_type->Record.fields = reordered_fields;
+ }
+
+ type_set_offsets(c->allocator, struct_type);
+
+
+ if (st->align != NULL) {
+ if (st->is_packed) {
+ syntax_error_node(st->align, "`#align` cannot be applied with `#packed`");
+ return;
+ }
+
+ Operand o = {};
+ check_expr(c, &o, st->align);
+ if (o.mode != Addressing_Constant) {
+ if (o.mode != Addressing_Invalid) {
+ error_node(st->align, "#align must be a constant");
+ }
+ return;
+ }
+
+ Type *type = base_type(o.type);
+ if (is_type_untyped(type) || is_type_integer(type)) {
+ if (o.value.kind == ExactValue_Integer) {
+ i64 align = i128_to_i64(o.value.value_integer);
+ if (align < 1 || !gb_is_power_of_two(align)) {
+ error_node(st->align, "#align must be a power of 2, got %lld", align);
+ return;
+ }
+
+ // NOTE(bill): Success!!!
+ i64 custom_align = gb_clamp(align, 1, build_context.max_align);
+ if (custom_align < align) {
+ warning_node(st->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
+ }
+ struct_type->Record.custom_align = custom_align;
+ return;
+ }
+ }
+
+ error_node(st->align, "#align must be an integer");
+ return;
+ }
+
+
+}
+void check_union_type(Checker *c, Type *union_type, AstNode *node) {
+ GB_ASSERT(is_type_union(union_type));
+ ast_node(ut, UnionType, node);
+
+ isize variant_count = ut->variants.count+1;
+ isize field_count = 0;
+ for_array(i, ut->fields) {
+ AstNode *field = ut->fields[i];
+ if (field->kind == AstNode_Field) {
+ ast_node(f, Field, field);
+ field_count += f->names.count;
+ }
+ }
+
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+
+ Map<Entity *> entity_map = {}; // Key: String
+ map_init_with_reserve(&entity_map, c->tmp_allocator, 2*variant_count);
+
+ Entity *using_index_expr = NULL;
+
+ Entity **variants = gb_alloc_array(c->allocator, Entity *, variant_count);
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
+
+ isize variant_index = 0;
+ variants[variant_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL);
+
+ field_count = check_fields(c, NULL, ut->fields, fields, field_count, str_lit("union"));
+
+ for (isize i = 0; i < field_count; i++) {
+ Entity *f = fields[i];
+ String name = f->token.string;
+ map_set(&entity_map, hash_string(name), f);
+ }
+
+ union_type->Record.fields = fields;
+ union_type->Record.fields_in_src_order = fields;
+ union_type->Record.field_count = field_count;
+ union_type->Record.are_offsets_set = false;
+ union_type->Record.is_ordered = true;
+ {
+ Entity *__tag = make_entity_field(c->allocator, NULL, make_token_ident(str_lit("__tag")), t_int, false, -1);
+ union_type->Record.union__tag = __tag;
+ }
+
+ for_array(i, ut->variants) {
+ AstNode *variant = ut->variants[i];
+ if (variant->kind != AstNode_UnionField) {
+ continue;
+ }
+ ast_node(f, UnionField, variant);
+ Token name_token = f->name->Ident;
+
+ Type *base_type = make_type_struct(c->allocator);
+ {
+ ast_node(fl, FieldList, f->list);
+
+ // NOTE(bill): Copy the contents for the common fields for now
+ Array<AstNode *> list = {};
+ array_init_count(&list, c->allocator, ut->fields.count+fl->list.count);
+ gb_memmove_array(list.data, ut->fields.data, ut->fields.count);
+ gb_memmove_array(list.data+ut->fields.count, fl->list.data, fl->list.count);
+
+ isize list_count = 0;
+ for_array(j, list) {
+ ast_node(f, Field, list[j]);
+ list_count += f->names.count;
+ }
+
+
+ Token token = name_token;
+ token.kind = Token_struct;
+ AstNode *dummy_struct = ast_struct_type(c->curr_ast_file, token, list, list_count, false, true, NULL);
+
+ check_open_scope(c, dummy_struct);
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, list_count);
+ isize field_count = check_fields(c, dummy_struct, list, fields, list_count, str_lit("variant"));
+ base_type->Record.is_packed = false;
+ base_type->Record.is_ordered = true;
+ base_type->Record.fields = fields;
+ base_type->Record.fields_in_src_order = fields;
+ base_type->Record.field_count = field_count;
+ base_type->Record.names = make_names_field_for_record(c, c->context.scope);
+ base_type->Record.node = dummy_struct;
+
+ type_set_offsets(c->allocator, base_type);
+
+ check_close_scope(c);
+ }
+
+ Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL);
+ Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type);
+ type->Named.type_name = e;
+ add_entity(c, c->context.scope, f->name, e);
+
+ if (name_token.string == "_") {
+ error(name_token, "`_` cannot be used a union subtype");
+ continue;
+ }
+
+ HashKey key = hash_string(name_token.string);
+ if (map_get(&entity_map, key) != NULL) {
+ // NOTE(bill): Scope checking already checks the declaration
+ error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string));
+ } else {
+ map_set(&entity_map, key, e);
+ variants[variant_index++] = e;
+ }
+ add_entity_use(c, f->name, e);
+ }
+
+ type_set_offsets(c->allocator, union_type);
+
+ gb_temp_arena_memory_end(tmp);
+
+ union_type->Record.variants = variants;
+ union_type->Record.variant_count = variant_index;
+}
+
+void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) {
+ GB_ASSERT(node->kind == AstNode_RawUnionType);
+ GB_ASSERT(is_type_raw_union(union_type));
+ ast_node(ut, RawUnionType, node);
+
+ isize field_count = 0;
+ for_array(field_index, ut->fields) {
+ AstNode *field = ut->fields[field_index];
+ switch (field->kind) {
+ case_ast_node(f, Field, field);
+ field_count += f->names.count;
+ case_end;
+ }
+ }
+
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count);
+
+ field_count = check_fields(c, node, ut->fields, fields, field_count, str_lit("raw_union"));
+
+ union_type->Record.fields = fields;
+ union_type->Record.field_count = field_count;
+ union_type->Record.names = make_names_field_for_record(c, c->context.scope);
+}
+
+
+void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) {
+ ast_node(et, EnumType, node);
+ GB_ASSERT(is_type_enum(enum_type));
+
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+
+ Type *base_type = t_int;
+ if (et->base_type != NULL) {
+ base_type = check_type(c, et->base_type);
+ }
+
+ if (base_type == NULL || !(is_type_integer(base_type) || is_type_float(base_type))) {
+ error_node(node, "Base type for enumeration must be numeric");
+ return;
+ }
+ if (is_type_enum(base_type)) {
+ error_node(node, "Base type for enumeration cannot be another enumeration");
+ return;
+ }
+
+ // NOTE(bill): Must be up here for the `check_init_constant` system
+ enum_type->Record.enum_base_type = base_type;
+
+ Map<Entity *> entity_map = {}; // Key: String
+ map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count));
+
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count);
+ isize field_count = 0;
+
+ Type *constant_type = enum_type;
+ if (named_type != NULL) {
+ constant_type = named_type;
+ }
+
+ ExactValue iota = exact_value_i64(-1);
+ ExactValue min_value = exact_value_i64(0);
+ ExactValue max_value = exact_value_i64(0);
+
+ for_array(i, et->fields) {
+ AstNode *field = et->fields[i];
+ AstNode *ident = NULL;
+ AstNode *init = NULL;
+ if (field->kind == AstNode_FieldValue) {
+ ast_node(fv, FieldValue, field);
+ if (fv->field == NULL || fv->field->kind != AstNode_Ident) {
+ error_node(field, "An enum field's name must be an identifier");
+ continue;
+ }
+ ident = fv->field;
+ init = fv->value;
+ } else if (field->kind == AstNode_Ident) {
+ ident = field;
+ } else {
+ error_node(field, "An enum field's name must be an identifier");
+ continue;
+ }
+ String name = ident->Ident.string;
+
+ if (init != NULL) {
+ Operand o = {};
+ check_expr(c, &o, init);
+ if (o.mode != Addressing_Constant) {
+ error_node(init, "Enumeration value must be a constant");
+ o.mode = Addressing_Invalid;
+ }
+ if (o.mode != Addressing_Invalid) {
+ check_assignment(c, &o, constant_type, str_lit("enumeration"));
+ }
+ if (o.mode != Addressing_Invalid) {
+ iota = o.value;
+ } else {
+ iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1));
+ }
+ } else {
+ iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1));
+ }
+
+
+ // NOTE(bill): Skip blank identifiers
+ if (name == "_") {
+ continue;
+ } else if (name == "count") {
+ error_node(field, "`count` is a reserved identifier for enumerations");
+ continue;
+ } else if (name == "min_value") {
+ error_node(field, "`min_value` is a reserved identifier for enumerations");
+ continue;
+ } else if (name == "max_value") {
+ error_node(field, "`max_value` is a reserved identifier for enumerations");
+ continue;
+ } else if (name == "names") {
+ error_node(field, "`names` is a reserved identifier for enumerations");
+ continue;
+ }/* else if (name == "base_type") {
+ error_node(field, "`base_type` is a reserved identifier for enumerations");
+ continue;
+ } */
+
+ if (compare_exact_values(Token_Gt, min_value, iota)) {
+ min_value = iota;
+ }
+ if (compare_exact_values(Token_Lt, max_value, iota)) {
+ max_value = iota;
+ }
+
+ Entity *e = make_entity_constant(c->allocator, c->context.scope, ident->Ident, constant_type, iota);
+ e->identifier = ident;
+ e->flags |= EntityFlag_Visited;
+
+ HashKey key = hash_string(name);
+ if (map_get(&entity_map, key) != NULL) {
+ error_node(ident, "`%.*s` is already declared in this enumeration", LIT(name));
+ } else {
+ map_set(&entity_map, key, e);
+ add_entity(c, c->context.scope, NULL, e);
+ fields[field_count++] = e;
+ add_entity_use(c, field, e);
+ }
+ }
+ GB_ASSERT(field_count <= et->fields.count);
+ gb_temp_arena_memory_end(tmp);
+
+
+ enum_type->Record.fields = fields;
+ enum_type->Record.field_count = field_count;
+
+ enum_type->Record.enum_count = make_entity_constant(c->allocator, c->context.scope,
+ make_token_ident(str_lit("count")), t_int, exact_value_i64(field_count));
+ enum_type->Record.enum_min_value = make_entity_constant(c->allocator, c->context.scope,
+ make_token_ident(str_lit("min_value")), constant_type, min_value);
+ enum_type->Record.enum_max_value = make_entity_constant(c->allocator, c->context.scope,
+ make_token_ident(str_lit("max_value")), constant_type, max_value);
+
+ enum_type->Record.names = make_names_field_for_record(c, c->context.scope);
+}
+
+
+void check_bit_field_type(Checker *c, Type *bit_field_type, Type *named_type, AstNode *node) {
+ ast_node(bft, BitFieldType, node);
+ GB_ASSERT(is_type_bit_field(bit_field_type));
+
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+
+
+ Map<Entity *> entity_map = {}; // Key: String
+ map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(bft->fields.count));
+
+ isize field_count = 0;
+ Entity **fields = gb_alloc_array(c->allocator, Entity *, bft->fields.count);
+ u32 * sizes = gb_alloc_array(c->allocator, u32, bft->fields.count);
+ u32 * offsets = gb_alloc_array(c->allocator, u32, bft->fields.count);
+
+ u32 curr_offset = 0;
+ for_array(i, bft->fields) {
+ AstNode *field = bft->fields[i];
+ GB_ASSERT(field->kind == AstNode_FieldValue);
+ AstNode *ident = field->FieldValue.field;
+ AstNode *value = field->FieldValue.value;
+
+ if (ident->kind != AstNode_Ident) {
+ error_node(field, "A bit field value's name must be an identifier");
+ continue;
+ }
+ String name = ident->Ident.string;
+
+ Operand o = {};
+ check_expr(c, &o, value);
+ if (o.mode != Addressing_Constant) {
+ error_node(value, "Bit field bit size must be a constant");
+ continue;
+ }
+ ExactValue v = exact_value_to_integer(o.value);
+ if (v.kind != ExactValue_Integer) {
+ error_node(value, "Bit field bit size must be a constant integer");
+ continue;
+ }
+ i64 bits = i128_to_i64(v.value_integer);
+ if (bits < 0 || bits > 128) {
+ error_node(value, "Bit field's bit size must be within the range 1..<128, got %lld", cast(long long)bits);
+ continue;
+ }
+
+ Type *value_type = make_type_bit_field_value(c->allocator, bits);
+ Entity *e = make_entity_variable(c->allocator, bit_field_type->BitField.scope, ident->Ident, value_type, false);
+ e->identifier = ident;
+ e->flags |= EntityFlag_BitFieldValue;
+
+ HashKey key = hash_string(name);
+ if (name != "_" &&
+ map_get(&entity_map, key) != NULL) {
+ error_node(ident, "`%.*s` is already declared in this bit field", LIT(name));
+ } else {
+ map_set(&entity_map, key, e);
+ add_entity(c, c->context.scope, NULL, e);
+ add_entity_use(c, field, e);
+
+ fields [field_count] = e;
+ offsets[field_count] = curr_offset;
+ sizes [field_count] = bits;
+ field_count++;
+
+ curr_offset += bits;
+ }
+ }
+ GB_ASSERT(field_count <= bft->fields.count);
+ gb_temp_arena_memory_end(tmp);
+
+ bit_field_type->BitField.fields = fields;
+ bit_field_type->BitField.field_count = field_count;
+ bit_field_type->BitField.sizes = sizes;
+ bit_field_type->BitField.offsets = offsets;
+
+
+ if (bft->align != NULL) {
+ Operand o = {};
+ check_expr(c, &o, bft->align);
+ if (o.mode != Addressing_Constant) {
+ if (o.mode != Addressing_Invalid) {
+ error_node(bft->align, "#align must be a constant");
+ }
+ return;
+ }
+
+ Type *type = base_type(o.type);
+ if (is_type_untyped(type) || is_type_integer(type)) {
+ if (o.value.kind == ExactValue_Integer) {
+ i64 align = i128_to_i64(o.value.value_integer);
+ if (align < 1 || !gb_is_power_of_two(align)) {
+ error_node(bft->align, "#align must be a power of 2, got %lld", align);
+ return;
+ }
+
+ // NOTE(bill): Success!!!
+ i64 custom_align = gb_clamp(align, 1, build_context.max_align);
+ if (custom_align < align) {
+ warning_node(bft->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align);
+ }
+ bit_field_type->BitField.custom_align = custom_align;
+ return;
+ }
+ }
+
+ error_node(bft->align, "#align must be an integer");
+ return;
+ }
+}
+
+
+
+
+Type *check_get_params(Checker *c, Scope *scope, AstNode *_params, bool *is_variadic_) {
+ if (_params == NULL) {
+ return NULL;
+ }
+ ast_node(field_list, FieldList, _params);
+ Array<AstNode *> params = field_list->list;
+
+ if (params.count == 0) {
+ return NULL;
+ }
+
+ isize variable_count = 0;
+ for_array(i, params) {
+ AstNode *field = params[i];
+ if (ast_node_expect(field, AstNode_Field)) {
+ ast_node(f, Field, field);
+ variable_count += gb_max(f->names.count, 1);
+ }
+ }
+
+ bool is_variadic = false;
+ Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count);
+ isize variable_index = 0;
+ for_array(i, params) {
+ if (params[i]->kind != AstNode_Field) {
+ continue;
+ }
+ ast_node(p, Field, params[i]);
+ AstNode *type_expr = p->type;
+ Type *type = NULL;
+ AstNode *default_value = p->default_value;
+ ExactValue value = {};
+
+ if (type_expr == NULL) {
+ Operand o = {};
+ check_expr(c, &o, default_value);
+
+ if (o.mode != Addressing_Constant) {
+ error_node(default_value, "Default parameter must be a constant");
+ } else {
+ value = o.value;
+ }
+
+ type = default_type(o.type);
+ } else {
+ if (type_expr->kind == AstNode_Ellipsis) {
+ type_expr = type_expr->Ellipsis.expr;
+ if (i+1 == params.count) {
+ is_variadic = true;
+ } else {
+ error_node(params[i], "Invalid AST: Invalid variadic parameter");
+ }
+ }
+
+ type = check_type(c, type_expr);
+
+ if (default_value != NULL) {
+ Operand o = {};
+ check_expr(c, &o, default_value);
+
+ if (o.mode != Addressing_Constant) {
+ error_node(default_value, "Default parameter must be a constant");
+ } else {
+ value = o.value;
+ }
+
+ check_is_assignable_to(c, &o, type);
+ }
+
+ }
+ if (type == NULL) {
+ error_node(params[i], "Invalid parameter type");
+ type = t_invalid;
+ }
+
+ if (p->flags&FieldFlag_no_alias) {
+ if (!is_type_pointer(type)) {
+ error_node(params[i], "`no_alias` can only be applied to fields of pointer type");
+ p->flags &= ~FieldFlag_no_alias; // Remove the flag
+ }
+ }
+
+ for_array(j, p->names) {
+ AstNode *name = p->names[j];
+ if (ast_node_expect(name, AstNode_Ident)) {
+ Entity *param = make_entity_param(c->allocator, scope, name->Ident, type,
+ (p->flags&FieldFlag_using) != 0, (p->flags&FieldFlag_immutable) != 0);
+ if (p->flags&FieldFlag_no_alias) {
+ param->flags |= EntityFlag_NoAlias;
+ }
+ if (p->flags&FieldFlag_immutable) {
+ param->Variable.is_immutable = true;
+ }
+ param->Variable.default_value = value;
+
+ add_entity(c, scope, name, param);
+ variables[variable_index++] = param;
+ }
+ }
+ }
+
+ variable_count = variable_index;
+
+ if (is_variadic) {
+ GB_ASSERT(params.count > 0);
+ // NOTE(bill): Change last variadic parameter to be a slice
+ // Custom Calling convention for variadic parameters
+ Entity *end = variables[variable_count-1];
+ end->type = make_type_slice(c->allocator, end->type);
+ end->flags |= EntityFlag_Ellipsis;
+ }
+
+ Type *tuple = make_type_tuple(c->allocator);
+ tuple->Tuple.variables = variables;
+ tuple->Tuple.variable_count = variable_count;
+
+ if (is_variadic_) *is_variadic_ = is_variadic;
+
+ return tuple;
+}
+
+Type *check_get_results(Checker *c, Scope *scope, AstNode *_results) {
+ if (_results == NULL) {
+ return NULL;
+ }
+ ast_node(field_list, FieldList, _results);
+ Array<AstNode *> results = field_list->list;
+
+ if (results.count == 0) {
+ return NULL;
+ }
+ Type *tuple = make_type_tuple(c->allocator);
+
+ isize variable_count = 0;
+ for_array(i, results) {
+ AstNode *field = results[i];
+ if (ast_node_expect(field, AstNode_Field)) {
+ ast_node(f, Field, field);
+ variable_count += gb_max(f->names.count, 1);
+ }
+ }
+
+ Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count);
+ isize variable_index = 0;
+ for_array(i, results) {
+ ast_node(field, Field, results[i]);
+ Type *type = check_type(c, field->type);
+ if (field->names.count == 0) {
+ Token token = ast_node_token(field->type);
+ token.string = str_lit("");
+ Entity *param = make_entity_param(c->allocator, scope, token, type, false, false);
+ variables[variable_index++] = param;
+ } else {
+ for_array(j, field->names) {
+ Token token = ast_node_token(field->type);
+ token.string = str_lit("");
+
+ AstNode *name = field->names[j];
+ if (name->kind != AstNode_Ident) {
+ error_node(name, "Expected an identifer for as the field name");
+ } else {
+ token = name->Ident;
+ }
+
+ Entity *param = make_entity_param(c->allocator, scope, token, type, false, false);
+ variables[variable_index++] = param;
+ }
+ }
+ }
+
+ for (isize i = 0; i < variable_index; i++) {
+ String x = variables[i]->token.string;
+ if (x.len == 0 || x == "_") {
+ continue;
+ }
+ for (isize j = i+1; j < variable_index; j++) {
+ String y = variables[j]->token.string;
+ if (y.len == 0 || y == "_") {
+ continue;
+ }
+ if (x == y) {
+ error(variables[j]->token, "Duplicate return value name `%.*s`", LIT(y));
+ }
+ }
+ }
+
+ tuple->Tuple.variables = variables;
+ tuple->Tuple.variable_count = variable_index;
+
+ return tuple;
+}
+
+Type *type_to_abi_compat_param_type(gbAllocator a, Type *original_type) {
+ Type *new_type = original_type;
+
+ if (build_context.ODIN_OS == "windows") {
+ // NOTE(bill): Changing the passing parameter value type is to match C's ABI
+ // IMPORTANT TODO(bill): This only matches the ABI on MSVC at the moment
+ // SEE: https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx
+ Type *bt = core_type(original_type);
+ switch (bt->kind) {
+ // Okay to pass by value
+ // Especially the only Odin types
+ case Type_Basic: break;
+ case Type_Pointer: break;
+ case Type_Proc: break; // NOTE(bill): Just a pointer
+
+ // Odin only types
+ case Type_Slice:
+ case Type_DynamicArray:
+ case Type_Map:
+ break;
+
+ // Odin specific
+ case Type_Array:
+ case Type_Vector:
+ // Could be in C too
+ case Type_Record: {
+ i64 align = type_align_of(a, original_type);
+ i64 size = type_size_of(a, original_type);
+ switch (8*size) {
+ case 8: new_type = t_u8; break;
+ case 16: new_type = t_u16; break;
+ case 32: new_type = t_u32; break;
+ case 64: new_type = t_u64; break;
+ default:
+ new_type = make_type_pointer(a, original_type);
+ break;
+ }
+ } break;
+ }
+ } else if (build_context.ODIN_OS == "linux") {
+ Type *bt = core_type(original_type);
+ switch (bt->kind) {
+ // Okay to pass by value
+ // Especially the only Odin types
+ case Type_Basic: break;
+ case Type_Pointer: break;
+ case Type_Proc: break; // NOTE(bill): Just a pointer
+
+ // Odin only types
+ case Type_Slice:
+ case Type_DynamicArray:
+ case Type_Map:
+ break;
+
+ // Odin specific
+ case Type_Array:
+ case Type_Vector:
+ // Could be in C too
+ case Type_Record: {
+ i64 align = type_align_of(a, original_type);
+ i64 size = type_size_of(a, original_type);
+ if (8*size > 16) {
+ new_type = make_type_pointer(a, original_type);
+ }
+ } break;
+ }
+ } else {
+ // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for
+ // their architectures
+ }
+
+ return new_type;
+}
+
+Type *reduce_tuple_to_single_type(Type *original_type) {
+ if (original_type != NULL) {
+ Type *t = core_type(original_type);
+ if (t->kind == Type_Tuple && t->Tuple.variable_count == 1) {
+ return t->Tuple.variables[0]->type;
+ }
+ }
+ return original_type;
+}
+
+Type *type_to_abi_compat_result_type(gbAllocator a, Type *original_type) {
+ Type *new_type = original_type;
+ if (new_type == NULL) {
+ return NULL;
+ }
+ GB_ASSERT(is_type_tuple(original_type));
+
+
+
+ if (build_context.ODIN_OS == "windows") {
+ Type *bt = core_type(reduce_tuple_to_single_type(original_type));
+ // NOTE(bill): This is just reversed engineered from LLVM IR output
+ switch (bt->kind) {
+ // Okay to pass by value
+ // Especially the only Odin types
+ case Type_Pointer: break;
+ case Type_Proc: break; // NOTE(bill): Just a pointer
+ case Type_Basic: break;
+
+
+ default: {
+ i64 align = type_align_of(a, original_type);
+ i64 size = type_size_of(a, original_type);
+ switch (8*size) {
+#if 1
+ case 8: new_type = t_u8; break;
+ case 16: new_type = t_u16; break;
+ case 32: new_type = t_u32; break;
+ case 64: new_type = t_u64; break;
+#endif
+ }
+ } break;
+ }
+ } else if (build_context.ODIN_OS == "linux") {
+
+ } else {
+ // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for
+ // their architectures
+ }
+
+ if (new_type != original_type) {
+ Type *tuple = make_type_tuple(a);
+ tuple->Tuple.variable_count = 1;
+ tuple->Tuple.variables = gb_alloc_array(a, Entity *, 1);
+ tuple->Tuple.variables[0] = make_entity_param(a, original_type->Tuple.variables[0]->scope, empty_token, new_type, false, false);
+ new_type = tuple;
+ }
+
+
+ // return reduce_tuple_to_single_type(new_type);
+ return new_type;
+}
+
+bool abi_compat_return_by_value(gbAllocator a, ProcCallingConvention cc, Type *abi_return_type) {
+ if (abi_return_type == NULL) {
+ return false;
+ }
+ if (cc == ProcCC_Odin) {
+ return false;
+ }
+
+
+ if (build_context.ODIN_OS == "windows") {
+ i64 size = 8*type_size_of(a, abi_return_type);
+ switch (size) {
+ case 0:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ return false;
+ default:
+ return true;
+ }
+ }
+ return false;
+}
+
+void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) {
+ ast_node(pt, ProcType, proc_type_node);
+
+ bool variadic = false;
+ Type *params = check_get_params(c, c->context.scope, pt->params, &variadic);
+ Type *results = check_get_results(c, c->context.scope, pt->results);
+
+ isize param_count = 0;
+ isize result_count = 0;
+ if (params) param_count = params ->Tuple.variable_count;
+ if (results) result_count = results->Tuple.variable_count;
+
+ type->Proc.scope = c->context.scope;
+ type->Proc.params = params;
+ type->Proc.param_count = param_count;
+ type->Proc.results = results;
+ type->Proc.result_count = result_count;
+ type->Proc.variadic = variadic;
+ type->Proc.calling_convention = pt->calling_convention;
+
+
+ type->Proc.abi_compat_params = gb_alloc_array(c->allocator, Type *, param_count);
+ for (isize i = 0; i < param_count; i++) {
+ Type *original_type = type->Proc.params->Tuple.variables[i]->type;
+ Type *new_type = type_to_abi_compat_param_type(c->allocator, original_type);
+ type->Proc.abi_compat_params[i] = new_type;
+ }
+
+ // NOTE(bill): The types are the same
+ type->Proc.abi_compat_result_type = type_to_abi_compat_result_type(c->allocator, type->Proc.results);
+ type->Proc.return_by_pointer = abi_compat_return_by_value(c->allocator, pt->calling_convention, type->Proc.abi_compat_result_type);
+}
+
+
+Entity *check_ident(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name) {
+ GB_ASSERT(n->kind == AstNode_Ident);
+ o->mode = Addressing_Invalid;
+ o->expr = n;
+ String name = n->Ident.string;
+
+ Entity *e = scope_lookup_entity(c->context.scope, name);
+ if (e == NULL) {
+ if (name == "_") {
+ error(n->Ident, "`_` cannot be used as a value type");
+ } else {
+ error(n->Ident, "Undeclared name: %.*s", LIT(name));
+ }
+ o->type = t_invalid;
+ o->mode = Addressing_Invalid;
+ if (named_type != NULL) {
+ set_base_type(named_type, t_invalid);
+ }
+ return NULL;
+ }
+ if (e->parent_proc_decl != NULL &&
+ e->parent_proc_decl != c->context.curr_proc_decl) {
+ if (e->kind == Entity_Variable) {
+ error(n->Ident, "Nested procedures do not capture its parent's variables: %.*s", LIT(name));
+ return NULL;
+ } else if (e->kind == Entity_Label) {
+ error(n->Ident, "Nested procedures do not capture its parent's labels: %.*s", LIT(name));
+ return NULL;
+ }
+ }
+
+ bool is_overloaded = false;
+ isize overload_count = 0;
+ HashKey key = hash_string(name);
+
+ if (e->kind == Entity_Procedure) {
+ // NOTE(bill): Overloads are only allowed with the same scope
+ Scope *s = e->scope;
+ overload_count = multi_map_count(&s->elements, key);
+ if (overload_count > 1) {
+ is_overloaded = true;
+ }
+ }
+
+ if (is_overloaded) {
+ Scope *s = e->scope;
+ bool skip = false;
+
+ Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
+ multi_map_get_all(&s->elements, key, procs);
+ if (type_hint != NULL) {
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+ // NOTE(bill): These should be done
+ for (isize i = 0; i < overload_count; i++) {
+ Type *t = base_type(procs[i]->type);
+ if (t == t_invalid) {
+ continue;
+ }
+ Operand x = {};
+ x.mode = Addressing_Value;
+ x.type = t;
+ if (check_is_assignable_to(c, &x, type_hint)) {
+ e = procs[i];
+ add_entity_use(c, n, e);
+ skip = true;
+ break;
+ }
+ }
+ gb_temp_arena_memory_end(tmp);
+
+ }
+
+ if (!skip) {
+ o->mode = Addressing_Overload;
+ o->type = t_invalid;
+ o->overload_count = overload_count;
+ o->overload_entities = procs;
+ return NULL;
+ }
+ gb_free(heap_allocator(), procs);
+ }
+
+ add_entity_use(c, n, e);
+ check_entity_decl(c, e, NULL, named_type);
+
+
+ if (e->type == NULL) {
+ compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name));
+ // return NULL;
+ }
+
+ e->flags |= EntityFlag_Used;
+
+ Type *type = e->type;
+ switch (e->kind) {
+ case Entity_Constant:
+ if (type == t_invalid) {
+ o->type = t_invalid;
+ return e;
+ }
+ o->value = e->Constant.value;
+ if (o->value.kind == ExactValue_Invalid) {
+ return e;
+ }
+ o->mode = Addressing_Constant;
+ break;
+
+ case Entity_Variable:
+ e->flags |= EntityFlag_Used;
+ if (type == t_invalid) {
+ o->type = t_invalid;
+ return e;
+ }
+ o->mode = Addressing_Variable;
+ if (e->flags & EntityFlag_Value) {
+ o->mode = Addressing_Value;
+ }
+ if (e->Variable.is_immutable) {
+ o->mode = Addressing_Immutable;
+ }
+ break;
+
+ case Entity_TypeAlias:
+ case Entity_TypeName:
+ o->mode = Addressing_Type;
+ break;
+
+ case Entity_Procedure:
+ o->mode = Addressing_Value;
+ break;
+
+ case Entity_Builtin:
+ o->builtin_id = cast(BuiltinProcId)e->Builtin.id;
+ o->mode = Addressing_Builtin;
+ break;
+
+ case Entity_ImportName:
+ if (!allow_import_name) {
+ error_node(n, "Use of import `%.*s` not in selector", LIT(name));
+ }
+ return e;
+ case Entity_LibraryName:
+ error_node(n, "Use of library `%.*s` not in #foreign tag", LIT(name));
+ return e;
+
+ case Entity_Label:
+ o->mode = Addressing_NoValue;
+ break;
+
+ case Entity_Nil:
+ o->mode = Addressing_Value;
+ break;
+
+ default:
+ compiler_error("Unknown EntityKind");
+ break;
+ }
+
+ o->type = type;
+ return e;
+}
+
+i64 check_array_or_map_count(Checker *c, AstNode *e, bool is_map) {
+ if (e == NULL) {
+ return 0;
+ }
+ Operand o = {};
+ if (e->kind == AstNode_UnaryExpr &&
+ e->UnaryExpr.op.kind == Token_Ellipsis) {
+ return -1;
+ }
+
+ check_expr(c, &o, e);
+ if (o.mode != Addressing_Constant) {
+ if (o.mode != Addressing_Invalid) {
+ if (is_map) {
+ error_node(e, "Fixed map count must be a constant");
+ } else {
+ error_node(e, "Array count must be a constant");
+ }
+ }
+ return 0;
+ }
+ Type *type = base_type(o.type);
+ if (is_type_untyped(type) || is_type_integer(type)) {
+ if (o.value.kind == ExactValue_Integer) {
+ i64 count = i128_to_i64(o.value.value_integer);
+ if (is_map) {
+ if (count > 0) {
+ return count;
+ }
+ error_node(e, "Invalid fixed map count");
+ } else {
+ if (count >= 0) {
+ return count;
+ }
+ error_node(e, "Invalid array count");
+ }
+ return 0;
+ }
+ }
+
+ if (is_map) {
+ error_node(e, "Fixed map count must be an integer");
+ } else {
+ error_node(e, "Array count must be an integer");
+ }
+ return 0;
+}
+
+Type *make_optional_ok_type(gbAllocator a, Type *value) {
+ bool typed = true;
+ Type *t = make_type_tuple(a);
+ t->Tuple.variables = gb_alloc_array(a, Entity *, 2);
+ t->Tuple.variable_count = 2;
+ t->Tuple.variables[0] = make_entity_field(a, NULL, blank_token, value, false, 0);
+ t->Tuple.variables[1] = make_entity_field(a, NULL, blank_token, typed ? t_bool : t_untyped_bool, false, 1);
+ return t;
+}
+
+void check_map_type(Checker *c, Type *type, AstNode *node) {
+ GB_ASSERT(type->kind == Type_Map);
+ ast_node(mt, MapType, node);
+
+ i64 count = check_array_or_map_count(c, mt->count, true);
+ Type *key = check_type(c, mt->key);
+ Type *value = check_type(c, mt->value);
+
+ if (!is_type_valid_for_keys(key)) {
+ if (is_type_boolean(key)) {
+ error_node(node, "A boolean cannot be used as a key for a map");
+ } else {
+ gbString str = type_to_string(key);
+ error_node(node, "Invalid type of a key for a map, got `%s`", str);
+ gb_string_free(str);
+ }
+ }
+
+ if (count > 0) {
+ count = 0;
+ error_node(node, "Fixed map types are not yet implemented");
+ }
+
+ type->Map.count = count;
+ type->Map.key = key;
+ type->Map.value = value;
+
+ gbAllocator a = c->allocator;
+
+ {
+ // NOTE(bill): The preload types may have not been set yet
+ if (t_map_key == NULL) {
+ init_preload(c);
+ }
+ GB_ASSERT(t_map_key != NULL);
+
+ Type *entry_type = make_type_struct(a);
+
+ /*
+ struct {
+ hash: Map_Key,
+ next: int,
+ key: Key_Type,
+ value: Value_Type,
+ }
+ */
+ AstNode *dummy_node = gb_alloc_item(a, AstNode);
+ dummy_node->kind = AstNode_Invalid;
+ check_open_scope(c, dummy_node);
+
+ isize field_count = 3;
+ Entity **fields = gb_alloc_array(a, Entity *, field_count);
+ fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("key")), t_map_key, false, 0);
+ fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("next")), t_int, false, 1);
+ fields[2] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("value")), value, false, 2);
+
+ check_close_scope(c);
+
+ entry_type->Record.fields = fields;
+ entry_type->Record.fields_in_src_order = fields;
+ entry_type->Record.field_count = field_count;
+
+ type_set_offsets(a, entry_type);
+ type->Map.entry_type = entry_type;
+ }
+
+ {
+ Type *generated_struct_type = make_type_struct(a);
+
+ /*
+ struct {
+ hashes: [dynamic]int,
+ entries; [dynamic]Entry_Type,
+ }
+ */
+ AstNode *dummy_node = gb_alloc_item(a, AstNode);
+ dummy_node->kind = AstNode_Invalid;
+ check_open_scope(c, dummy_node);
+
+ Type *hashes_type = make_type_dynamic_array(a, t_int);
+ Type *entries_type = make_type_dynamic_array(a, type->Map.entry_type);
+
+ isize field_count = 2;
+ Entity **fields = gb_alloc_array(a, Entity *, field_count);
+ fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("hashes")), hashes_type, false, 0);
+ fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("entries")), entries_type, false, 1);
+
+ check_close_scope(c);
+
+ generated_struct_type->Record.fields = fields;
+ generated_struct_type->Record.fields_in_src_order = fields;
+ generated_struct_type->Record.field_count = field_count;
+
+ type_set_offsets(a, generated_struct_type);
+ type->Map.generated_struct_type = generated_struct_type;
+ }
+
+ type->Map.lookup_result_type = make_optional_ok_type(a, value);
+
+ // error_node(node, "`map` types are not yet implemented");
+}
+
+bool check_type_internal(Checker *c, AstNode *e, Type **type, Type *named_type) {
+ GB_ASSERT_NOT_NULL(type);
+ if (e == NULL) {
+ *type = t_invalid;
+ return true;
+ }
+
+ switch (e->kind) {
+ case_ast_node(i, Ident, e);
+ Operand o = {};
+ check_ident(c, &o, e, named_type, NULL, false);
+
+ switch (o.mode) {
+ case Addressing_Invalid:
+ break;
+ case Addressing_Type: {
+ *type = o.type;
+ return true;
+ } break;
+ case Addressing_NoValue: {
+ gbString err_str = expr_to_string(e);
+ error_node(e, "`%s` used as a type", err_str);
+ gb_string_free(err_str);
+ } break;
+ default: {
+ gbString err_str = expr_to_string(e);
+ error_node(e, "`%s` used as a type when not a type", err_str);
+ gb_string_free(err_str);
+ } break;
+ }
+ case_end;
+
+ case_ast_node(se, SelectorExpr, e);
+ Operand o = {};
+ check_selector(c, &o, e, NULL);
+
+ switch (o.mode) {
+ case Addressing_Invalid:
+ break;
+ case Addressing_Type:
+ GB_ASSERT(o.type != NULL);
+ *type = o.type;
+ return true;
+ case Addressing_NoValue: {
+ gbString err_str = expr_to_string(e);
+ error_node(e, "`%s` used as a type", err_str);
+ gb_string_free(err_str);
+ } break;
+ default: {
+ gbString err_str = expr_to_string(e);
+ error_node(e, "`%s` is not a type", err_str);
+ gb_string_free(err_str);
+ } break;
+ }
+ case_end;
+
+ case_ast_node(pe, ParenExpr, e);
+ *type = check_type(c, pe->expr, named_type);
+ return true;
+ case_end;
+
+ case_ast_node(ue, UnaryExpr, e);
+ if (ue->op.kind == Token_Pointer) {
+ *type = make_type_pointer(c->allocator, check_type(c, ue->expr));
+ return true;
+ } /* else if (ue->op.kind == Token_Maybe) {
+ *type = make_type_maybe(c->allocator, check_type(c, ue->expr));
+ return true;
+ } */
+ case_end;
+
+ case_ast_node(ht, HelperType, e);
+ *type = check_type(c, ht->type);
+ return true;
+ case_end;
+
+ case_ast_node(pt, PointerType, e);
+ Type *elem = check_type(c, pt->type);
+ i64 esz = type_size_of(c->allocator, elem);
+ *type = make_type_pointer(c->allocator, elem);
+ return true;
+ case_end;
+
+ case_ast_node(at, AtomicType, e);
+ Type *elem = check_type(c, at->type);
+ i64 esz = type_size_of(c->allocator, elem);
+ *type = make_type_atomic(c->allocator, elem);
+ return true;
+ case_end;
+
+ case_ast_node(at, ArrayType, e);
+ if (at->count != NULL) {
+ Type *elem = check_type(c, at->elem, NULL);
+ i64 count = check_array_or_map_count(c, at->count, false);
+ if (count < 0) {
+ error_node(at->count, ".. can only be used in conjuction with compound literals");
+ count = 0;
+ }
+#if 0
+ i64 esz = type_size_of(c->allocator, elem);
+ if (esz == 0) {
+ gbString str = type_to_string(elem);
+ error_node(at->elem, "Zero sized element type `%s` is not allowed", str);
+ gb_string_free(str);
+ }
+#endif
+ *type = make_type_array(c->allocator, elem, count);
+ } else {
+ Type *elem = check_type(c, at->elem);
+#if 0
+ i64 esz = type_size_of(c->allocator, elem);
+ if (esz == 0) {
+ gbString str = type_to_string(elem);
+ error_node(at->elem, "Zero sized element type `%s` is not allowed", str);
+ gb_string_free(str);
+ }
+#endif
+ *type = make_type_slice(c->allocator, elem);
+ }
+ return true;
+ case_end;
+
+ case_ast_node(dat, DynamicArrayType, e);
+ Type *elem = check_type(c, dat->elem);
+ i64 esz = type_size_of(c->allocator, elem);
+#if 0
+ if (esz == 0) {
+ gbString str = type_to_string(elem);
+ error_node(dat->elem, "Zero sized element type `%s` is not allowed", str);
+ gb_string_free(str);
+ }
+#endif
+ *type = make_type_dynamic_array(c->allocator, elem);
+ return true;
+ case_end;
+
+
+
+ case_ast_node(vt, VectorType, e);
+ Type *elem = check_type(c, vt->elem);
+ Type *be = base_type(elem);
+ i64 count = check_array_or_map_count(c, vt->count, false);
+ if (is_type_vector(be) || (!is_type_boolean(be) && !is_type_numeric(be))) {
+ gbString err_str = type_to_string(elem);
+ error_node(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str);
+ gb_string_free(err_str);
+ }
+ *type = make_type_vector(c->allocator, elem, count);
+ return true;
+ case_end;
+
+ case_ast_node(st, StructType, e);
+ *type = make_type_struct(c->allocator);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_struct_type(c, *type, e);
+ check_close_scope(c);
+ (*type)->Record.node = e;
+ return true;
+ case_end;
+
+ case_ast_node(ut, UnionType, e);
+ *type = make_type_union(c->allocator);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_union_type(c, *type, e);
+ check_close_scope(c);
+ (*type)->Record.node = e;
+ return true;
+ case_end;
+
+ case_ast_node(rut, RawUnionType, e);
+ *type = make_type_raw_union(c->allocator);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_raw_union_type(c, *type, e);
+ check_close_scope(c);
+ (*type)->Record.node = e;
+ return true;
+ case_end;
+
+ case_ast_node(et, EnumType, e);
+ *type = make_type_enum(c->allocator);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_enum_type(c, *type, named_type, e);
+ check_close_scope(c);
+ (*type)->Record.node = e;
+ return true;
+ case_end;
+
+ case_ast_node(et, BitFieldType, e);
+ *type = make_type_bit_field(c->allocator);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_bit_field_type(c, *type, named_type, e);
+ check_close_scope(c);
+ return true;
+ case_end;
+
+ case_ast_node(pt, ProcType, e);
+ *type = alloc_type(c->allocator, Type_Proc);
+ set_base_type(named_type, *type);
+ check_open_scope(c, e);
+ check_procedure_type(c, *type, e);
+ check_close_scope(c);
+ return true;
+ case_end;
+
+ case_ast_node(mt, MapType, e);
+ *type = alloc_type(c->allocator, Type_Map);
+ set_base_type(named_type, *type);
+ check_map_type(c, *type, e);
+ return true;
+ case_end;
+
+ case_ast_node(ce, CallExpr, e);
+ Operand o = {};
+ check_expr_or_type(c, &o, e);
+ if (o.mode == Addressing_Type) {
+ *type = o.type;
+ return true;
+ }
+ case_end;
+ }
+
+ *type = t_invalid;
+ return false;
+}
+
+
+
+Type *check_type(Checker *c, AstNode *e, Type *named_type) {
+ Type *type = NULL;
+ bool ok = check_type_internal(c, e, &type, named_type);
+
+ if (!ok) {
+ gbString err_str = expr_to_string(e);
+ error_node(e, "`%s` is not a type", err_str);
+ gb_string_free(err_str);
+ type = t_invalid;
+ }
+
+ if (type == NULL) {
+ type = t_invalid;
+ }
+
+ if (type->kind == Type_Named) {
+ if (type->Named.base == NULL) {
+ gbString name = type_to_string(type);
+ error_node(e, "Invalid type definition of %s", name);
+ gb_string_free(name);
+ type->Named.base = t_invalid;
+ }
+ }
+
+ if (is_type_typed(type)) {
+ add_type_and_value(&c->info, e, Addressing_Type, type, empty_exact_value);
+ } else {
+ gbString name = type_to_string(type);
+ error_node(e, "Invalid type definition of %s", name);
+ gb_string_free(name);
+ type = t_invalid;
+ }
+ set_base_type(named_type, type);
+
+ return type;
+}
+
+
+bool check_unary_op(Checker *c, Operand *o, Token op) {
+ if (o->type == NULL) {
+ gbString str = expr_to_string(o->expr);
+ error_node(o->expr, "Expression has no value `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+ // TODO(bill): Handle errors correctly
+ Type *type = base_type(base_vector_type(o->type));
+ gbString str = NULL;
+ switch (op.kind) {
+ case Token_Add:
+ case Token_Sub:
+ if (!is_type_numeric(type)) {
+ str = expr_to_string(o->expr);
+ error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str);
+ gb_string_free(str);
+ }
+ break;
+
+ case Token_Xor:
+ if (!is_type_integer(type) && !is_type_boolean(type)) {
+ error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
+ }
+ break;
+
+ case Token_Not:
+ if (!is_type_boolean(type)) {
+ str = expr_to_string(o->expr);
+ error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string));
+ gb_string_free(str);
+ }
+ break;
+
+ default:
+ error(op, "Unknown operator `%.*s`", LIT(op.string));
+ return false;
+ }
+
+ return true;
+}
+
+bool check_binary_op(Checker *c, Operand *o, Token op) {
+ // TODO(bill): Handle errors correctly
+ Type *type = base_type(base_vector_type(o->type));
+ switch (op.kind) {
+ case Token_Sub:
+ case Token_SubEq:
+ if (!is_type_numeric(type) && !is_type_pointer(type)) {
+ error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string));
+ return false;
+ }
+ if (is_type_pointer(type)) {
+ o->type = t_int;
+ }
+ if (base_type(type) == t_rawptr) {
+ gbString str = type_to_string(type);
+ error_node(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+ break;
+
+ case Token_Add:
+ case Token_Mul:
+ case Token_Quo:
+ case Token_AddEq:
+ case Token_MulEq:
+ case Token_QuoEq:
+ if (!is_type_numeric(type)) {
+ error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string));
+ return false;
+ }
+ break;
+
+ case Token_And:
+ case Token_Or:
+ case Token_AndEq:
+ case Token_OrEq:
+ case Token_Xor:
+ case Token_XorEq:
+ if (!is_type_integer(type) && !is_type_boolean(type)) {
+ error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string));
+ return false;
+ }
+ break;
+
+ case Token_Mod:
+ case Token_ModMod:
+ case Token_AndNot:
+ case Token_ModEq:
+ case Token_ModModEq:
+ case Token_AndNotEq:
+ if (!is_type_integer(type)) {
+ error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string));
+ return false;
+ }
+ break;
+
+ case Token_CmpAnd:
+ case Token_CmpOr:
+ case Token_CmpAndEq:
+ case Token_CmpOrEq:
+ if (!is_type_boolean(type)) {
+ error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string));
+ return false;
+ }
+ break;
+
+ default:
+ error(op, "Unknown operator `%.*s`", LIT(op.string));
+ return false;
+ }
+
+ return true;
+
+}
+
+bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) {
+ if (in_value.kind == ExactValue_Invalid) {
+ // NOTE(bill): There's already been an error
+ return true;
+ }
+
+ type = core_type(type);
+
+ if (is_type_boolean(type)) {
+ return in_value.kind == ExactValue_Bool;
+ } else if (is_type_string(type)) {
+ return in_value.kind == ExactValue_String;
+ } else if (is_type_integer(type) || is_type_rune(type)) {
+ ExactValue v = exact_value_to_integer(in_value);
+ if (v.kind != ExactValue_Integer) {
+ return false;
+ }
+ if (out_value) *out_value = v;
+
+
+ if (is_type_untyped(type)) {
+ return true;
+ }
+
+ i128 i = v.value_integer;
+ u128 u = *cast(u128 *)&i;
+ i64 s = 8*type_size_of(c->allocator, type);
+ u128 umax = U128_NEG_ONE;
+ if (s < 128) {
+ umax = u128_sub(u128_shl(U128_ONE, s), U128_ONE);
+ } else {
+ // IMPORTANT TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit floats
+ s = 128;
+ }
+ i128 imax = i128_shl(I128_ONE, s-1ll);
+
+ switch (type->Basic.kind) {
+ case Basic_rune:
+ case Basic_i8:
+ case Basic_i16:
+ case Basic_i32:
+ case Basic_i64:
+ case Basic_i128:
+ case Basic_int:
+ return i128_le(i128_neg(imax), i) && i128_le(i, i128_sub(imax, I128_ONE));
+
+ case Basic_u8:
+ case Basic_u16:
+ case Basic_u32:
+ case Basic_u64:
+ case Basic_u128:
+ case Basic_uint:
+ return !(u128_lt(u, U128_ZERO) || u128_gt(u, umax));
+
+ case Basic_UntypedInteger:
+ return true;
+
+ default: GB_PANIC("Compiler error: Unknown integer type!"); break;
+ }
+ } else if (is_type_float(type)) {
+ ExactValue v = exact_value_to_float(in_value);
+ if (v.kind != ExactValue_Float) {
+ return false;
+ }
+ if (out_value) *out_value = v;
+
+
+ switch (type->Basic.kind) {
+ // case Basic_f16:
+ case Basic_f32:
+ case Basic_f64:
+ return true;
+
+ case Basic_UntypedFloat:
+ return true;
+ }
+ } else if (is_type_complex(type)) {
+ ExactValue v = exact_value_to_complex(in_value);
+ if (v.kind != ExactValue_Complex) {
+ return false;
+ }
+
+ switch (type->Basic.kind) {
+ case Basic_complex64:
+ case Basic_complex128: {
+ ExactValue real = exact_value_real(v);
+ ExactValue imag = exact_value_imag(v);
+ if (real.kind != ExactValue_Invalid &&
+ imag.kind != ExactValue_Invalid) {
+ if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag));
+ return true;
+ }
+ } break;
+ case Basic_UntypedComplex:
+ return true;
+ }
+
+ return false;
+ }else if (is_type_pointer(type)) {
+ if (in_value.kind == ExactValue_Pointer) {
+ return true;
+ }
+ if (in_value.kind == ExactValue_Integer) {
+ return false;
+ // return true;
+ }
+ if (out_value) *out_value = in_value;
+ }
+
+
+ return false;
+}
+
+void check_is_expressible(Checker *c, Operand *o, Type *type) {
+ GB_ASSERT(is_type_constant_type(type));
+ GB_ASSERT(o->mode == Addressing_Constant);
+ if (!check_representable_as_constant(c, o->value, type, &o->value)) {
+ gbString a = expr_to_string(o->expr);
+ gbString b = type_to_string(type);
+ if (is_type_numeric(o->type) && is_type_numeric(type)) {
+ if (!is_type_integer(o->type) && is_type_integer(type)) {
+ error_node(o->expr, "`%s` truncated to `%s`", a, b);
+ } else {
+ char buf[127] = {};
+ String str = {};
+ i128 i = o->value.value_integer;
+ if (is_type_unsigned(o->type)) {
+ str = u128_to_string(*cast(u128 *)&i, buf, gb_size_of(buf));
+ } else {
+ str = i128_to_string(i, buf, gb_size_of(buf));
+ }
+ error_node(o->expr, "`%s = %.*s` overflows `%s`", a, str, b);
+ }
+ } else {
+ error_node(o->expr, "Cannot convert `%s` to `%s`", a, b);
+ }
+
+ gb_string_free(b);
+ gb_string_free(a);
+ o->mode = Addressing_Invalid;
+ }
+}
+
+bool check_is_expr_vector_index(Checker *c, AstNode *expr) {
+ // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
+ expr = unparen_expr(expr);
+ if (expr->kind == AstNode_IndexExpr) {
+ ast_node(ie, IndexExpr, expr);
+ Type *t = type_deref(type_of_expr(&c->info, ie->expr));
+ if (t != NULL) {
+ return is_type_vector(t);
+ }
+ }
+ return false;
+}
+
+bool check_is_vector_elem(Checker *c, AstNode *expr) {
+ // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode
+ expr = unparen_expr(expr);
+ if (expr->kind == AstNode_SelectorExpr) {
+ ast_node(se, SelectorExpr, expr);
+ Type *t = type_deref(type_of_expr(&c->info, se->expr));
+ if (t != NULL && is_type_vector(t)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+bool check_is_not_addressable(Checker *c, Operand *o) {
+ if (o->mode != Addressing_Variable) {
+ return true;
+ }
+ if (is_type_bit_field_value(o->type)) {
+ return true;
+ }
+ if (check_is_expr_vector_index(c, o->expr)) {
+ return true;
+ }
+ if (check_is_vector_elem(c, o->expr)) {
+ return true;
+ }
+
+ return false;
+}
+
+void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) {
+ switch (op.kind) {
+ case Token_And: { // Pointer address
+ if (o->mode == Addressing_Type) {
+ o->type = make_type_pointer(c->allocator, o->type);
+ return;
+ }
+ if (check_is_not_addressable(c, o)) {
+ if (ast_node_expect(node, AstNode_UnaryExpr)) {
+ ast_node(ue, UnaryExpr, node);
+ gbString str = expr_to_string(ue->expr);
+ error(op, "Cannot take the pointer address of `%s`", str);
+ gb_string_free(str);
+ }
+ o->mode = Addressing_Invalid;
+ return;
+ }
+ o->mode = Addressing_Value;
+ o->type = make_type_pointer(c->allocator, o->type);
+ return;
+ }
+ }
+
+ if (!check_unary_op(c, o, op)) {
+ o->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (o->mode == Addressing_Constant && !is_type_vector(o->type)) {
+ Type *type = base_type(o->type);
+ if (!is_type_constant_type(o->type)) {
+ gbString xt = type_to_string(o->type);
+ gbString err_str = expr_to_string(node);
+ error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str);
+ gb_string_free(err_str);
+ gb_string_free(xt);
+ o->mode = Addressing_Invalid;
+ return;
+ }
+
+
+ i32 precision = 0;
+ if (is_type_unsigned(type)) {
+ precision = cast(i32)(8 * type_size_of(c->allocator, type));
+ }
+ o->value = exact_unary_operator_value(op.kind, o->value, precision);
+
+ if (is_type_typed(type)) {
+ if (node != NULL) {
+ o->expr = node;
+ }
+ check_is_expressible(c, o, type);
+ }
+ return;
+ }
+
+ o->mode = Addressing_Value;
+}
+
+void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) {
+ if (x->mode == Addressing_Type && y->mode == Addressing_Type) {
+ bool comp = are_types_identical(x->type, y->type);
+ switch (op) {
+ case Token_CmpEq: comp = comp; break;
+ case Token_NotEq: comp = !comp; break;
+ }
+ x->mode = Addressing_Constant;
+ x->type = t_untyped_bool;
+ x->value = exact_value_bool(comp);
+ return;
+ }
+
+ gbString err_str = NULL;
+ gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena);
+ if (check_is_assignable_to(c, x, y->type) ||
+ check_is_assignable_to(c, y, x->type)) {
+ Type *err_type = x->type;
+ bool defined = false;
+ switch (op) {
+ case Token_CmpEq:
+ case Token_NotEq:
+ defined = is_type_comparable(x->type) ||
+ (is_operand_nil(*x) && type_has_nil(y->type)) ||
+ (is_operand_nil(*y) && type_has_nil(x->type));
+ break;
+ case Token_Lt:
+ case Token_Gt:
+ case Token_LtEq:
+ case Token_GtEq: {
+ defined = is_type_ordered(x->type);
+ } break;
+ }
+
+ if (!defined) {
+ if (x->type == err_type && is_operand_nil(*x)) {
+ err_type = y->type;
+ }
+ gb_printf_err("%d %d\n", is_operand_nil(*x), type_has_nil(y->type));
+ gb_printf_err("%d %d\n", is_operand_nil(*y), type_has_nil(x->type));
+ gbString type_string = type_to_string(err_type);
+ err_str = gb_string_make(c->tmp_allocator,
+ gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(token_strings[op]), type_string));
+ gb_string_free(type_string);
+ }
+ } else {
+ gbString xt = type_to_string(x->type);
+ gbString yt = type_to_string(y->type);
+ err_str = gb_string_make(c->tmp_allocator,
+ gb_bprintf("mismatched types `%s` and `%s`", xt, yt));
+ gb_string_free(yt);
+ gb_string_free(xt);
+ }
+
+ if (err_str != NULL) {
+ error_node(x->expr, "Cannot compare expression, %s", err_str);
+ x->type = t_untyped_bool;
+ } else {
+ if (x->mode == Addressing_Constant &&
+ y->mode == Addressing_Constant) {
+ x->value = exact_value_bool(compare_exact_values(op, x->value, y->value));
+ } else {
+ x->mode = Addressing_Value;
+
+
+ update_expr_type(c, x->expr, default_type(x->type), true);
+ update_expr_type(c, y->expr, default_type(y->type), true);
+ }
+
+ if (is_type_vector(base_type(y->type))) {
+ x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count);
+ } else {
+ x->type = t_untyped_bool;
+ }
+ }
+
+ if (err_str != NULL) {
+ gb_string_free(err_str);
+ }
+ gb_temp_arena_memory_end(tmp);
+}
+
+void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) {
+ GB_ASSERT(node->kind == AstNode_BinaryExpr);
+ ast_node(be, BinaryExpr, node);
+
+ ExactValue x_val = {};
+ if (x->mode == Addressing_Constant) {
+ x_val = exact_value_to_integer(x->value);
+ }
+
+ bool x_is_untyped = is_type_untyped(x->type);
+ if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) {
+ gbString err_str = expr_to_string(x->expr);
+ error_node(node, "Shifted operand `%s` must be an integer", err_str);
+ gb_string_free(err_str);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (is_type_unsigned(y->type)) {
+
+ } else if (is_type_untyped(y->type)) {
+ convert_to_typed(c, y, t_untyped_integer, 0);
+ if (y->mode == Addressing_Invalid) {
+ x->mode = Addressing_Invalid;
+ return;
+ }
+ } else {
+ gbString err_str = expr_to_string(y->expr);
+ error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
+ gb_string_free(err_str);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+
+ if (x->mode == Addressing_Constant) {
+ if (y->mode == Addressing_Constant) {
+ ExactValue y_val = exact_value_to_integer(y->value);
+ if (y_val.kind != ExactValue_Integer) {
+ gbString err_str = expr_to_string(y->expr);
+ error_node(node, "Shift amount `%s` must be an unsigned integer", err_str);
+ gb_string_free(err_str);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ i64 amount = i128_to_i64(y_val.value_integer);
+ if (amount > 128) {
+ gbString err_str = expr_to_string(y->expr);
+ error_node(node, "Shift amount too large: `%s`", err_str);
+ gb_string_free(err_str);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (!is_type_integer(x->type)) {
+ // NOTE(bill): It could be an untyped float but still representable
+ // as an integer
+ x->type = t_untyped_integer;
+ }
+
+ x->value = exact_value_shift(be->op.kind, x_val, exact_value_i64(amount));
+
+ if (is_type_typed(x->type)) {
+ check_is_expressible(c, x, base_type(x->type));
+ }
+ return;
+ }
+
+ TokenPos pos = ast_node_token(x->expr).pos;
+ if (x_is_untyped) {
+ ExprInfo *info = map_get(&c->info.untyped, hash_pointer(x->expr));
+ if (info != NULL) {
+ info->is_lhs = true;
+ }
+ x->mode = Addressing_Value;
+ // x->value = x_val;
+ return;
+ }
+ }
+
+ if (y->mode == Addressing_Constant && i128_lt(y->value.value_integer, I128_ZERO)) {
+ gbString err_str = expr_to_string(y->expr);
+ error_node(node, "Shift amount cannot be negative: `%s`", err_str);
+ gb_string_free(err_str);
+ }
+
+ if (!is_type_integer(x->type)) {
+ gbString err_str = expr_to_string(y->expr);
+ error_node(node, "Shift operand `%s` must be an integer", err_str);
+ gb_string_free(err_str);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ x->mode = Addressing_Value;
+}
+
+
+String check_down_cast_name(Type *dst_, Type *src_) {
+ String result = {};
+ Type *dst = type_deref(dst_);
+ Type *src = type_deref(src_);
+ Type *dst_s = base_type(dst);
+ GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s));
+ for (isize i = 0; i < dst_s->Record.field_count; i++) {
+ Entity *f = dst_s->Record.fields[i];
+ GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field);
+ if (f->flags & EntityFlag_Using) {
+ if (are_types_identical(f->type, src_)) {
+ return f->token.string;
+ }
+ if (are_types_identical(type_deref(f->type), src_)) {
+ return f->token.string;
+ }
+
+ if (!is_type_pointer(f->type)) {
+ result = check_down_cast_name(f->type, src_);
+ if (result.len > 0) {
+ return result;
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) {
+ GB_ASSERT(node->kind == AstNode_BinaryExpr);
+ ast_node(be, BinaryExpr, node);
+ GB_ASSERT(is_type_pointer(ptr->type));
+ GB_ASSERT(is_type_integer(offset->type));
+ GB_ASSERT(op == Token_Add || op == Token_Sub);
+
+ Operand operand = {};
+ operand.mode = Addressing_Value;
+ operand.type = ptr->type;
+ operand.expr = node;
+
+ if (base_type(ptr->type) == t_rawptr) {
+ gbString str = type_to_string(ptr->type);
+ error_node(node, "Invalid pointer type for pointer arithmetic: `%s`", str);
+ gb_string_free(str);
+ operand.mode = Addressing_Invalid;
+ return operand;
+ }
+
+ Type *base_ptr = base_type(ptr->type); GB_ASSERT(base_ptr->kind == Type_Pointer);
+ Type *elem = base_ptr->Pointer.elem;
+ i64 elem_size = type_size_of(c->allocator, elem);
+
+ if (elem_size <= 0) {
+ gbString str = type_to_string(elem);
+ error_node(node, "Size of pointer's element type `%s` is zero and cannot be used for pointer arithmetic", str);
+ gb_string_free(str);
+ operand.mode = Addressing_Invalid;
+ return operand;
+ }
+
+ if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) {
+ i64 ptr_val = ptr->value.value_pointer;
+ i64 offset_val = i128_to_i64(exact_value_to_integer(offset->value).value_integer);
+ i64 new_ptr_val = ptr_val;
+ if (op == Token_Add) {
+ new_ptr_val += elem_size*offset_val;
+ } else {
+ new_ptr_val -= elem_size*offset_val;
+ }
+ operand.mode = Addressing_Constant;
+ operand.value = exact_value_pointer(new_ptr_val);
+ }
+
+ return operand;
+}
+
+
+
+bool check_is_castable_to(Checker *c, Operand *operand, Type *y) {
+ if (check_is_assignable_to(c, operand, y)) {
+ return true;
+ }
+
+ Type *x = operand->type;
+ Type *src = core_type(x);
+ Type *dst = core_type(y);
+ if (are_types_identical(src, dst)) {
+ return true;
+ }
+
+
+ if (dst->kind == Type_Array && src->kind == Type_Array) {
+ if (are_types_identical(dst->Array.elem, src->Array.elem)) {
+ return dst->Array.count == src->Array.count;
+ }
+ }
+
+ if (dst->kind == Type_Slice && src->kind == Type_Slice) {
+ return are_types_identical(dst->Slice.elem, src->Slice.elem);
+ }
+
+ // Cast between booleans and integers
+ if (is_type_boolean(src) || is_type_integer(src)) {
+ if (is_type_boolean(dst) || is_type_integer(dst)) {
+ return true;
+ }
+ }
+
+ // Cast between numbers
+ if (is_type_integer(src) || is_type_float(src)) {
+ if (is_type_integer(dst) || is_type_float(dst)) {
+ return true;
+ }
+ }
+
+ if (is_type_integer(src) && is_type_rune(dst)) {
+ return true;
+ }
+ if (is_type_rune(src) && is_type_integer(dst)) {
+ return true;
+ }
+
+ if (is_type_complex(src) && is_type_complex(dst)) {
+ return true;
+ }
+
+ if (is_type_bit_field_value(src) && is_type_integer(dst)) {
+ return true;
+ }
+
+ if (is_type_bit_field_value(src) && is_type_boolean(dst)) {
+ return src->BitFieldValue.bits == 1;
+ }
+
+ // Cast between pointers
+ if (is_type_pointer(src) && is_type_pointer(dst)) {
+ Type *s = base_type(type_deref(src));
+ if (is_type_union(s)) {
+ // NOTE(bill): Should the error be here?!
+ // NOTE(bill): This error should suppress the next casting error as it's at the same position
+ gbString xs = type_to_string(x);
+ gbString ys = type_to_string(y);
+ error_node(operand->expr, "Cannot cast from a union pointer `%s` to `%s`, try using `union_cast` or cast to a `rawptr`", xs, ys);
+ gb_string_free(ys);
+ gb_string_free(xs);
+ return false;
+ }
+ return true;
+ }
+
+ // (u)int <-> rawptr
+ if (is_type_int_or_uint(src) && is_type_rawptr(dst)) {
+ return true;
+ }
+ if (is_type_rawptr(src) && is_type_int_or_uint(dst)) {
+ return true;
+ }
+
+ // []byte/[]u8 <-> string
+ if (is_type_u8_slice(src) && is_type_string(dst)) {
+ return true;
+ }
+ if (is_type_string(src) && is_type_u8_slice(dst)) {
+ // if (is_type_typed(src)) {
+ return true;
+ // }
+ }
+
+ // proc <-> proc
+ if (is_type_proc(src) && is_type_proc(dst)) {
+ return true;
+ }
+
+ // proc -> rawptr
+ if (is_type_proc(src) && is_type_rawptr(dst)) {
+ return true;
+ }
+ // rawptr -> proc
+ if (is_type_rawptr(src) && is_type_proc(dst)) {
+ return true;
+ }
+
+ return false;
+}
+
+void check_cast(Checker *c, Operand *x, Type *type) {
+ bool is_const_expr = x->mode == Addressing_Constant;
+ bool can_convert = false;
+
+ Type *bt = base_type(type);
+ if (is_const_expr && is_type_constant_type(bt)) {
+ if (core_type(bt)->kind == Type_Basic) {
+ if (check_representable_as_constant(c, x->value, bt, &x->value)) {
+ can_convert = true;
+ } else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) {
+ can_convert = true;
+ }
+ }
+ } else if (check_is_castable_to(c, x, type)) {
+ if (x->mode != Addressing_Constant) {
+ x->mode = Addressing_Value;
+ } else if (is_type_slice(type) && is_type_string(x->type)) {
+ x->mode = Addressing_Value;
+ } else if (!is_type_vector(x->type) && is_type_vector(type)) {
+ x->mode = Addressing_Value;
+ }
+ can_convert = true;
+ }
+
+ if (!can_convert) {
+ gbString expr_str = expr_to_string(x->expr);
+ gbString to_type = type_to_string(type);
+ gbString from_type = type_to_string(x->type);
+ error_node(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type);
+ gb_string_free(from_type);
+ gb_string_free(to_type);
+ gb_string_free(expr_str);
+
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (is_type_untyped(x->type)) {
+ Type *final_type = type;
+ if (is_const_expr && !is_type_constant_type(type)) {
+ final_type = default_type(x->type);
+ }
+ update_expr_type(c, x->expr, final_type, true);
+ }
+
+ x->type = type;
+}
+
+bool check_binary_vector_expr(Checker *c, Token op, Operand *x, Operand *y) {
+ if (is_type_vector(x->type) && !is_type_vector(y->type)) {
+ if (check_is_assignable_to(c, y, x->type)) {
+ if (check_binary_op(c, x, op)) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+
+void check_binary_expr(Checker *c, Operand *x, AstNode *node) {
+ GB_ASSERT(node->kind == AstNode_BinaryExpr);
+ Operand y_ = {}, *y = &y_;
+
+ ast_node(be, BinaryExpr, node);
+
+ Token op = be->op;
+ switch (op.kind) {
+ case Token_CmpEq:
+ case Token_NotEq: {
+ // NOTE(bill): Allow comparisons between types
+ check_expr_or_type(c, x, be->left);
+ check_expr_or_type(c, y, be->right);
+ bool xt = x->mode == Addressing_Type;
+ bool yt = y->mode == Addressing_Type;
+ // If only one is a type, this is an error
+ if (xt ^ yt) {
+ GB_ASSERT(xt != yt);
+ if (xt) error_operand_not_expression(x);
+ if (yt) error_operand_not_expression(y);
+ }
+ } break;
+
+ default:
+ check_expr(c, x, be->left);
+ check_expr(c, y, be->right);
+ break;
+ }
+ if (x->mode == Addressing_Invalid) {
+ return;
+ }
+ if (y->mode == Addressing_Invalid) {
+ x->mode = Addressing_Invalid;
+ x->expr = y->expr;
+ return;
+ }
+
+ if (token_is_shift(op.kind)) {
+ check_shift(c, x, y, node);
+ return;
+ }
+
+ if (op.kind == Token_Add || op.kind == Token_Sub) {
+ if (is_type_pointer(x->type) && is_type_integer(y->type)) {
+ *x = check_ptr_addition(c, op.kind, x, y, node);
+ return;
+ } else if (is_type_integer(x->type) && is_type_pointer(y->type)) {
+ if (op.kind == Token_Sub) {
+ gbString lhs = expr_to_string(x->expr);
+ gbString rhs = expr_to_string(y->expr);
+ error_node(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs);
+ gb_string_free(rhs);
+ gb_string_free(lhs);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+ *x = check_ptr_addition(c, op.kind, y, x, node);
+ return;
+ }
+ }
+
+
+ convert_to_typed(c, x, y->type, 0);
+ if (x->mode == Addressing_Invalid) {
+ return;
+ }
+ convert_to_typed(c, y, x->type, 0);
+ if (y->mode == Addressing_Invalid) {
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (token_is_comparison(op.kind)) {
+ check_comparison(c, x, y, op.kind);
+ return;
+ }
+
+
+ if (check_binary_vector_expr(c, op, x, y)) {
+ x->mode = Addressing_Value;
+ x->type = x->type;
+ return;
+ }
+ if (check_binary_vector_expr(c, op, y, x)) {
+ x->mode = Addressing_Value;
+ x->type = y->type;
+ return;
+ }
+ if (!are_types_identical(x->type, y->type)) {
+ if (x->type != t_invalid &&
+ y->type != t_invalid) {
+ gbString xt = type_to_string(x->type);
+ gbString yt = type_to_string(y->type);
+ gbString expr_str = expr_to_string(x->expr);
+ error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt);
+ gb_string_free(expr_str);
+ gb_string_free(yt);
+ gb_string_free(xt);
+ }
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (!check_binary_op(c, x, op)) {
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ switch (op.kind) {
+ case Token_Quo:
+ case Token_Mod:
+ case Token_ModMod:
+ case Token_QuoEq:
+ case Token_ModEq:
+ case Token_ModModEq:
+ if ((x->mode == Addressing_Constant || is_type_integer(x->type)) &&
+ y->mode == Addressing_Constant) {
+ bool fail = false;
+ switch (y->value.kind) {
+ case ExactValue_Integer:
+ if (i128_eq(y->value.value_integer, I128_ZERO)) {
+ fail = true;
+ }
+ break;
+ case ExactValue_Float:
+ if (y->value.value_float == 0.0) {
+ fail = true;
+ }
+ break;
+ }
+
+ if (fail) {
+ error_node(y->expr, "Division by zero not allowed");
+ x->mode = Addressing_Invalid;
+ return;
+ }
+ }
+ }
+
+ if (x->mode == Addressing_Constant &&
+ y->mode == Addressing_Constant) {
+ ExactValue a = x->value;
+ ExactValue b = y->value;
+
+ Type *type = base_type(x->type);
+ if (is_type_pointer(type)) {
+ GB_ASSERT(op.kind == Token_Sub);
+ i64 bytes = a.value_pointer - b.value_pointer;
+ i64 diff = bytes/type_size_of(c->allocator, type);
+ x->value = exact_value_pointer(diff);
+ return;
+ }
+
+ if (!is_type_constant_type(type)) {
+ gbString xt = type_to_string(x->type);
+ gbString err_str = expr_to_string(node);
+ error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str);
+ gb_string_free(err_str);
+ gb_string_free(xt);
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ if (op.kind == Token_Quo && is_type_integer(type)) {
+ op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers
+ }
+ x->value = exact_binary_operator_value(op.kind, a, b);
+ if (is_type_typed(type)) {
+ if (node != NULL) {
+ x->expr = node;
+ }
+ check_is_expressible(c, x, type);
+ }
+ return;
+ }
+
+ x->mode = Addressing_Value;
+}
+
+
+void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) {
+ HashKey key = hash_pointer(e);
+ ExprInfo *found = map_get(&c->info.untyped, key);
+ if (found == NULL) {
+ return;
+ }
+ ExprInfo old = *found;
+
+ switch (e->kind) {
+ case_ast_node(ue, UnaryExpr, e);
+ if (old.value.kind != ExactValue_Invalid) {
+ // NOTE(bill): if `e` is constant, the operands will be constant too.
+ // They don't need to be updated as they will be updated later and
+ // checked at the end of general checking stage.
+ break;
+ }
+ update_expr_type(c, ue->expr, type, final);
+ case_end;
+
+ case_ast_node(be, BinaryExpr, e);
+ if (old.value.kind != ExactValue_Invalid) {
+ // See above note in UnaryExpr case
+ break;
+ }
+ if (token_is_comparison(be->op.kind)) {
+ // NOTE(bill): Do nothing as the types are fine
+ } else if (token_is_shift(be->op.kind)) {
+ update_expr_type(c, be->left, type, final);
+ } else {
+ update_expr_type(c, be->left, type, final);
+ update_expr_type(c, be->right, type, final);
+ }
+ case_end;
+
+ case_ast_node(pe, ParenExpr, e);
+ update_expr_type(c, pe->expr, type, final);
+ case_end;
+ }
+
+ if (!final && is_type_untyped(type)) {
+ old.type = base_type(type);
+ map_set(&c->info.untyped, key, old);
+ return;
+ }
+
+ // We need to remove it and then give it a new one
+ map_remove(&c->info.untyped, key);
+
+ if (old.is_lhs && !is_type_integer(type)) {
+ gbString expr_str = expr_to_string(e);
+ gbString type_str = type_to_string(type);
+ error_node(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str);
+ gb_string_free(type_str);
+ gb_string_free(expr_str);
+ return;
+ }
+
+ add_type_and_value(&c->info, e, old.mode, type, old.value);
+}
+
+void update_expr_value(Checker *c, AstNode *e, ExactValue value) {
+ ExprInfo *found = map_get(&c->info.untyped, hash_pointer(e));
+ if (found) {
+ found->value = value;
+ }
+}
+
+void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) {
+ gbString expr_str = expr_to_string(operand->expr);
+ gbString type_str = type_to_string(target_type);
+ char *extra_text = "";
+
+ if (operand->mode == Addressing_Constant) {
+ if (i128_eq(operand->value.value_integer, I128_ZERO)) {
+ if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case
+ // NOTE(bill): Doesn't matter what the type is as it's still zero in the union
+ extra_text = " - Did you want `nil`?";
+ }
+ }
+ }
+ error_node(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text);
+
+ gb_string_free(type_str);
+ gb_string_free(expr_str);
+ operand->mode = Addressing_Invalid;
+}
+
+ExactValue convert_exact_value_for_type(ExactValue v, Type *type) {
+ Type *t = core_type(type);
+ if (is_type_boolean(t)) {
+ // v = exact_value_to_boolean(v);
+ } else if (is_type_float(t)) {
+ v = exact_value_to_float(v);
+ } else if (is_type_integer(t)) {
+ v = exact_value_to_integer(v);
+ } else if (is_type_pointer(t)) {
+ v = exact_value_to_integer(v);
+ } else if (is_type_complex(t)) {
+ v = exact_value_to_complex(v);
+ }
+ return v;
+}
+
+// NOTE(bill): Set initial level to 0
+void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) {
+ GB_ASSERT_NOT_NULL(target_type);
+ if (operand->mode == Addressing_Invalid ||
+ operand->mode == Addressing_Type ||
+ is_type_typed(operand->type) ||
+ target_type == t_invalid) {
+ return;
+ }
+
+ if (is_type_untyped(target_type)) {
+ GB_ASSERT(operand->type->kind == Type_Basic);
+ GB_ASSERT(target_type->kind == Type_Basic);
+ BasicKind x_kind = operand->type->Basic.kind;
+ BasicKind y_kind = target_type->Basic.kind;
+ if (is_type_numeric(operand->type) && is_type_numeric(target_type)) {
+ if (x_kind < y_kind) {
+ operand->type = target_type;
+ update_expr_type(c, operand->expr, target_type, false);
+ }
+ } else if (x_kind != y_kind) {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ return;
+ }
+
+ Type *t = core_type(target_type);
+ switch (t->kind) {
+ case Type_Basic:
+ if (operand->mode == Addressing_Constant) {
+ check_is_expressible(c, operand, t);
+ if (operand->mode == Addressing_Invalid) {
+ return;
+ }
+ update_expr_value(c, operand->expr, operand->value);
+ } else {
+ switch (operand->type->Basic.kind) {
+ case Basic_UntypedBool:
+ if (!is_type_boolean(target_type)) {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ break;
+ case Basic_UntypedInteger:
+ case Basic_UntypedFloat:
+ case Basic_UntypedComplex:
+ case Basic_UntypedRune:
+ if (!is_type_numeric(target_type)) {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ break;
+
+ case Basic_UntypedNil:
+ if (is_type_any(target_type)) {
+ target_type = t_untyped_nil;
+ } else if (!type_has_nil(target_type)) {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ break;
+ }
+ }
+ break;
+
+ case Type_Vector: {
+ Type *elem = base_vector_type(t);
+ if (check_is_assignable_to(c, operand, elem)) {
+ operand->mode = Addressing_Value;
+ } else {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ } break;
+
+
+ default:
+ if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ target_type = t_untyped_nil;
+ break;
+ }
+
+ operand->type = target_type;
+ update_expr_type(c, operand->expr, target_type, true);
+}
+
+bool check_index_value(Checker *c, bool open_range, AstNode *index_value, i64 max_count, i64 *value) {
+ Operand operand = {Addressing_Invalid};
+ check_expr(c, &operand, index_value);
+ if (operand.mode == Addressing_Invalid) {
+ if (value) *value = 0;
+ return false;
+ }
+
+ convert_to_typed(c, &operand, t_int, 0);
+ if (operand.mode == Addressing_Invalid) {
+ if (value) *value = 0;
+ return false;
+ }
+
+ if (!is_type_integer(operand.type)) {
+ gbString expr_str = expr_to_string(operand.expr);
+ error_node(operand.expr, "Index `%s` must be an integer", expr_str);
+ gb_string_free(expr_str);
+ if (value) *value = 0;
+ return false;
+ }
+
+ if (operand.mode == Addressing_Constant &&
+ (c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) {
+ i64 i = i128_to_i64(exact_value_to_integer(operand.value).value_integer);
+ if (i < 0) {
+ gbString expr_str = expr_to_string(operand.expr);
+ error_node(operand.expr, "Index `%s` cannot be a negative value", expr_str);
+ gb_string_free(expr_str);
+ if (value) *value = 0;
+ return false;
+ }
+
+ if (max_count >= 0) { // NOTE(bill): Do array bound checking
+ if (value) *value = i;
+ bool out_of_bounds = false;
+ if (open_range) {
+ out_of_bounds = i >= max_count;
+ } else {
+ out_of_bounds = i > max_count;
+ }
+ if (out_of_bounds) {
+ gbString expr_str = expr_to_string(operand.expr);
+ error_node(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count);
+ gb_string_free(expr_str);
+ return false;
+ }
+
+
+ return true;
+ }
+ }
+
+ // NOTE(bill): It's alright :D
+ if (value) *value = -1;
+ return true;
+}
+
+isize entity_overload_count(Scope *s, String name) {
+ Entity *e = scope_lookup_entity(s, name);
+ if (e == NULL) {
+ return 0;
+ }
+ if (e->kind == Entity_Procedure) {
+ // NOTE(bill): Overloads are only allowed with the same scope
+ return multi_map_count(&s->elements, hash_string(e->token.string));
+ }
+ return 1;
+}
+
+bool check_is_field_exported(Checker *c, Entity *field) {
+ if (field == NULL) {
+ // NOTE(bill): Just incase
+ return true;
+ }
+ if (field->kind != Entity_Variable) {
+ return true;
+ }
+ Scope *file_scope = field->scope;
+ if (file_scope == NULL) {
+ return true;
+ }
+ while (!file_scope->is_file) {
+ file_scope = file_scope->parent;
+ }
+ if (!is_entity_exported(field) && file_scope != c->context.file_scope) {
+ return false;
+ }
+ return true;
+}
+
+Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) {
+ ast_node(se, SelectorExpr, node);
+
+ bool check_op_expr = true;
+ Entity *expr_entity = NULL;
+ Entity *entity = NULL;
+ Selection sel = {}; // NOTE(bill): Not used if it's an import name
+
+ operand->expr = node;
+
+ AstNode *op_expr = se->expr;
+ AstNode *selector = unparen_expr(se->selector);
+ if (selector == NULL) {
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) {
+ // if (selector->kind != AstNode_Ident) {
+ error_node(selector, "Illegal selector kind: `%.*s`", LIT(ast_node_strings[selector->kind]));
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ if (op_expr->kind == AstNode_Ident) {
+ String op_name = op_expr->Ident.string;
+ Entity *e = scope_lookup_entity(c->context.scope, op_name);
+
+ add_entity_use(c, op_expr, e);
+ expr_entity = e;
+
+ Entity *original_e = e;
+ if (e != NULL && e->kind == Entity_ImportName && selector->kind == AstNode_Ident) {
+ // IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile
+ // It pretty much needs to be in this order and this way
+ // If you can clean this up, please do but be really careful
+ String import_name = op_name;
+ Scope *import_scope = e->ImportName.scope;
+ String entity_name = selector->Ident.string;
+
+ check_op_expr = false;
+ entity = scope_lookup_entity(import_scope, entity_name);
+ bool is_declared = entity != NULL;
+ if (is_declared) {
+ if (entity->kind == Entity_Builtin) {
+ // NOTE(bill): Builtin's are in the universe scope which is part of every scopes hierarchy
+ // This means that we should just ignore the found result through it
+ is_declared = false;
+ } else if (entity->scope->is_global && !import_scope->is_global) {
+ is_declared = false;
+ }
+ }
+ if (!is_declared) {
+ error_node(op_expr, "`%.*s` is not declared by `%.*s`", LIT(entity_name), LIT(import_name));
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+ check_entity_decl(c, entity, NULL, NULL);
+ GB_ASSERT(entity->type != NULL);
+
+ isize overload_count = entity_overload_count(import_scope, entity_name);
+ bool is_overloaded = overload_count > 1;
+
+ bool implicit_is_found = map_get(&e->ImportName.scope->implicit, hash_pointer(entity)) != NULL;
+ bool is_not_exported = !is_entity_exported(entity);
+ if (!implicit_is_found) {
+ is_not_exported = false;
+ } else if (entity->kind == Entity_ImportName) {
+ is_not_exported = true;
+ }
+
+ if (is_not_exported) {
+ gbString sel_str = expr_to_string(selector);
+ error_node(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(import_name));
+ gb_string_free(sel_str);
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ if (is_overloaded) {
+ HashKey key = hash_string(entity_name);
+ bool skip = false;
+
+ Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count);
+ multi_map_get_all(&import_scope->elements, key, procs);
+
+ for (isize i = 0; i < overload_count; i++) {
+ Type *t = base_type(procs[i]->type);
+ if (t == t_invalid) {
+ continue;
+ }
+
+ // NOTE(bill): Check to see if it's imported
+ if (map_get(&import_scope->implicit, hash_pointer(procs[i]))) {
+ gb_swap(Entity *, procs[i], procs[overload_count-1]);
+ overload_count--;
+ i--; // NOTE(bill): Counteract the post event
+ continue;
+ }
+
+ Operand x = {};
+ x.mode = Addressing_Value;
+ x.type = t;
+ if (type_hint != NULL) {
+ if (check_is_assignable_to(c, &x, type_hint)) {
+ entity = procs[i];
+ skip = true;
+ break;
+ }
+ }
+ }
+
+ if (overload_count > 0 && !skip) {
+ operand->mode = Addressing_Overload;
+ operand->type = t_invalid;
+ operand->expr = node;
+ operand->overload_count = overload_count;
+ operand->overload_entities = procs;
+ return procs[0];
+ }
+ }
+ }
+ }
+
+ if (check_op_expr) {
+ check_expr_base(c, operand, op_expr, NULL);
+ if (operand->mode == Addressing_Invalid) {
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+ }
+
+
+ if (entity == NULL && selector->kind == AstNode_Ident) {
+ String field_name = selector->Ident.string;
+ sel = lookup_field(c->allocator, operand->type, field_name, operand->mode == Addressing_Type);
+
+ if (operand->mode != Addressing_Type && !check_is_field_exported(c, sel.entity)) {
+ error_node(op_expr, "`%.*s` is an unexported field", LIT(field_name));
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+ entity = sel.entity;
+
+ // NOTE(bill): Add type info needed for fields like `names`
+ if (entity != NULL && (entity->flags&EntityFlag_TypeField)) {
+ add_type_info_type(c, operand->type);
+ }
+ }
+ if (entity == NULL && selector->kind == AstNode_BasicLit) {
+ if (is_type_struct(operand->type) || is_type_tuple(operand->type)) {
+ Type *type = base_type(operand->type);
+ Operand o = {};
+ check_expr(c, &o, selector);
+ if (o.mode != Addressing_Constant ||
+ !is_type_integer(o.type)) {
+ error_node(op_expr, "Indexed based selectors must be a constant integer %s");
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+ i64 index = i128_to_i64(o.value.value_integer);
+ if (index < 0) {
+ error_node(o.expr, "Index %lld cannot be a negative value", index);
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ i64 max_count = 0;
+ switch (type->kind) {
+ case Type_Record: max_count = type->Record.field_count; break;
+ case Type_Tuple: max_count = type->Tuple.variable_count; break;
+ }
+
+ if (index >= max_count) {
+ error_node(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count);
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ sel = lookup_field_from_index(heap_allocator(), type, index);
+ entity = sel.entity;
+
+ GB_ASSERT(entity != NULL);
+
+ } else {
+ error_node(op_expr, "Indexed based selectors may only be used on structs or tuples");
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+ }
+
+ if (entity == NULL &&
+ operand->type != NULL && is_type_untyped(operand->type) && is_type_string(operand->type)) {
+ String s = operand->value.value_string;
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(s.len);
+ operand->type = t_untyped_integer;
+ return NULL;
+ }
+
+ if (entity == NULL) {
+ gbString op_str = expr_to_string(op_expr);
+ gbString type_str = type_to_string(operand->type);
+ gbString sel_str = expr_to_string(selector);
+ error_node(op_expr, "`%s` of type `%s` has no field `%s`", op_str, type_str, sel_str);
+ gb_string_free(sel_str);
+ gb_string_free(type_str);
+ gb_string_free(op_str);
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+ if (expr_entity != NULL && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) {
+ gbString op_str = expr_to_string(op_expr);
+ gbString type_str = type_to_string(operand->type);
+ gbString sel_str = expr_to_string(selector);
+ error_node(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str);
+ gb_string_free(sel_str);
+ gb_string_free(type_str);
+ gb_string_free(op_str);
+ operand->mode = Addressing_Invalid;
+ operand->expr = node;
+ return NULL;
+ }
+
+
+
+ add_entity_use(c, selector, entity);
+
+ switch (entity->kind) {
+ case Entity_Constant:
+ operand->mode = Addressing_Constant;
+ operand->value = entity->Constant.value;
+ break;
+ case Entity_Variable:
+ // TODO(bill): Is this the rule I need?
+ if (operand->mode == Addressing_Immutable) {
+ // Okay
+ } else if (sel.indirect || operand->mode != Addressing_Value) {
+ operand->mode = Addressing_Variable;
+ } else {
+ operand->mode = Addressing_Value;
+ }
+ break;
+ case Entity_TypeAlias:
+ case Entity_TypeName:
+ operand->mode = Addressing_Type;
+ break;
+ case Entity_Procedure:
+ operand->mode = Addressing_Value;
+ break;
+ case Entity_Builtin:
+ operand->mode = Addressing_Builtin;
+ operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id;
+ break;
+
+ // NOTE(bill): These cases should never be hit but are here for sanity reasons
+ case Entity_Nil:
+ operand->mode = Addressing_Value;
+ break;
+ }
+
+ operand->type = entity->type;
+ operand->expr = node;
+
+ return entity;
+}
+
+bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) {
+ GB_ASSERT(call->kind == AstNode_CallExpr);
+ ast_node(ce, CallExpr, call);
+ BuiltinProc *bp = &builtin_procs[id];
+ {
+ char *err = NULL;
+ if (ce->args.count < bp->arg_count) {
+ err = "Too few";
+ } else if (ce->args.count > bp->arg_count && !bp->variadic) {
+ err = "Too many";
+ }
+
+ if (err != NULL) {
+ gbString expr = expr_to_string(ce->proc);
+ error(ce->close, "%s arguments for `%s`, expected %td, got %td",
+ err, expr,
+ bp->arg_count, ce->args.count);
+ gb_string_free(expr);
+ return false;
+ }
+ }
+
+ if (ce->args.count > 0) {
+ if (ce->args[0]->kind == AstNode_FieldValue) {
+ error_node(call, "`field = value` calling is not allowed on built-in procedures");
+ return false;
+ }
+ }
+
+
+ bool vari_expand = (ce->ellipsis.pos.line != 0);
+ if (vari_expand && id != BuiltinProc_append) {
+ error(ce->ellipsis, "Invalid use of `..` with built-in procedure `append`");
+ return false;
+ }
+
+
+ switch (id) {
+ case BuiltinProc_new:
+ case BuiltinProc_make:
+ case BuiltinProc_size_of:
+ case BuiltinProc_align_of:
+ case BuiltinProc_offset_of:
+ case BuiltinProc_type_info:
+ case BuiltinProc_transmute:
+ // NOTE(bill): The first arg may be a Type, this will be checked case by case
+ break;
+ default:
+ check_multi_expr(c, operand, ce->args[0]);
+ }
+
+ switch (id) {
+ default:
+ GB_PANIC("Implement built-in procedure: %.*s", LIT(builtin_procs[id].name));
+ break;
+
+ case BuiltinProc_len:
+ case BuiltinProc_cap: {
+ // len :: proc(Type) -> int
+ // cap :: proc(Type) -> int
+ Type *op_type = type_deref(operand->type);
+ Type *type = t_int;
+ AddressingMode mode = Addressing_Invalid;
+ ExactValue value = {};
+ if (is_type_string(op_type) && id == BuiltinProc_len) {
+ if (operand->mode == Addressing_Constant) {
+ mode = Addressing_Constant;
+ String str = operand->value.value_string;
+ value = exact_value_i64(str.len);
+ type = t_untyped_integer;
+ } else {
+ mode = Addressing_Value;
+ }
+ } else if (is_type_array(op_type)) {
+ Type *at = core_type(op_type);
+ mode = Addressing_Constant;
+ value = exact_value_i64(at->Array.count);
+ type = t_untyped_integer;
+ } else if (is_type_vector(op_type) && id == BuiltinProc_len) {
+ Type *at = core_type(op_type);
+ mode = Addressing_Constant;
+ value = exact_value_i64(at->Vector.count);
+ type = t_untyped_integer;
+ } else if (is_type_slice(op_type)) {
+ mode = Addressing_Value;
+ } else if (is_type_dynamic_array(op_type)) {
+ mode = Addressing_Value;
+ } else if (is_type_map(op_type)) {
+ mode = Addressing_Value;
+ }
+
+ if (mode == Addressing_Invalid) {
+ String name = builtin_procs[id].name;
+ gbString t = type_to_string(operand->type);
+ error_node(call, "`%.*s` is not supported for `%s`", LIT(name), t);
+ return false;
+ }
+
+ operand->mode = mode;
+ operand->value = value;
+ operand->type = type;
+ } break;
+
+ case BuiltinProc_new: {
+ // new :: proc(Type) -> ^Type
+ Operand op = {};
+ check_expr_or_type(c, &op, ce->args[0]);
+ Type *type = op.type;
+ if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `new`");
+ return false;
+ }
+ operand->mode = Addressing_Value;
+ operand->type = make_type_pointer(c->allocator, type);
+ } break;
+ #if 0
+ case BuiltinProc_new_slice: {
+ // new_slice :: proc(Type, len: int) -> []Type
+ // new_slice :: proc(Type, len, cap: int) -> []Type
+ Operand op = {};
+ check_expr_or_type(c, &op, ce->args[0]);
+ Type *type = op.type;
+ if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `new_slice`");
+ return false;
+ }
+
+ isize arg_count = ce->args.count;
+ if (arg_count < 2 || 3 < arg_count) {
+ error_node(ce->args[0], "`new_slice` expects 2 or 3 arguments, found %td", arg_count);
+ // NOTE(bill): Return the correct type to reduce errors
+ } else {
+ // If any are constant
+ i64 sizes[2] = {};
+ isize size_count = 0;
+ for (isize i = 1; i < arg_count; i++) {
+ i64 val = 0;
+ bool ok = check_index_value(c, ce->args[i], -1, &val);
+ if (ok && val >= 0) {
+ GB_ASSERT(size_count < gb_count_of(sizes));
+ sizes[size_count++] = val;
+ }
+ }
+
+ if (size_count == 2 && sizes[0] > sizes[1]) {
+ error_node(ce->args[1], "`new_slice` count and capacity are swapped");
+ // No need quit
+ }
+ }
+
+ operand->mode = Addressing_Value;
+ operand->type = make_type_slice(c->allocator, type);
+ } break;
+ #endif
+ case BuiltinProc_make: {
+ // make :: proc(Type, len: int) -> Type
+ // make :: proc(Type, len, cap: int) -> Type
+ Operand op = {};
+ check_expr_or_type(c, &op, ce->args[0]);
+ Type *type = op.type;
+ if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `make`");
+ return false;
+ }
+
+ isize min_args = 0;
+ isize max_args = 1;
+ if (is_type_slice(type)) {
+ min_args = 2;
+ max_args = 3;
+ } else if (is_type_dynamic_map(type)) {
+ min_args = 1;
+ max_args = 2;
+ } else if (is_type_dynamic_array(type)) {
+ min_args = 1;
+ max_args = 3;
+ } else {
+ gbString str = type_to_string(type);
+ error_node(call, "Cannot `make` %s; type must be a slice, map, or dynamic array", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ isize arg_count = ce->args.count;
+ if (arg_count < min_args || max_args < arg_count) {
+ error_node(ce->args[0], "`make` expects %td or %d argument, found %td", min_args, max_args, arg_count);
+ return false;
+ }
+
+ // If any are constant
+ i64 sizes[4] = {};
+ isize size_count = 0;
+ for (isize i = 1; i < arg_count; i++) {
+ i64 val = 0;
+ bool ok = check_index_value(c, false, ce->args[i], -1, &val);
+ if (ok && val >= 0) {
+ GB_ASSERT(size_count < gb_count_of(sizes));
+ sizes[size_count++] = val;
+ }
+ }
+
+ if (size_count == 2 && sizes[0] > sizes[1]) {
+ error_node(ce->args[1], "`make` count and capacity are swapped");
+ // No need quit
+ }
+
+ operand->mode = Addressing_Value;
+ operand->type = type;
+ } break;
+
+ case BuiltinProc_free: {
+ // free :: proc(^Type)
+ // free :: proc([]Type)
+ // free :: proc(string)
+ // free :: proc(map[K]T)
+ Type *type = operand->type;
+ bool ok = false;
+ if (is_type_pointer(type)) {
+ ok = true;
+ } else if (is_type_slice(type)) {
+ ok = true;
+ } else if (is_type_string(type)) {
+ ok = true;
+ } else if (is_type_dynamic_array(type)) {
+ ok = true;
+ } else if (is_type_dynamic_map(type)) {
+ ok = true;
+ }
+
+ if (!ok) {
+ gbString type_str = type_to_string(type);
+ error_node(operand->expr, "Invalid type for `free`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+
+ operand->mode = Addressing_NoValue;
+ } break;
+
+
+ case BuiltinProc_reserve: {
+ // reserve :: proc([dynamic]Type, count: int) {
+ // reserve :: proc(map[Key]Type, count: int) {
+ Type *type = operand->type;
+ if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) {
+ gbString str = type_to_string(type);
+ error_node(operand->expr, "Expected a dynamic array or dynamic map, got `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ AstNode *capacity = ce->args[1];
+ Operand op = {};
+ check_expr(c, &op, capacity);
+ if (op.mode == Addressing_Invalid) {
+ return false;
+ }
+ Type *arg_type = base_type(op.type);
+ if (!is_type_integer(arg_type)) {
+ error_node(operand->expr, "`reserve` capacities must be an integer");
+ return false;
+ }
+
+ operand->type = NULL;
+ operand->mode = Addressing_NoValue;
+ } break;
+
+ case BuiltinProc_clear: {
+ Type *type = operand->type;
+ bool is_pointer = is_type_pointer(type);
+ type = base_type(type_deref(type));
+ if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) {
+ gbString str = type_to_string(type);
+ error_node(operand->expr, "Invalid type for `clear`, got `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ operand->type = NULL;
+ operand->mode = Addressing_NoValue;
+ } break;
+
+ case BuiltinProc_append: {
+ // append :: proc([dynamic]Type, item: ..Type)
+ // append :: proc([]Type, item: ..Type)
+ Operand prev_operand = *operand;
+
+ Type *type = operand->type;
+ bool is_pointer = is_type_pointer(type);
+ type = base_type(type_deref(type));
+ if (!is_type_dynamic_array(type) && !is_type_slice(type)) {
+ gbString str = type_to_string(type);
+ error_node(operand->expr, "Expected a slice or dynamic array, got `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ bool is_addressable = operand->mode == Addressing_Variable;
+ if (is_pointer) {
+ is_addressable = true;
+ }
+ if (!is_addressable) {
+ error_node(operand->expr, "`append` can only operate on addressable values");
+ return false;
+ }
+
+ Type *elem = NULL;
+ if (is_type_dynamic_array(type)) {
+ elem = type->DynamicArray.elem;
+ } else {
+ elem = type->Slice.elem;
+ }
+ Type *slice_elem = make_type_slice(c->allocator, elem);
+
+ Type *proc_type_params = make_type_tuple(c->allocator);
+ proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2);
+ proc_type_params->Tuple.variable_count = 2;
+ proc_type_params->Tuple.variables[0] = make_entity_param(c->allocator, NULL, blank_token, operand->type, false, false);
+ proc_type_params->Tuple.variables[1] = make_entity_param(c->allocator, NULL, blank_token, slice_elem, false, false);
+ Type *proc_type = make_type_proc(c->allocator, NULL, proc_type_params, 2, NULL, false, true, ProcCC_Odin);
+
+ check_call_arguments(c, &prev_operand, proc_type, call);
+
+ if (prev_operand.mode == Addressing_Invalid) {
+ return false;
+ }
+ operand->mode = Addressing_Value;
+ operand->type = t_int;
+ } break;
+
+ case BuiltinProc_delete: {
+ // delete :: proc(map[Key]Value, key: Key)
+ Type *type = operand->type;
+ if (!is_type_map(type)) {
+ gbString str = type_to_string(type);
+ error_node(operand->expr, "Expected a map, got `%s`", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ Type *key = base_type(type)->Map.key;
+ Operand x = {Addressing_Invalid};
+ AstNode *key_node = ce->args[1];
+ Operand op = {};
+ check_expr(c, &op, key_node);
+ if (op.mode == Addressing_Invalid) {
+ return false;
+ }
+
+ if (!check_is_assignable_to(c, &op, key)) {
+ gbString kt = type_to_string(key);
+ gbString ot = type_to_string(op.type);
+ error_node(operand->expr, "Expected a key of type `%s`, got `%s`", key, ot);
+ gb_string_free(ot);
+ gb_string_free(kt);
+ return false;
+ }
+
+ operand->mode = Addressing_NoValue;
+ } break;
+
+
+ case BuiltinProc_size_of: {
+ // size_of :: proc(Type) -> untyped int
+ Type *type = check_type(c, ce->args[0]);
+ if (type == NULL || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `size_of`");
+ return false;
+ }
+
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(type_size_of(c->allocator, type));
+ operand->type = t_untyped_integer;
+
+ } break;
+
+ case BuiltinProc_size_of_val:
+ // size_of_val :: proc(val: Type) -> untyped int
+ check_assignment(c, operand, NULL, str_lit("argument of `size_of_val`"));
+ if (operand->mode == Addressing_Invalid) {
+ return false;
+ }
+
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(type_size_of(c->allocator, operand->type));
+ operand->type = t_untyped_integer;
+ break;
+
+ case BuiltinProc_align_of: {
+ // align_of :: proc(Type) -> untyped int
+ Type *type = check_type(c, ce->args[0]);
+ if (type == NULL || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `align_of`");
+ return false;
+ }
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(type_align_of(c->allocator, type));
+ operand->type = t_untyped_integer;
+ } break;
+
+ case BuiltinProc_align_of_val:
+ // align_of_val :: proc(val: Type) -> untyped int
+ check_assignment(c, operand, NULL, str_lit("argument of `align_of_val`"));
+ if (operand->mode == Addressing_Invalid) {
+ return false;
+ }
+
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(type_align_of(c->allocator, operand->type));
+ operand->type = t_untyped_integer;
+ break;
+
+ case BuiltinProc_offset_of: {
+ // offset_of :: proc(Type, field) -> untyped int
+ Operand op = {};
+ Type *bt = check_type(c, ce->args[0]);
+ Type *type = base_type(bt);
+ if (type == NULL || type == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `offset_of`");
+ return false;
+ }
+
+ AstNode *field_arg = unparen_expr(ce->args[1]);
+ if (field_arg == NULL ||
+ field_arg->kind != AstNode_Ident) {
+ error_node(field_arg, "Expected an identifier for field argument");
+ return false;
+ }
+ if (is_type_array(type) || is_type_vector(type)) {
+ error_node(field_arg, "Invalid type for `offset_of`");
+ return false;
+ }
+
+
+ ast_node(arg, Ident, field_arg);
+ Selection sel = lookup_field(c->allocator, type, arg->string, operand->mode == Addressing_Type);
+ if (sel.entity == NULL) {
+ gbString type_str = type_to_string(bt);
+ error_node(ce->args[0],
+ "`%s` has no field named `%.*s`", type_str, LIT(arg->string));
+ gb_string_free(type_str);
+ return false;
+ }
+ if (sel.indirect) {
+ gbString type_str = type_to_string(bt);
+ error_node(ce->args[0],
+ "Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->string), type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ operand->mode = Addressing_Constant;
+ operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel));
+ operand->type = t_untyped_integer;
+ } break;
+
+ case BuiltinProc_offset_of_val: {
+ // offset_of_val :: proc(val: expression) -> untyped int
+ AstNode *arg = unparen_expr(ce->args[0]);
+ if (arg->kind != AstNode_SelectorExpr) {
+ gbString str = expr_to_string(arg);
+ error_node(arg, "`%s` is not a selector expression", str);
+ return false;
+ }
+ ast_node(s, SelectorExpr, arg);
+
+ check_expr(c, operand, s->expr);
+ if (operand->mode == Addressing_Invalid) {
+ return false;
+ }
+
+ Type *type = operand->type;
+ if (base_type(type)->kind == Type_Pointer) {
+ Type *p = base_type(type);
+ if (is_type_struct(p)) {
+ type = p->Pointer.elem;
+ }
+ }
+ if (is_type_array(type) || is_type_vector(type)) {
+ error_node(arg, "Invalid type for `offset_of_val`");
+ return false;
+ }
+
+ ast_node(i, Ident, s->selector);
+ Selection sel = lookup_field(c->allocator, type, i->string, operand->mode == Addressing_Type);
+ if (sel.entity == NULL) {
+ gbString type_str = type_to_string(type);
+ error_node(arg,
+ "`%s` has no field named `%.*s`", type_str, LIT(i->string));
+ return false;
+ }
+ if (sel.indirect) {
+ gbString type_str = type_to_string(type);
+ error_node(ce->args[0],
+ "Field `%.*s` is embedded via a pointer in `%s`", LIT(i->string), type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ operand->mode = Addressing_Constant;
+ // IMPORTANT TODO(bill): Fix for anonymous fields
+ operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel));
+ operand->type = t_untyped_integer;
+ } break;
+
+ case BuiltinProc_type_of_val:
+ // type_of_val :: proc(val: Type) -> type(Type)
+ check_assignment(c, operand, NULL, str_lit("argument of `type_of_val`"));
+ if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) {
+ return false;
+ }
+ if (operand->type == NULL || operand->type == t_invalid) {
+ error_node(operand->expr, "Invalid argument to `type_of_val`");
+ return false;
+ }
+ operand->mode = Addressing_Type;
+ break;
+
+
+ case BuiltinProc_type_info: {
+ // type_info :: proc(Type) -> ^Type_Info
+ if (c->context.scope->is_global) {
+ compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
+ }
+
+ // NOTE(bill): The type information may not be setup yet
+ init_preload(c);
+ AstNode *expr = ce->args[0];
+ Type *type = check_type(c, expr);
+ if (type == NULL || type == t_invalid) {
+ error_node(expr, "Invalid argument to `type_info`");
+ return false;
+ }
+
+ add_type_info_type(c, type);
+
+ operand->mode = Addressing_Value;
+ operand->type = t_type_info_ptr;
+ } break;
+
+ case BuiltinProc_type_info_of_val: {
+ // type_info_of_val :: proc(val: Type) -> ^Type_Info
+ if (c->context.scope->is_global) {
+ compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works");
+ }
+
+ // NOTE(bill): The type information may not be setup yet
+ init_preload(c);
+ AstNode *expr = ce->args[0];
+ check_assignment(c, operand, NULL, str_lit("argument of `type_info_of_val`"));
+ if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin)
+ return false;
+ add_type_info_type(c, operand->type);
+
+ operand->mode = Addressing_Value;
+ operand->type = t_type_info_ptr;
+ } break;
+
+ case BuiltinProc_compile_assert:
+ // compile_assert :: proc(cond: bool) -> bool
+
+ if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) {
+ gbString str = expr_to_string(ce->args[0]);
+ error_node(call, "`%s` is not a constant boolean", str);
+ gb_string_free(str);
+ return false;
+ }
+ if (!operand->value.value_bool) {
+ gbString str = expr_to_string(ce->args[0]);
+ error_node(call, "Compile time assertion: `%s`", str);
+ gb_string_free(str);
+ }
+
+ operand->mode = Addressing_Constant;
+ operand->type = t_untyped_bool;
+ break;
+
+ case BuiltinProc_assert:
+ // assert :: proc(cond: bool) -> bool
+
+ if (!is_type_boolean(operand->type)) {
+ gbString str = expr_to_string(ce->args[0]);
+ error_node(call, "`%s` is not a boolean", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ operand->mode = Addressing_Value;
+ operand->type = t_untyped_bool;
+ break;
+
+ case BuiltinProc_panic:
+ // panic :: proc(msg: string)
+
+ if (!is_type_string(operand->type)) {
+ gbString str = expr_to_string(ce->args[0]);
+ error_node(call, "`%s` is not a string", str);
+ gb_string_free(str);
+ return false;
+ }
+
+ operand->mode = Addressing_NoValue;
+ break;
+
+ case BuiltinProc_copy: {
+ // copy :: proc(x, y: []Type) -> int
+ Type *dest_type = NULL, *src_type = NULL;
+
+ Type *d = base_type(operand->type);
+ if (d->kind == Type_Slice) {
+ dest_type = d->Slice.elem;
+ }
+ Operand op = {};
+ check_expr(c, &op, ce->args[1]);
+ if (op.mode == Addressing_Invalid) {
+ return false;
+ }
+ Type *s = base_type(op.type);
+ if (s->kind == Type_Slice) {
+ src_type = s->Slice.elem;
+ }
+
+ if (dest_type == NULL || src_type == NULL) {
+ error_node(call, "`copy` only expects slices as arguments");
+ return false;
+ }
+
+ if (!are_types_identical(dest_type, src_type)) {
+ gbString d_arg = expr_to_string(ce->args[0]);
+ gbString s_arg = expr_to_string(ce->args[1]);
+ gbString d_str = type_to_string(dest_type);
+ gbString s_str = type_to_string(src_type);
+ error_node(call,
+ "Arguments to `copy`, %s, %s, have different elem types: %s vs %s",
+ d_arg, s_arg, d_str, s_str);
+ gb_string_free(s_str);
+ gb_string_free(d_str);
+ gb_string_free(s_arg);
+ gb_string_free(d_arg);
+ return false;
+ }
+
+ operand->type = t_int; // Returns number of elems copied
+ operand->mode = Addressing_Value;
+ } break;
+
+ case BuiltinProc_swizzle: {
+ // swizzle :: proc(v: {N}T, T..) -> {M}T
+ Type *vector_type = base_type(operand->type);
+ if (!is_type_vector(vector_type)) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call,
+ "You can only `swizzle` a vector, got `%s`",
+ type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ isize max_count = vector_type->Vector.count;
+ i128 max_count128 = i128_from_i64(max_count);
+ isize arg_count = 0;
+ for_array(i, ce->args) {
+ if (i == 0) {
+ continue;
+ }
+ AstNode *arg = ce->args[i];
+ Operand op = {};
+ check_expr(c, &op, arg);
+ if (op.mode == Addressing_Invalid) {
+ return false;
+ }
+ Type *arg_type = base_type(op.type);
+ if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) {
+ error_node(op.expr, "Indices to `swizzle` must be constant integers");
+ return false;
+ }
+
+ if (i128_lt(op.value.value_integer, I128_ZERO)) {
+ error_node(op.expr, "Negative `swizzle` index");
+ return false;
+ }
+
+ if (i128_le(max_count128, op.value.value_integer)) {
+ error_node(op.expr, "`swizzle` index exceeds vector length");
+ return false;
+ }
+
+ arg_count++;
+ }
+
+ if (arg_count > max_count) {
+ error_node(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count);
+ return false;
+ }
+
+ Type *elem_type = vector_type->Vector.elem;
+ operand->type = make_type_vector(c->allocator, elem_type, arg_count);
+ operand->mode = Addressing_Value;
+ } break;
+
+ case BuiltinProc_complex: {
+ // complex :: proc(real, imag: float_type) -> complex_type
+ Operand x = *operand;
+ Operand y = {};
+
+ // NOTE(bill): Invalid will be the default till fixed
+ operand->type = t_invalid;
+ operand->mode = Addressing_Invalid;
+
+ check_expr(c, &y, ce->args[1]);
+ if (y.mode == Addressing_Invalid) {
+ return false;
+ }
+
+ convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false;
+ convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false;
+ if (x.mode == Addressing_Constant &&
+ y.mode == Addressing_Constant) {
+ if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) {
+ x.type = t_untyped_float;
+ }
+ if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) {
+ y.type = t_untyped_float;
+ }
+ }
+
+ if (!are_types_identical(x.type, y.type)) {
+ gbString tx = type_to_string(x.type);
+ gbString ty = type_to_string(y.type);
+ error_node(call, "Mismatched types to `complex`, `%s` vs `%s`", tx, ty);
+ gb_string_free(ty);
+ gb_string_free(tx);
+ return false;
+ }
+
+ if (!is_type_float(x.type)) {
+ gbString s = type_to_string(x.type);
+ error_node(call, "Arguments have type `%s`, expected a floating point", s);
+ gb_string_free(s);
+ return false;
+ }
+
+ if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) {
+ operand->value = exact_binary_operator_value(Token_Add, x.value, y.value);
+ operand->mode = Addressing_Constant;
+ } else {
+ operand->mode = Addressing_Value;
+ }
+
+ BasicKind kind = core_type(x.type)->Basic.kind;
+ switch (kind) {
+ // case Basic_f16: operand->type = t_complex32; break;
+ case Basic_f32: operand->type = t_complex64; break;
+ case Basic_f64: operand->type = t_complex128; break;
+ case Basic_UntypedFloat: operand->type = t_untyped_complex; break;
+ default: GB_PANIC("Invalid type"); break;
+ }
+ } break;
+
+ case BuiltinProc_real:
+ case BuiltinProc_imag: {
+ // real :: proc(x: type) -> float_type
+ // imag :: proc(x: type) -> float_type
+
+ Operand *x = operand;
+ if (is_type_untyped(x->type)) {
+ if (x->mode == Addressing_Constant) {
+ if (is_type_numeric(x->type)) {
+ x->type = t_untyped_complex;
+ }
+ } else {
+ convert_to_typed(c, x, t_complex128, 0);
+ if (x->mode == Addressing_Invalid) {
+ return false;
+ }
+ }
+ }
+
+ if (!is_type_complex(x->type)) {
+ gbString s = type_to_string(x->type);
+ error_node(call, "Argument has type `%s`, expected a complex type", s);
+ gb_string_free(s);
+ return false;
+ }
+
+ if (x->mode == Addressing_Constant) {
+ switch (id) {
+ case BuiltinProc_real: x->value = exact_value_real(x->value); break;
+ case BuiltinProc_imag: x->value = exact_value_imag(x->value); break;
+ }
+ } else {
+ x->mode = Addressing_Value;
+ }
+
+ BasicKind kind = core_type(x->type)->Basic.kind;
+ switch (kind) {
+ case Basic_complex64: x->type = t_f32; break;
+ case Basic_complex128: x->type = t_f64; break;
+ case Basic_UntypedComplex: x->type = t_untyped_float; break;
+ default: GB_PANIC("Invalid type"); break;
+ }
+ } break;
+
+ case BuiltinProc_conj: {
+ // conj :: proc(x: type) -> type
+ Operand *x = operand;
+ if (is_type_complex(x->type)) {
+ if (x->mode == Addressing_Constant) {
+ ExactValue v = exact_value_to_complex(x->value);
+ f64 r = v.value_complex.real;
+ f64 i = v.value_complex.imag;
+ x->value = exact_value_complex(r, i);
+ x->mode = Addressing_Constant;
+ } else {
+ x->mode = Addressing_Value;
+ }
+ } else {
+ gbString s = type_to_string(x->type);
+ error_node(call, "Expected a complex or quaternion, got `%s`", s);
+ gb_string_free(s);
+ return false;
+ }
+
+ } break;
+
+ case BuiltinProc_slice_ptr: {
+ // slice_ptr :: proc(a: ^T, len: int) -> []T
+ // slice_ptr :: proc(a: ^T, len, cap: int) -> []T
+ // ^T cannot be rawptr
+ Type *ptr_type = base_type(operand->type);
+ if (!is_type_pointer(ptr_type)) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call, "Expected a pointer to `slice_ptr`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ if (ptr_type == t_rawptr) {
+ error_node(call, "`rawptr` cannot have pointer arithmetic");
+ return false;
+ }
+
+ isize arg_count = ce->args.count;
+ if (arg_count < 2 || 3 < arg_count) {
+ error_node(ce->args[0], "`slice_ptr` expects 2 or 3 arguments, found %td", arg_count);
+ // NOTE(bill): Return the correct type to reduce errors
+ } else {
+ // If any are constant
+ i64 sizes[2] = {};
+ isize size_count = 0;
+ for (isize i = 1; i < arg_count; i++) {
+ i64 val = 0;
+ bool ok = check_index_value(c, false, ce->args[i], -1, &val);
+ if (ok && val >= 0) {
+ GB_ASSERT(size_count < gb_count_of(sizes));
+ sizes[size_count++] = val;
+ }
+ }
+
+ if (size_count == 2 && sizes[0] > sizes[1]) {
+ error_node(ce->args[1], "`slice_ptr` count and capacity are swapped");
+ // No need quit
+ }
+ }
+ operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem);
+ operand->mode = Addressing_Value;
+ } break;
+
+ case BuiltinProc_slice_to_bytes: {
+ // slice_to_bytes :: proc(a: []T) -> []u8
+ Type *slice_type = base_type(operand->type);
+ if (!is_type_slice(slice_type)) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call, "Expected a slice type, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ operand->type = t_u8_slice;
+ operand->mode = Addressing_Value;
+ } break;
+
+ case BuiltinProc_min: {
+ // min :: proc(a, b: ordered) -> ordered
+ Type *type = base_type(operand->type);
+ if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call, "Expected a ordered numeric type to `min`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ AstNode *other_arg = ce->args[1];
+ Operand a = *operand;
+ Operand b = {};
+ check_expr(c, &b, other_arg);
+ if (b.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
+ gbString type_str = type_to_string(b.type);
+ error_node(call,
+ "Expected a ordered numeric type to `min`, got `%s`",
+ type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ if (a.mode == Addressing_Constant &&
+ b.mode == Addressing_Constant) {
+ ExactValue x = a.value;
+ ExactValue y = b.value;
+
+ operand->mode = Addressing_Constant;
+ if (compare_exact_values(Token_Lt, x, y)) {
+ operand->value = x;
+ operand->type = a.type;
+ } else {
+ operand->value = y;
+ operand->type = b.type;
+ }
+ } else {
+ operand->mode = Addressing_Value;
+ operand->type = type;
+
+ convert_to_typed(c, &a, b.type, 0);
+ if (a.mode == Addressing_Invalid) {
+ return false;
+ }
+ convert_to_typed(c, &b, a.type, 0);
+ if (b.mode == Addressing_Invalid) {
+ return false;
+ }
+
+ if (!are_types_identical(a.type, b.type)) {
+ gbString type_a = type_to_string(a.type);
+ gbString type_b = type_to_string(b.type);
+ error_node(call,
+ "Mismatched types to `min`, `%s` vs `%s`",
+ type_a, type_b);
+ gb_string_free(type_b);
+ gb_string_free(type_a);
+ return false;
+ }
+ }
+
+ } break;
+
+ case BuiltinProc_max: {
+ // min :: proc(a, b: ordered) -> ordered
+ Type *type = base_type(operand->type);
+ if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call,
+ "Expected a ordered numeric or string type to `max`, got `%s`",
+ type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ AstNode *other_arg = ce->args[1];
+ Operand a = *operand;
+ Operand b = {};
+ check_expr(c, &b, other_arg);
+ if (b.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) {
+ gbString type_str = type_to_string(b.type);
+ error_node(call,
+ "Expected a ordered numeric or string type to `max`, got `%s`",
+ type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ if (a.mode == Addressing_Constant &&
+ b.mode == Addressing_Constant) {
+ ExactValue x = a.value;
+ ExactValue y = b.value;
+
+ operand->mode = Addressing_Constant;
+ if (compare_exact_values(Token_Gt, x, y)) {
+ operand->value = x;
+ operand->type = a.type;
+ } else {
+ operand->value = y;
+ operand->type = b.type;
+ }
+ } else {
+ operand->mode = Addressing_Value;
+ operand->type = type;
+
+ convert_to_typed(c, &a, b.type, 0);
+ if (a.mode == Addressing_Invalid) {
+ return false;
+ }
+ convert_to_typed(c, &b, a.type, 0);
+ if (b.mode == Addressing_Invalid) {
+ return false;
+ }
+
+ if (!are_types_identical(a.type, b.type)) {
+ gbString type_a = type_to_string(a.type);
+ gbString type_b = type_to_string(b.type);
+ error_node(call,
+ "Mismatched types to `max`, `%s` vs `%s`",
+ type_a, type_b);
+ gb_string_free(type_b);
+ gb_string_free(type_a);
+ return false;
+ }
+ }
+
+ } break;
+
+ case BuiltinProc_abs: {
+ // abs :: proc(n: numeric) -> numeric
+ if (!is_type_numeric(operand->type) && !is_type_vector(operand->type)) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call, "Expected a numeric type to `abs`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ if (operand->mode == Addressing_Constant) {
+ switch (operand->value.kind) {
+ case ExactValue_Integer:
+ operand->value.value_integer = i128_abs(operand->value.value_integer);
+ break;
+ case ExactValue_Float:
+ operand->value.value_float = gb_abs(operand->value.value_float);
+ break;
+ case ExactValue_Complex: {
+ f64 r = operand->value.value_complex.real;
+ f64 i = operand->value.value_complex.imag;
+ operand->value = exact_value_float(gb_sqrt(r*r + i*i));
+ } break;
+ default:
+ GB_PANIC("Invalid numeric constant");
+ break;
+ }
+ } else {
+ operand->mode = Addressing_Value;
+ }
+
+ if (is_type_complex(operand->type)) {
+ operand->type = base_complex_elem_type(operand->type);
+ }
+ GB_ASSERT(!is_type_complex(operand->type));
+ } break;
+
+ case BuiltinProc_clamp: {
+ // clamp :: proc(a, min, max: ordered) -> ordered
+ Type *type = base_type(operand->type);
+ if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) {
+ gbString type_str = type_to_string(operand->type);
+ error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ AstNode *min_arg = ce->args[1];
+ AstNode *max_arg = ce->args[2];
+ Operand x = *operand;
+ Operand y = {};
+ Operand z = {};
+
+ check_expr(c, &y, min_arg);
+ if (y.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) {
+ gbString type_str = type_to_string(y.type);
+ error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ check_expr(c, &z, max_arg);
+ if (z.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) {
+ gbString type_str = type_to_string(z.type);
+ error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str);
+ gb_string_free(type_str);
+ return false;
+ }
+
+ if (x.mode == Addressing_Constant &&
+ y.mode == Addressing_Constant &&
+ z.mode == Addressing_Constant) {
+ ExactValue a = x.value;
+ ExactValue b = y.value;
+ ExactValue c = z.value;
+
+ operand->mode = Addressing_Constant;
+ if (compare_exact_values(Token_Lt, a, b)) {
+ operand->value = b;
+ operand->type = y.type;
+ } else if (compare_exact_values(Token_Gt, a, c)) {
+ operand->value = c;
+ operand->type = z.type;
+ } else {
+ operand->value = a;
+ operand->type = x.type;
+ }
+ } else {
+ operand->mode = Addressing_Value;
+ operand->type = type;
+
+ convert_to_typed(c, &x, y.type, 0);
+ if (x.mode == Addressing_Invalid) { return false; }
+ convert_to_typed(c, &y, x.type, 0);
+ if (y.mode == Addressing_Invalid) { return false; }
+ convert_to_typed(c, &x, z.type, 0);
+ if (x.mode == Addressing_Invalid) { return false; }
+ convert_to_typed(c, &z, x.type, 0);
+ if (z.mode == Addressing_Invalid) { return false; }
+ convert_to_typed(c, &y, z.type, 0);
+ if (y.mode == Addressing_Invalid) { return false; }
+ convert_to_typed(c, &z, y.type, 0);
+ if (z.mode == Addressing_Invalid) { return false; }
+
+ if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) {
+ gbString type_x = type_to_string(x.type);
+ gbString type_y = type_to_string(y.type);
+ gbString type_z = type_to_string(z.type);
+ error_node(call,
+ "Mismatched types to `clamp`, `%s`, `%s`, `%s`",
+ type_x, type_y, type_z);
+ gb_string_free(type_z);
+ gb_string_free(type_y);
+ gb_string_free(type_x);
+ return false;
+ }
+ }
+ } break;
+
+ case BuiltinProc_transmute: {
+ Operand op = {};
+ check_expr_or_type(c, &op, ce->args[0]);
+ Type *t = op.type;
+ if ((op.mode != Addressing_Type && t == NULL) || t == t_invalid) {
+ error_node(ce->args[0], "Expected a type for `transmute`");
+ return false;
+ }
+ AstNode *expr = ce->args[1];
+ Operand *o = operand;
+ check_expr(c, o, expr);
+ if (o->mode == Addressing_Invalid) {
+ return false;
+ }
+
+ if (o->mode == Addressing_Constant) {
+ gbString expr_str = expr_to_string(o->expr);
+ error_node(o->expr, "Cannot transmute a constant expression: `%s`", expr_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = expr;
+ return false;
+ }
+
+ if (is_type_untyped(o->type)) {
+ gbString expr_str = expr_to_string(o->expr);
+ error_node(o->expr, "Cannot transmute untyped expression: `%s`", expr_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = expr;
+ return false;
+ }
+
+ i64 srcz = type_size_of(c->allocator, o->type);
+ i64 dstz = type_size_of(c->allocator, t);
+ if (srcz != dstz) {
+ gbString expr_str = expr_to_string(o->expr);
+ gbString type_str = type_to_string(t);
+ error_node(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
+ gb_string_free(type_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = expr;
+ return false;
+ }
+
+ o->mode = Addressing_Value;
+ o->type = t;
+ } break;
+ }
+
+ return true;
+}
+
+enum CallArgumentError {
+ CallArgumentError_None,
+ CallArgumentError_WrongTypes,
+ CallArgumentError_NonVariadicExpand,
+ CallArgumentError_VariadicTuple,
+ CallArgumentError_MultipleVariadicExpand,
+ CallArgumentError_ArgumentCount,
+ CallArgumentError_TooFewArguments,
+ CallArgumentError_TooManyArguments,
+ CallArgumentError_InvalidFieldValue,
+ CallArgumentError_ParameterNotFound,
+ CallArgumentError_ParameterMissing,
+ CallArgumentError_DuplicateParameter,
+};
+
+enum CallArgumentErrorMode {
+ CallArgumentMode_NoErrors,
+ CallArgumentMode_ShowErrors,
+};
+
+
+struct ValidProcAndScore {
+ isize index;
+ i64 score;
+};
+
+int valid_proc_and_score_cmp(void const *a, void const *b) {
+ i64 si = (cast(ValidProcAndScore const *)a)->score;
+ i64 sj = (cast(ValidProcAndScore const *)b)->score;
+ return sj < si ? -1 : sj > si;
+}
+
+bool check_unpack_arguments(Checker *c, isize lhs_count, Array<Operand> *operands, Array<AstNode *> rhs, bool allow_ok) {
+ bool optional_ok = false;
+ for_array(i, rhs) {
+ Operand o = {};
+ check_multi_expr(c, &o, rhs[i]);
+
+ if (o.type == NULL || o.type->kind != Type_Tuple) {
+ if (allow_ok && lhs_count == 2 && rhs.count == 1 &&
+ (o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk)) {
+ Type *tuple = make_optional_ok_type(c->allocator, o.type);
+ add_type_and_value(&c->info, o.expr, o.mode, tuple, o.value);
+
+ Operand val = o;
+ Operand ok = o;
+ val.mode = Addressing_Value;
+ ok.mode = Addressing_Value;
+ ok.type = t_bool;
+ array_add(operands, val);
+ array_add(operands, ok);
+
+ optional_ok = true;
+ } else {
+ array_add(operands, o);
+ }
+ } else {
+ TypeTuple *tuple = &o.type->Tuple;
+ for (isize j = 0; j < tuple->variable_count; j++) {
+ o.type = tuple->variables[j]->type;
+ array_add(operands, o);
+ }
+ }
+ }
+
+ return optional_ok;
+}
+
+#define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(Checker *c, AstNode *call, Type *proc_type, Array<Operand> operands, CallArgumentErrorMode show_error_mode, i64 *score_)
+typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType);
+
+
+CALL_ARGUMENT_CHECKER(check_call_arguments_internal) {
+ ast_node(ce, CallExpr, call);
+ isize param_count = 0;
+ isize param_count_excluding_defaults = 0;
+ bool variadic = proc_type->Proc.variadic;
+ bool vari_expand = (ce->ellipsis.pos.line != 0);
+ i64 score = 0;
+ bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
+
+ TypeTuple *param_tuple = NULL;
+
+ if (proc_type->Proc.params != NULL) {
+ param_tuple = &proc_type->Proc.params->Tuple;
+
+ param_count = param_tuple->variable_count;
+ if (variadic) {
+ param_count--;
+ }
+ }
+
+ param_count_excluding_defaults = param_count;
+ if (param_tuple != NULL) {
+ for (isize i = param_count-1; i >= 0; i--) {
+ Entity *e = param_tuple->variables[i];
+ GB_ASSERT(e->kind == Entity_Variable);
+ if (e->Variable.default_value.kind == ExactValue_Invalid) {
+ break;
+ }
+ param_count_excluding_defaults--;
+ }
+ }
+
+ if (vari_expand && !variadic) {
+ if (show_error) {
+ error(ce->ellipsis,
+ "Cannot use `..` in call to a non-variadic procedure: `%.*s`",
+ LIT(ce->proc->Ident.string));
+ }
+ if (score_) *score_ = score;
+ return CallArgumentError_NonVariadicExpand;
+ }
+
+ if (operands.count == 0 && param_count_excluding_defaults == 0) {
+ if (score_) *score_ = score;
+ return CallArgumentError_None;
+ }
+
+ i32 error_code = 0;
+ if (operands.count < param_count_excluding_defaults) {
+ error_code = -1;
+ } else if (!variadic && operands.count > param_count) {
+ error_code = +1;
+ }
+ if (error_code != 0) {
+ CallArgumentError err = CallArgumentError_TooManyArguments;
+ char *err_fmt = "Too many arguments for `%s`, expected %td arguments";
+ if (error_code < 0) {
+ err = CallArgumentError_TooFewArguments;
+ err_fmt = "Too few arguments for `%s`, expected %td arguments";
+ }
+
+ if (show_error) {
+ gbString proc_str = expr_to_string(ce->proc);
+ error_node(call, err_fmt, proc_str, param_count_excluding_defaults);
+ gb_string_free(proc_str);
+ }
+ if (score_) *score_ = score;
+ return err;
+ }
+
+ CallArgumentError err = CallArgumentError_None;
+
+ GB_ASSERT(proc_type->Proc.params != NULL);
+ Entity **sig_params = param_tuple->variables;
+ isize operand_index = 0;
+ for (; operand_index < param_count_excluding_defaults; operand_index++) {
+ Type *t = sig_params[operand_index]->type;
+ Operand o = operands[operand_index];
+ if (variadic) {
+ o = operands[operand_index];
+ }
+ i64 s = 0;
+ if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
+ if (show_error) {
+ check_assignment(c, &o, t, str_lit("argument"));
+ }
+ err = CallArgumentError_WrongTypes;
+ }
+ score += s;
+ }
+
+ if (variadic) {
+ bool variadic_expand = false;
+ Type *slice = sig_params[param_count]->type;
+ GB_ASSERT(is_type_slice(slice));
+ Type *elem = base_type(slice)->Slice.elem;
+ Type *t = elem;
+ for (; operand_index < operands.count; operand_index++) {
+ Operand o = operands[operand_index];
+ if (vari_expand) {
+ variadic_expand = true;
+ t = slice;
+ if (operand_index != param_count) {
+ if (show_error) {
+ error_node(o.expr, "`..` in a variadic procedure can only have one variadic argument at the end");
+ }
+ if (score_) *score_ = score;
+ return CallArgumentError_MultipleVariadicExpand;
+ }
+ }
+ i64 s = 0;
+ if (!check_is_assignable_to_with_score(c, &o, t, &s)) {
+ if (show_error) {
+ check_assignment(c, &o, t, str_lit("argument"));
+ }
+ err = CallArgumentError_WrongTypes;
+ }
+ score += s;
+ }
+ }
+
+ if (score_) *score_ = score;
+ return err;
+}
+
+bool is_call_expr_field_value(AstNodeCallExpr *ce) {
+ GB_ASSERT(ce != NULL);
+
+ if (ce->args.count == 0) {
+ return false;
+ }
+ return ce->args[0]->kind == AstNode_FieldValue;
+}
+
+isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) {
+ isize param_count = pt->param_count;
+ for (isize i = 0; i < param_count; i++) {
+ Entity *e = pt->params->Tuple.variables[i];
+ String name = e->token.string;
+ if (name == "_") {
+ continue;
+ }
+ if (name == parameter_name) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+CALL_ARGUMENT_CHECKER(check_named_call_arguments) {
+ ast_node(ce, CallExpr, call);
+ GB_ASSERT(is_type_proc(proc_type));
+ TypeProc *pt = &base_type(proc_type)->Proc;
+
+ i64 score = 0;
+ bool show_error = show_error_mode == CallArgumentMode_ShowErrors;
+ CallArgumentError err = CallArgumentError_None;
+
+ isize param_count = pt->param_count;
+ bool *params_visited = gb_alloc_array(c->allocator, bool, param_count);
+
+ for_array(i, ce->args) {
+ AstNode *arg = ce->args[i];
+ ast_node(fv, FieldValue, arg);
+ if (fv->field->kind != AstNode_Ident) {
+ if (show_error) {
+ gbString expr_str = expr_to_string(fv->field);
+ error_node(arg, "Invalid parameter name `%s` in procedure call", expr_str);
+ gb_string_free(expr_str);
+ }
+ err = CallArgumentError_InvalidFieldValue;
+ continue;
+ }
+ String name = fv->field->Ident.string;
+ isize index = lookup_procedure_parameter(pt, name);
+ if (index < 0) {
+ if (show_error) {
+ error_node(arg, "No parameter named `%.*s` for this procedure type", LIT(name));
+ }
+ err = CallArgumentError_ParameterNotFound;
+ continue;
+ }
+ if (params_visited[index]) {
+ if (show_error) {
+ error_node(arg, "Duplicate parameter `%.*s` in procedure call", LIT(name));
+ }
+ err = CallArgumentError_DuplicateParameter;
+ continue;
+ }
+
+ params_visited[index] = true;
+ Operand *o = &operands[i];
+
+ Type *param_type = pt->params->Tuple.variables[index]->type;
+
+ i64 s = 0;
+ if (!check_is_assignable_to_with_score(c, o, param_type, &s)) {
+ if (show_error) {
+ check_assignment(c, o, param_type, str_lit("procedure argument"));
+ }
+ err = CallArgumentError_WrongTypes;
+ }
+ score += s;
+ }
+
+
+#if 1
+ isize param_count_to_check = param_count;
+ if (pt->variadic) {
+ param_count_to_check--;
+ }
+ for (isize i = 0; i < param_count_to_check; i++) {
+ if (!params_visited[i]) {
+ Entity *e = pt->params->Tuple.variables[i];
+ if (e->token.string == "_") {
+ continue;
+ }
+ GB_ASSERT(e->kind == Entity_Variable);
+ if (e->Variable.default_value.kind != ExactValue_Invalid) {
+ score += assign_score_function(1);
+ continue;
+ }
+
+ if (show_error) {
+ gbString str = type_to_string(e->type);
+ error_node(call, "Parameter `%.*s` of type `%s` is missing in procedure call",
+ LIT(e->token.string), str);
+ gb_string_free(str);
+ }
+ err = CallArgumentError_ParameterMissing;
+ }
+ }
+#endif
+
+ if (score_) *score_ = score;
+
+ return err;
+}
+
+
+Type *check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) {
+ ast_node(ce, CallExpr, call);
+
+ CallArgumentCheckerType *call_checker = check_call_arguments_internal;
+ Array<Operand> operands = {};
+ defer (array_free(&operands));
+
+ if (is_call_expr_field_value(ce)) {
+ call_checker = check_named_call_arguments;
+
+ array_init_count(&operands, heap_allocator(), ce->args.count);
+ for_array(i, ce->args) {
+ AstNode *arg = ce->args[i];
+ ast_node(fv, FieldValue, arg);
+ check_expr(c, &operands[i], fv->value);
+ }
+
+ bool vari_expand = (ce->ellipsis.pos.line != 0);
+ if (vari_expand) {
+ error(ce->ellipsis, "Invalid use of `..` with `field = value` call`");
+ }
+
+ } else {
+ array_init(&operands, heap_allocator(), 2*ce->args.count);
+ check_unpack_arguments(c, -1, &operands, ce->args, false);
+ }
+
+ if (operand->mode == Addressing_Overload) {
+ GB_ASSERT(operand->overload_entities != NULL &&
+ operand->overload_count > 1);
+
+ isize overload_count = operand->overload_count;
+ Entity ** procs = operand->overload_entities;
+ ValidProcAndScore *valids = gb_alloc_array(heap_allocator(), ValidProcAndScore, overload_count);
+ isize valid_count = 0;
+
+ defer (gb_free(heap_allocator(), procs));
+ defer (gb_free(heap_allocator(), valids));
+
+ String name = procs[0]->token.string;
+
+ for (isize i = 0; i < overload_count; i++) {
+ Entity *e = procs[i];
+ DeclInfo **found = map_get(&c->info.entities, hash_pointer(e));
+ GB_ASSERT(found != NULL);
+ DeclInfo *d = *found;
+ check_entity_decl(c, e, d, NULL);
+ }
+
+ for (isize i = 0; i < overload_count; i++) {
+ Entity *p = procs[i];
+ Type *proc_type = base_type(p->type);
+ if (proc_type != NULL && is_type_proc(proc_type)) {
+ i64 score = 0;
+ CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_NoErrors, &score);
+ if (err == CallArgumentError_None) {
+ valids[valid_count].index = i;
+ valids[valid_count].score = score;
+ valid_count++;
+ }
+ }
+ }
+
+ if (valid_count > 1) {
+ gb_sort_array(valids, valid_count, valid_proc_and_score_cmp);
+ i64 best_score = valids[0].score;
+ for (isize i = 0; i < valid_count; i++) {
+ if (best_score > valids[i].score) {
+ valid_count = i;
+ break;
+ }
+ best_score = valids[i].score;
+ }
+ }
+
+
+ if (valid_count == 0) {
+ error_node(operand->expr, "No overloads for `%.*s` that match with the given arguments", LIT(name));
+ proc_type = t_invalid;
+ } else if (valid_count > 1) {
+ error_node(operand->expr, "Ambiguous procedure call `%.*s`, could be:", LIT(name));
+ for (isize i = 0; i < valid_count; i++) {
+ Entity *proc = procs[valids[i].index];
+ TokenPos pos = proc->token.pos;
+ gbString pt = type_to_string(proc->type);
+ gb_printf_err("\t%.*s :: %s at %.*s(%td:%td) with score %lld\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, valids[i].score);
+ gb_string_free(pt);
+ }
+ proc_type = t_invalid;
+ } else {
+ AstNode *expr = operand->expr;
+ while (expr->kind == AstNode_SelectorExpr) {
+ expr = expr->SelectorExpr.selector;
+ }
+ GB_ASSERT(expr->kind == AstNode_Ident);
+ Entity *e = procs[valids[0].index];
+ add_entity_use(c, expr, e);
+ proc_type = e->type;
+ i64 score = 0;
+ CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_ShowErrors, &score);
+ }
+ } else {
+ i64 score = 0;
+ CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_ShowErrors, &score);
+ }
+
+
+ return proc_type;
+}
+
+
+Entity *find_using_index_expr(Type *t) {
+ t = base_type(t);
+ if (t->kind != Type_Record) {
+ return NULL;
+ }
+
+ for (isize i = 0; i < t->Record.field_count; i++) {
+ Entity *f = t->Record.fields[i];
+ if (f->kind == Entity_Variable &&
+ (f->flags & EntityFlag_Field) != 0 &&
+ (f->flags & EntityFlag_Using) != 0) {
+ if (is_type_indexable(f->type)) {
+ return f;
+ }
+ Entity *res = find_using_index_expr(f->type);
+ if (res != NULL) {
+ return res;
+ }
+ }
+ }
+ return NULL;
+}
+
+ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) {
+ GB_ASSERT(call->kind == AstNode_CallExpr);
+ ast_node(ce, CallExpr, call);
+ check_expr_or_type(c, operand, ce->proc);
+
+ if (ce->args.count > 0) {
+ bool fail = false;
+ bool first_is_field_value = (ce->args[0]->kind == AstNode_FieldValue);
+ for_array(i, ce->args) {
+ AstNode *arg = ce->args[i];
+ bool mix = false;
+ if (first_is_field_value) {
+ mix = arg->kind != AstNode_FieldValue;
+ } else {
+ mix = arg->kind == AstNode_FieldValue;
+ }
+ if (mix) {
+ error_node(arg, "Mixture of `field = value` and value elements in a procedure all is not allowed");
+ fail = true;
+ }
+ }
+
+ if (fail) {
+ operand->mode = Addressing_Invalid;
+ operand->expr = call;
+ return Expr_Stmt;
+ }
+ }
+
+ if (operand->mode == Addressing_Invalid) {
+ for_array(i, ce->args) {
+ AstNode *arg = ce->args[i];
+ if (arg->kind == AstNode_FieldValue) {
+ arg = arg->FieldValue.value;
+ }
+ check_expr_base(c, operand, arg, NULL);
+ }
+ operand->mode = Addressing_Invalid;
+ operand->expr = call;
+ return Expr_Stmt;
+ }
+
+ if (operand->mode == Addressing_Type) {
+ Type *t = operand->type;
+ gbString str = type_to_string(t);
+ operand->mode = Addressing_Invalid;
+ isize arg_count = ce->args.count;
+ switch (arg_count) {
+ case 0: error_node(call, "Missing argument in conversion to `%s`", str); break;
+ default: error_node(call, "Too many arguments in conversion to `%s`", str); break;
+ case 1: {
+ AstNode *arg = ce->args[0];
+ if (arg->kind == AstNode_FieldValue) {
+ error_node(call, "`field = value` cannot be used in a type conversion");
+ arg = arg->FieldValue.value;
+ // NOTE(bill): Carry on the cast regardless
+ }
+ check_expr(c, operand, arg);
+ if (operand->mode != Addressing_Invalid) {
+ check_cast(c, operand, t);
+ }
+ } break;
+ }
+
+ gb_string_free(str);
+ return Expr_Expr;
+ }
+
+ if (operand->mode == Addressing_Builtin) {
+ i32 id = operand->builtin_id;
+ if (!check_builtin_procedure(c, operand, call, id)) {
+ operand->mode = Addressing_Invalid;
+ }
+ operand->expr = call;
+ return builtin_procs[id].kind;
+ }
+
+ Type *proc_type = base_type(operand->type);
+ if (operand->mode != Addressing_Overload) {
+ bool valid_type = (proc_type != NULL) && is_type_proc(proc_type);
+ bool valid_mode = is_operand_value(*operand);
+ if (!valid_type || !valid_mode) {
+ AstNode *e = operand->expr;
+ gbString str = expr_to_string(e);
+ gbString type_str = type_to_string(operand->type);
+ error_node(e, "Cannot call a non-procedure: `%s` of type `%s`", str, type_str);
+ gb_string_free(type_str);
+ gb_string_free(str);
+
+ operand->mode = Addressing_Invalid;
+ operand->expr = call;
+
+ return Expr_Stmt;
+ }
+ }
+
+ proc_type = check_call_arguments(c, operand, proc_type, call);
+
+ gb_zero_item(operand);
+
+ Type *pt = base_type(proc_type);
+ if (pt == NULL || !is_type_proc(pt)) {
+ operand->mode = Addressing_Invalid;
+ operand->type = t_invalid;
+ operand->expr = call;
+ return Expr_Stmt;
+ }
+ switch (pt->Proc.result_count) {
+ case 0:
+ operand->mode = Addressing_NoValue;
+ break;
+ case 1:
+ operand->mode = Addressing_Value;
+ operand->type = pt->Proc.results->Tuple.variables[0]->type;
+ break;
+ default:
+ operand->mode = Addressing_Value;
+ operand->type = pt->Proc.results;
+ break;
+ }
+
+ operand->expr = call;
+ return Expr_Expr;
+}
+
+
+ExprKind check_macro_call_expr(Checker *c, Operand *operand, AstNode *call) {
+ GB_ASSERT(call->kind == AstNode_MacroCallExpr);
+ ast_node(mce, MacroCallExpr, call);
+
+ error_node(call, "Macro call expressions are not yet supported");
+ operand->mode = Addressing_Invalid;
+ operand->expr = call;
+ return Expr_Stmt;
+}
+
+void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) {
+ check_expr_base(c, o, e, t);
+ check_not_tuple(c, o);
+ char *err_str = NULL;
+ switch (o->mode) {
+ case Addressing_NoValue:
+ err_str = "used as a value";
+ break;
+ case Addressing_Type:
+ err_str = "is not an expression";
+ break;
+ case Addressing_Builtin:
+ err_str = "must be called";
+ break;
+ }
+ if (err_str != NULL) {
+ gbString str = expr_to_string(e);
+ error_node(e, "`%s` %s", str, err_str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ }
+}
+
+void check_set_mode_with_indirection(Operand *o, bool indirection) {
+ if (o->mode != Addressing_Immutable) {
+ if (indirection) {
+ o->mode = Addressing_Variable;
+ } else if (o->mode != Addressing_Variable &&
+ o->mode != Addressing_Constant) {
+ o->mode = Addressing_Value;
+ }
+ }
+}
+
+bool check_set_index_data(Operand *o, Type *type, bool indirection, i64 *max_count) {
+ Type *t = base_type(type_deref(type));
+
+ switch (t->kind) {
+ case Type_Basic:
+ if (is_type_string(t)) {
+ if (o->mode == Addressing_Constant) {
+ *max_count = o->value.value_string.len;
+ }
+ check_set_mode_with_indirection(o, indirection);
+ o->type = t_u8;
+ return true;
+ }
+ break;
+
+ case Type_Array:
+ *max_count = t->Array.count;
+ check_set_mode_with_indirection(o, indirection);
+ o->type = t->Array.elem;
+ return true;
+
+ case Type_Vector:
+ *max_count = t->Vector.count;
+ check_set_mode_with_indirection(o, indirection);
+ o->type = t->Vector.elem;
+ return true;
+
+
+ case Type_Slice:
+ o->type = t->Slice.elem;
+ if (o->mode != Addressing_Immutable) {
+ o->mode = Addressing_Variable;
+ }
+ return true;
+
+ case Type_DynamicArray:
+ o->type = t->DynamicArray.elem;
+ check_set_mode_with_indirection(o, indirection);
+ return true;
+ }
+
+ return false;
+}
+
+
+ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
+ ExprKind kind = Expr_Stmt;
+
+ o->mode = Addressing_Invalid;
+ o->type = t_invalid;
+
+ switch (node->kind) {
+ default:
+ return kind;
+
+ case_ast_node(be, BadExpr, node)
+ return kind;
+ case_end;
+
+ case_ast_node(i, Implicit, node)
+ switch (i->kind) {
+ case Token_context:
+ if (c->context.proc_name.len == 0) {
+ error_node(node, "`context` is only allowed within procedures");
+ return kind;
+ }
+
+ o->mode = Addressing_Value;
+ o->type = t_context;
+ break;
+ default:
+ error_node(node, "Illegal implicit name `%.*s`", LIT(i->string));
+ return kind;
+ }
+ case_end;
+
+ case_ast_node(i, Ident, node);
+ check_ident(c, o, node, NULL, type_hint, false);
+ case_end;
+
+
+ case_ast_node(bl, BasicLit, node);
+ Type *t = t_invalid;
+ switch (bl->kind) {
+ case Token_Integer: t = t_untyped_integer; break;
+ case Token_Float: t = t_untyped_float; break;
+ case Token_String: t = t_untyped_string; break;
+ case Token_Rune: t = t_untyped_rune; break;
+ case Token_Imag: {
+ String s = bl->string;
+ Rune r = s[s.len-1];
+ switch (r) {
+ case 'i': t = t_untyped_complex; break;
+ }
+ } break;
+ default: GB_PANIC("Unknown literal"); break;
+ }
+ o->mode = Addressing_Constant;
+ o->type = t;
+ o->value = exact_value_from_basic_literal(*bl);
+ case_end;
+
+ case_ast_node(bd, BasicDirective, node);
+ if (bd->name == "file") {
+ o->type = t_untyped_string;
+ o->value = exact_value_string(bd->token.pos.file);
+ } else if (bd->name == "line") {
+ o->type = t_untyped_integer;
+ o->value = exact_value_i64(bd->token.pos.line);
+ } else if (bd->name == "procedure") {
+ if (c->proc_stack.count == 0) {
+ error_node(node, "#procedure may only be used within procedures");
+ o->type = t_untyped_string;
+ o->value = exact_value_string(str_lit(""));
+ } else {
+ o->type = t_untyped_string;
+ o->value = exact_value_string(c->context.proc_name);
+ }
+
+ } else {
+ GB_PANIC("Unknown basic basic directive");
+ }
+ o->mode = Addressing_Constant;
+ case_end;
+
+ case_ast_node(pl, ProcLit, node);
+ CheckerContext prev_context = c->context;
+ DeclInfo *decl = NULL;
+ Type *type = alloc_type(c->allocator, Type_Proc);
+ check_open_scope(c, pl->type);
+ {
+ decl = make_declaration_info(c->allocator, c->context.scope, c->context.decl);
+ decl->proc_lit = pl->type;
+ c->context.decl = decl;
+
+ if (pl->tags != 0) {
+ error_node(node, "A procedure literal cannot have tags");
+ pl->tags = 0; // TODO(bill): Should I zero this?!
+ }
+
+ check_procedure_type(c, type, pl->type);
+ if (!is_type_proc(type)) {
+ gbString str = expr_to_string(node);
+ error_node(node, "Invalid procedure literal `%s`", str);
+ gb_string_free(str);
+ check_close_scope(c);
+ return kind;
+ }
+ check_procedure_later(c, c->curr_ast_file, empty_token, decl, type, pl->body, pl->tags);
+ }
+ check_close_scope(c);
+
+ c->context = prev_context;
+
+ o->mode = Addressing_Value;
+ o->type = type;
+ case_end;
+
+ case_ast_node(te, TernaryExpr, node);
+ Operand cond = {Addressing_Invalid};
+ check_expr(c, &cond, te->cond);
+ if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) {
+ error_node(te->cond, "Non-boolean condition in if expression");
+ }
+
+ Operand x = {Addressing_Invalid};
+ Operand y = {Addressing_Invalid};
+ check_expr_with_type_hint(c, &x, te->x, type_hint);
+
+ if (te->y != NULL) {
+ check_expr_with_type_hint(c, &y, te->y, type_hint);
+ } else {
+ error_node(node, "A ternary expression must have an else clause");
+ return kind;
+ }
+
+ if (x.type == NULL || x.type == t_invalid ||
+ y.type == NULL || y.type == t_invalid) {
+ return kind;
+ }
+
+ convert_to_typed(c, &x, y.type, 0);
+ if (x.mode == Addressing_Invalid) {
+ return kind;
+ }
+ convert_to_typed(c, &y, x.type, 0);
+ if (y.mode == Addressing_Invalid) {
+ x.mode = Addressing_Invalid;
+ return kind;
+ }
+
+
+ if (!are_types_identical(x.type, y.type)) {
+ gbString its = type_to_string(x.type);
+ gbString ets = type_to_string(y.type);
+ error_node(node, "Mismatched types in ternary expression, %s vs %s", its, ets);
+ gb_string_free(ets);
+ gb_string_free(its);
+ return kind;
+ }
+
+ o->type = x.type;
+ o->mode = Addressing_Value;
+
+ if (cond.mode == Addressing_Constant && is_type_boolean(cond.type) &&
+ x.mode == Addressing_Constant &&
+ y.mode == Addressing_Constant) {
+
+ o->mode = Addressing_Constant;
+
+ if (cond.value.value_bool) {
+ o->value = x.value;
+ } else {
+ o->value = y.value;
+ }
+ }
+
+ case_end;
+
+ case_ast_node(cl, CompoundLit, node);
+ Type *type = type_hint;
+ bool is_to_be_determined_array_count = false;
+ bool is_constant = true;
+ if (cl->type != NULL) {
+ type = NULL;
+
+ // [..]Type
+ if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) {
+ AstNode *count = cl->type->ArrayType.count;
+ if (count->kind == AstNode_UnaryExpr &&
+ count->UnaryExpr.op.kind == Token_Ellipsis) {
+ type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1);
+ is_to_be_determined_array_count = true;
+ }
+ }
+
+ if (type == NULL) {
+ type = check_type(c, cl->type);
+ }
+ }
+
+ if (type == NULL) {
+ error_node(node, "Missing type in compound literal");
+ return kind;
+ }
+
+ Type *t = base_type(type);
+ switch (t->kind) {
+ case Type_Record: {
+ if (!is_type_struct(t) && !is_type_union(t)) {
+ if (cl->elems.count != 0) {
+ gbString type_str = type_to_string(type);
+ error_node(node, "Illegal compound literal type `%s`", type_str);
+ gb_string_free(type_str);
+ }
+ break;
+ }
+ if (is_type_union(t)) {
+ is_constant = false;
+ }
+ if (cl->elems.count == 0) {
+ break; // NOTE(bill): No need to init
+ }
+ { // Checker values
+ isize field_count = t->Record.field_count;
+ if (cl->elems[0]->kind == AstNode_FieldValue) {
+ bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count);
+
+ for_array(i, cl->elems) {
+ AstNode *elem = cl->elems[i];
+ if (elem->kind != AstNode_FieldValue) {
+ error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
+ continue;
+ }
+ ast_node(fv, FieldValue, elem);
+ if (fv->field->kind != AstNode_Ident) {
+ gbString expr_str = expr_to_string(fv->field);
+ error_node(elem, "Invalid field name `%s` in structure literal", expr_str);
+ gb_string_free(expr_str);
+ continue;
+ }
+ String name = fv->field->Ident.string;
+
+ Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
+ bool is_unknown = sel.entity == NULL;
+ if (is_unknown) {
+ error_node(elem, "Unknown field `%.*s` in structure literal", LIT(name));
+ continue;
+ }
+ if (!is_unknown && !check_is_field_exported(c, sel.entity)) {
+ error_node(elem, "Cannot assign to an unexported field `%.*s` in structure literal", LIT(name));
+ continue;
+ }
+
+
+ if (sel.index.count > 1) {
+ error_node(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name));
+ continue;
+ }
+
+ Entity *field = t->Record.fields[sel.index[0]];
+ add_entity_use(c, fv->field, field);
+
+ if (fields_visited[sel.index[0]]) {
+ error_node(elem, "Duplicate field `%.*s` in structure literal", LIT(name));
+ continue;
+ }
+
+ fields_visited[sel.index[0]] = true;
+ check_expr(c, o, fv->value);
+
+ if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
+ is_constant = false;
+ }
+ if (is_constant) {
+ is_constant = o->mode == Addressing_Constant;
+ }
+
+
+ check_assignment(c, o, field->type, str_lit("structure literal"));
+ }
+ } else {
+ bool all_fields_are_blank = true;
+ for (isize i = 0; i < t->Record.field_count; i++) {
+ Entity *field = t->Record.fields_in_src_order[i];
+ if (field->token.string != "_") {
+ all_fields_are_blank = false;
+ break;
+ }
+ }
+
+ for_array(index, cl->elems) {
+ AstNode *elem = cl->elems[index];
+ if (elem->kind == AstNode_FieldValue) {
+ error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed");
+ continue;
+ }
+ if (index >= field_count) {
+ error_node(o->expr, "Too many values in structure literal, expected %td", field_count);
+ break;
+ }
+
+ Entity *field = t->Record.fields_in_src_order[index];
+ if (!all_fields_are_blank && field->token.string == "_") {
+ // NOTE(bill): Ignore blank identifiers
+ continue;
+ }
+ check_expr(c, o, elem);
+
+ if (!check_is_field_exported(c, field)) {
+ gbString t = type_to_string(type);
+ error_node(o->expr, "Implicit assignment to an unexported field `%.*s` in `%s` literal",
+ LIT(field->token.string), t);
+ gb_string_free(t);
+ continue;
+ }
+
+ if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) {
+ is_constant = false;
+ }
+ if (is_constant) {
+ is_constant = o->mode == Addressing_Constant;
+ }
+
+ check_assignment(c, o, field->type, str_lit("structure literal"));
+ }
+ if (cl->elems.count < field_count) {
+ error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count);
+ }
+ }
+ }
+ } break;
+
+ case Type_Slice:
+ case Type_Array:
+ case Type_Vector:
+ case Type_DynamicArray:
+ {
+ Type *elem_type = NULL;
+ String context_name = {};
+ i64 max_type_count = -1;
+ if (t->kind == Type_Slice) {
+ elem_type = t->Slice.elem;
+ context_name = str_lit("slice literal");
+ } else if (t->kind == Type_Vector) {
+ elem_type = t->Vector.elem;
+ context_name = str_lit("vector literal");
+ max_type_count = t->Vector.count;
+ } else if (t->kind == Type_Array) {
+ elem_type = t->Array.elem;
+ context_name = str_lit("array literal");
+ max_type_count = t->Array.count;
+ } else if (t->kind == Type_DynamicArray) {
+ elem_type = t->DynamicArray.elem;
+ context_name = str_lit("dynamic array literal");
+ is_constant = false;
+ } else {
+ GB_PANIC("unreachable");
+ }
+
+
+ i64 max = 0;
+ isize index = 0;
+ isize elem_count = cl->elems.count;
+
+ if (is_type_any(base_type(elem_type))) {
+ is_constant = false;
+ }
+
+ for (; index < elem_count; index++) {
+ GB_ASSERT(cl->elems.data != NULL);
+ AstNode *e = cl->elems[index];
+ if (e == NULL) {
+ error_node(node, "Invalid literal element");
+ continue;
+ }
+
+ if (e->kind == AstNode_FieldValue) {
+ error_node(e, "`field = value` is only allowed in struct literals");
+ continue;
+ }
+
+ if (0 <= max_type_count && max_type_count <= index) {
+ error_node(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name));
+ }
+
+ Operand operand = {};
+ check_expr_with_type_hint(c, &operand, e, elem_type);
+ check_assignment(c, &operand, elem_type, context_name);
+
+ if (is_constant) {
+ is_constant = operand.mode == Addressing_Constant;
+ }
+ }
+ if (max < index) {
+ max = index;
+ }
+
+ if (t->kind == Type_Vector) {
+ if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) {
+ error_node(cl->elems[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index);
+ }
+ }
+
+ if (t->kind == Type_Array && is_to_be_determined_array_count) {
+ t->Array.count = max;
+ }
+ } break;
+
+ case Type_Basic: {
+ if (!is_type_any(t)) {
+ if (cl->elems.count != 0) {
+ error_node(node, "Illegal compound literal");
+ }
+ break;
+ }
+ if (cl->elems.count == 0) {
+ break; // NOTE(bill): No need to init
+ }
+ { // Checker values
+ Type *field_types[2] = {t_rawptr, t_type_info_ptr};
+ isize field_count = 2;
+ if (cl->elems[0]->kind == AstNode_FieldValue) {
+ bool fields_visited[2] = {};
+
+ for_array(i, cl->elems) {
+ AstNode *elem = cl->elems[i];
+ if (elem->kind != AstNode_FieldValue) {
+ error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
+ continue;
+ }
+ ast_node(fv, FieldValue, elem);
+ if (fv->field->kind != AstNode_Ident) {
+ gbString expr_str = expr_to_string(fv->field);
+ error_node(elem, "Invalid field name `%s` in `any` literal", expr_str);
+ gb_string_free(expr_str);
+ continue;
+ }
+ String name = fv->field->Ident.string;
+
+ Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type);
+ if (sel.entity == NULL) {
+ error_node(elem, "Unknown field `%.*s` in `any` literal", LIT(name));
+ continue;
+ }
+
+ isize index = sel.index[0];
+
+ if (fields_visited[index]) {
+ error_node(elem, "Duplicate field `%.*s` in `any` literal", LIT(name));
+ continue;
+ }
+
+ fields_visited[index] = true;
+ check_expr(c, o, fv->value);
+
+ // NOTE(bill): `any` literals can never be constant
+ is_constant = false;
+
+ check_assignment(c, o, field_types[index], str_lit("`any` literal"));
+ }
+ } else {
+ for_array(index, cl->elems) {
+ AstNode *elem = cl->elems[index];
+ if (elem->kind == AstNode_FieldValue) {
+ error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed");
+ continue;
+ }
+
+
+ check_expr(c, o, elem);
+ if (index >= field_count) {
+ error_node(o->expr, "Too many values in `any` literal, expected %td", field_count);
+ break;
+ }
+
+ // NOTE(bill): `any` literals can never be constant
+ is_constant = false;
+
+ check_assignment(c, o, field_types[index], str_lit("`any` literal"));
+ }
+ if (cl->elems.count < field_count) {
+ error(cl->close, "Too few values in `any` literal, expected %td, got %td", field_count, cl->elems.count);
+ }
+ }
+ }
+ } break;
+
+ case Type_Map: {
+ if (cl->elems.count == 0) {
+ break;
+ }
+ is_constant = false;
+ { // Checker values
+ for_array(i, cl->elems) {
+ AstNode *elem = cl->elems[i];
+ if (elem->kind != AstNode_FieldValue) {
+ error_node(elem, "Only `field = value` elements are allowed in a map literal");
+ continue;
+ }
+ ast_node(fv, FieldValue, elem);
+ check_expr_with_type_hint(c, o, fv->field, t->Map.key);
+ check_assignment(c, o, t->Map.key, str_lit("map literal"));
+ if (o->mode == Addressing_Invalid) {
+ continue;
+ }
+
+ check_expr_with_type_hint(c, o, fv->value, t->Map.value);
+ check_assignment(c, o, t->Map.value, str_lit("map literal"));
+ }
+ }
+ } break;
+
+ default: {
+ gbString str = type_to_string(type);
+ error_node(node, "Invalid compound literal type `%s`", str);
+ gb_string_free(str);
+ return kind;
+ } break;
+ }
+
+ if (is_constant) {
+ o->mode = Addressing_Constant;
+ o->value = exact_value_compound(node);
+ } else {
+ o->mode = Addressing_Value;
+ }
+ o->type = type;
+ case_end;
+
+ case_ast_node(pe, ParenExpr, node);
+ kind = check_expr_base(c, o, pe->expr, type_hint);
+ o->expr = node;
+ case_end;
+
+ case_ast_node(te, TagExpr, node);
+ String name = te->name.string;
+ error_node(node, "Unknown tag expression, #%.*s", LIT(name));
+ if (te->expr) {
+ kind = check_expr_base(c, o, te->expr, type_hint);
+ }
+ o->expr = node;
+ case_end;
+
+ case_ast_node(re, RunExpr, node);
+ // TODO(bill): Tag expressions
+ kind = check_expr_base(c, o, re->expr, type_hint);
+ o->expr = node;
+ case_end;
+
+ case_ast_node(ta, TypeAssertion, node);
+ check_expr(c, o, ta->expr);
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return kind;
+ }
+ Type *t = check_type(c, ta->type);
+
+ if (o->mode == Addressing_Constant) {
+ gbString expr_str = expr_to_string(o->expr);
+ error_node(o->expr, "A type assertion cannot be applied to a constant expression: `%s`", expr_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ if (is_type_untyped(o->type)) {
+ gbString expr_str = expr_to_string(o->expr);
+ error_node(o->expr, "A type assertion cannot be applied to an untyped expression: `%s`", expr_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+
+ bool src_is_ptr = is_type_pointer(o->type);
+ bool dst_is_ptr = is_type_pointer(t);
+ Type *src = type_deref(o->type);
+ Type *dst = type_deref(t);
+ Type *bsrc = base_type(src);
+ Type *bdst = base_type(dst);
+
+ if (src_is_ptr != dst_is_ptr) {
+ gbString src_type_str = type_to_string(o->type);
+ gbString dst_type_str = type_to_string(t);
+ error_node(o->expr, "Invalid type assertion types: `%s` and `%s`", src_type_str, dst_type_str);
+ gb_string_free(dst_type_str);
+ gb_string_free(src_type_str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ if (is_type_union(src)) {
+ bool ok = false;
+ for (isize i = 1; i < bsrc->Record.variant_count; i++) {
+ Entity *f = bsrc->Record.variants[i];
+ if (are_types_identical(f->type, dst)) {
+ ok = true;
+ break;
+ }
+ }
+
+ if (!ok) {
+ gbString expr_str = expr_to_string(o->expr);
+ gbString dst_type_str = type_to_string(t);
+ error_node(o->expr, "Cannot type assert `%s` to `%s`", expr_str, dst_type_str);
+ gb_string_free(dst_type_str);
+ gb_string_free(expr_str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ add_type_info_type(c, o->type);
+ add_type_info_type(c, t);
+
+ o->type = t;
+ o->mode = Addressing_OptionalOk;
+ } else if (is_type_any(o->type)) {
+ o->type = t;
+ o->mode = Addressing_OptionalOk;
+
+ add_type_info_type(c, o->type);
+ add_type_info_type(c, t);
+ } else {
+ error_node(o->expr, "Type assertions can only operate on unions");
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+ case_end;
+
+ case_ast_node(ue, UnaryExpr, node);
+ check_expr_base(c, o, ue->expr, type_hint);
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return kind;
+ }
+ check_unary_expr(c, o, ue->op, node);
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return kind;
+ }
+ case_end;
+
+
+ case_ast_node(be, BinaryExpr, node);
+ check_binary_expr(c, o, node);
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return kind;
+ }
+ case_end;
+
+
+
+ case_ast_node(se, SelectorExpr, node);
+ check_selector(c, o, node, type_hint);
+ case_end;
+
+
+ case_ast_node(ie, IndexExpr, node);
+ check_expr(c, o, ie->expr);
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return kind;
+ }
+
+ Type *t = base_type(type_deref(o->type));
+ bool is_ptr = is_type_pointer(o->type);
+ bool is_const = o->mode == Addressing_Constant;
+
+ if (is_type_map(t)) {
+ Operand key = {};
+ check_expr(c, &key, ie->index);
+ check_assignment(c, &key, t->Map.key, str_lit("map index"));
+ if (key.mode == Addressing_Invalid) {
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+ o->mode = Addressing_MapIndex;
+ o->type = t->Map.value;
+ o->expr = node;
+ return Expr_Expr;
+ }
+
+ i64 max_count = -1;
+ bool valid = check_set_index_data(o, t, is_ptr, &max_count);
+
+ if (is_const) {
+ valid = false;
+ }
+
+ if (!valid && (is_type_struct(t) || is_type_raw_union(t))) {
+ Entity *found = find_using_index_expr(t);
+ if (found != NULL) {
+ valid = check_set_index_data(o, found->type, is_type_pointer(found->type), &max_count);
+ }
+ }
+
+ if (!valid) {
+ gbString str = expr_to_string(o->expr);
+ if (is_const) {
+ error_node(o->expr, "Cannot index a constant `%s`", str);
+ } else {
+ error_node(o->expr, "Cannot index `%s`", str);
+ }
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ if (ie->index == NULL) {
+ gbString str = expr_to_string(o->expr);
+ error_node(o->expr, "Missing index for `%s`", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ i64 index = 0;
+ bool ok = check_index_value(c, false, ie->index, max_count, &index);
+
+ case_end;
+
+
+
+ case_ast_node(se, SliceExpr, node);
+ check_expr(c, o, se->expr);
+ if (o->mode == Addressing_Invalid) {
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ bool valid = false;
+ i64 max_count = -1;
+ Type *t = base_type(type_deref(o->type));
+ switch (t->kind) {
+ case Type_Basic:
+ if (is_type_string(t)) {
+ if (se->index3) {
+ error_node(node, "3-index slice on a string in not needed");
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+ valid = true;
+ if (o->mode == Addressing_Constant) {
+ max_count = o->value.value_string.len;
+ }
+ o->type = t_string;
+ }
+ break;
+
+ case Type_Array:
+ valid = true;
+ max_count = t->Array.count;
+ if (o->mode != Addressing_Variable) {
+ gbString str = expr_to_string(node);
+ error_node(node, "Cannot slice array `%s`, value is not addressable", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+ o->type = make_type_slice(c->allocator, t->Array.elem);
+ break;
+
+ case Type_Slice:
+ valid = true;
+ break;
+
+ case Type_DynamicArray:
+ valid = true;
+ o->type = make_type_slice(c->allocator, t->DynamicArray.elem);
+ break;
+ }
+
+ if (!valid) {
+ gbString str = expr_to_string(o->expr);
+ error_node(o->expr, "Cannot slice `%s`", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ if (o->mode != Addressing_Immutable) {
+ o->mode = Addressing_Value;
+ }
+
+ if (se->low == NULL && se->high != NULL) {
+ error(se->interval0, "1st index is required if a 2nd index is specified");
+ // It is okay to continue as it will assume the 1st index is zero
+ }
+
+ if (se->index3 && (se->high == NULL || se->max == NULL)) {
+ error(se->close, "2nd and 3rd indices are required in a 3-index slice");
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+ if (se->index3 && se->interval0.kind != se->interval1.kind) {
+ error(se->close, "The interval separators for in a 3-index slice must be the same");
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+
+
+ TokenKind interval_kind = se->interval0.kind;
+
+ i64 indices[2] = {};
+ AstNode *nodes[3] = {se->low, se->high, se->max};
+ for (isize i = 0; i < gb_count_of(nodes); i++) {
+ i64 index = max_count;
+ if (nodes[i] != NULL) {
+ i64 capacity = -1;
+ if (max_count >= 0) {
+ capacity = max_count;
+ }
+ i64 j = 0;
+ if (check_index_value(c, interval_kind == Token_Ellipsis, nodes[i], capacity, &j)) {
+ index = j;
+ }
+ } else if (i == 0) {
+ index = 0;
+ }
+ indices[i] = index;
+ }
+
+ for (isize i = 0; i < gb_count_of(indices); i++) {
+ i64 a = indices[i];
+ for (isize j = i+1; j < gb_count_of(indices); j++) {
+ i64 b = indices[j];
+ if (a > b && b >= 0) {
+ error(se->close, "Invalid slice indices: [%td > %td]", a, b);
+ }
+ }
+ }
+
+ case_end;
+
+
+ case_ast_node(ce, CallExpr, node);
+ return check_call_expr(c, o, node);
+ case_end;
+
+ case_ast_node(ce, MacroCallExpr, node);
+ return check_macro_call_expr(c, o, node);
+ case_end;
+
+ case_ast_node(de, DerefExpr, node);
+ check_expr_or_type(c, o, de->expr);
+ if (o->mode == Addressing_Invalid) {
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ } else {
+ Type *t = base_type(o->type);
+ if (t->kind == Type_Pointer) {
+ if (o->mode != Addressing_Immutable) {
+ o->mode = Addressing_Variable;
+ }
+ o->type = t->Pointer.elem;
+ } else {
+ gbString str = expr_to_string(o->expr);
+ error_node(o->expr, "Cannot dereference `%s`", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return kind;
+ }
+ }
+ case_end;
+
+ case AstNode_HelperType:
+ case AstNode_ProcType:
+ case AstNode_PointerType:
+ case AstNode_ArrayType:
+ case AstNode_DynamicArrayType:
+ case AstNode_VectorType:
+ case AstNode_StructType:
+ case AstNode_UnionType:
+ case AstNode_RawUnionType:
+ case AstNode_EnumType:
+ case AstNode_MapType:
+ o->mode = Addressing_Type;
+ o->type = check_type(c, node);
+ break;
+ }
+
+ kind = Expr_Expr;
+ o->expr = node;
+ return kind;
+}
+
+ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) {
+ ExprKind kind = check_expr_base_internal(c, o, node, type_hint);
+ Type *type = NULL;
+ ExactValue value = {ExactValue_Invalid};
+ switch (o->mode) {
+ case Addressing_Invalid:
+ type = t_invalid;
+ break;
+ case Addressing_NoValue:
+ type = NULL;
+ break;
+ case Addressing_Constant:
+ type = o->type;
+ value = o->value;
+ break;
+ default:
+ type = o->type;
+ break;
+ }
+
+ if (type != NULL && is_type_untyped(type)) {
+ add_untyped(&c->info, node, false, o->mode, type, value);
+ } else {
+ add_type_and_value(&c->info, node, o->mode, type, value);
+ }
+ return kind;
+}
+
+
+
+void check_multi_expr(Checker *c, Operand *o, AstNode *e) {
+ check_expr_base(c, o, e, NULL);
+ switch (o->mode) {
+ default:
+ return; // NOTE(bill): Valid
+ case Addressing_NoValue:
+ error_operand_no_value(o);
+ break;
+ case Addressing_Type:
+ error_operand_not_expression(o);
+ break;
+ }
+ o->mode = Addressing_Invalid;
+}
+
+void check_not_tuple(Checker *c, Operand *o) {
+ if (o->mode == Addressing_Value) {
+ // NOTE(bill): Tuples are not first class thus never named
+ if (o->type->kind == Type_Tuple) {
+ isize count = o->type->Tuple.variable_count;
+ GB_ASSERT(count != 1);
+ error_node(o->expr,
+ "%td-valued tuple found where single value expected", count);
+ o->mode = Addressing_Invalid;
+ }
+ }
+}
+
+void check_expr(Checker *c, Operand *o, AstNode *e) {
+ check_multi_expr(c, o, e);
+ check_not_tuple(c, o);
+}
+
+
+void check_expr_or_type(Checker *c, Operand *o, AstNode *e) {
+ check_expr_base(c, o, e, NULL);
+ check_not_tuple(c, o);
+ error_operand_no_value(o);
+}
+
+
+gbString write_expr_to_string(gbString str, AstNode *node);
+
+gbString write_record_fields_to_string(gbString str, Array<AstNode *> params) {
+ for_array(i, params) {
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, params[i]);
+ }
+ return str;
+}
+
+gbString string_append_token(gbString str, Token token) {
+ if (token.string.len > 0) {
+ return gb_string_append_length(str, &token.string[0], token.string.len);
+ }
+ return str;
+}
+
+
+gbString write_expr_to_string(gbString str, AstNode *node) {
+ if (node == NULL)
+ return str;
+
+ if (is_ast_node_stmt(node)) {
+ GB_ASSERT("stmt passed to write_expr_to_string");
+ }
+
+ switch (node->kind) {
+ default:
+ str = gb_string_appendc(str, "(BadExpr)");
+ break;
+
+ case_ast_node(i, Ident, node);
+ str = string_append_token(str, *i);
+ case_end;
+
+ case_ast_node(i, Implicit, node);
+ str = string_append_token(str, *i);
+ case_end;
+
+ case_ast_node(bl, BasicLit, node);
+ str = string_append_token(str, *bl);
+ case_end;
+
+ case_ast_node(bd, BasicDirective, node);
+ str = gb_string_appendc(str, "#");
+ str = gb_string_append_length(str, &bd->name[0], bd->name.len);
+ case_end;
+
+ case_ast_node(pl, ProcLit, node);
+ str = write_expr_to_string(str, pl->type);
+ case_end;
+
+ case_ast_node(cl, CompoundLit, node);
+ str = write_expr_to_string(str, cl->type);
+ str = gb_string_appendc(str, "{");
+ for_array(i, cl->elems) {
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, cl->elems[i]);
+ }
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+
+ case_ast_node(te, TagExpr, node);
+ str = gb_string_appendc(str, "#");
+ str = string_append_token(str, te->name);
+ str = write_expr_to_string(str, te->expr);
+ case_end;
+
+ case_ast_node(ue, UnaryExpr, node);
+ str = string_append_token(str, ue->op);
+ str = write_expr_to_string(str, ue->expr);
+ case_end;
+
+ case_ast_node(de, DerefExpr, node);
+ str = write_expr_to_string(str, de->expr);
+ str = gb_string_appendc(str, "^");
+ case_end;
+
+ case_ast_node(be, BinaryExpr, node);
+ str = write_expr_to_string(str, be->left);
+ str = gb_string_appendc(str, " ");
+ str = string_append_token(str, be->op);
+ str = gb_string_appendc(str, " ");
+ str = write_expr_to_string(str, be->right);
+ case_end;
+
+ case_ast_node(pe, ParenExpr, node);
+ str = gb_string_appendc(str, "(");
+ str = write_expr_to_string(str, pe->expr);
+ str = gb_string_appendc(str, ")");
+ case_end;
+
+ case_ast_node(se, SelectorExpr, node);
+ str = write_expr_to_string(str, se->expr);
+ str = gb_string_appendc(str, ".");
+ str = write_expr_to_string(str, se->selector);
+ case_end;
+
+ case_ast_node(ta, TypeAssertion, node);
+ str = write_expr_to_string(str, ta->expr);
+ str = gb_string_appendc(str, ".(");
+ str = write_expr_to_string(str, ta->type);
+ str = gb_string_appendc(str, ")");
+ case_end;
+
+ case_ast_node(ie, IndexExpr, node);
+ str = write_expr_to_string(str, ie->expr);
+ str = gb_string_appendc(str, "[");
+ str = write_expr_to_string(str, ie->index);
+ str = gb_string_appendc(str, "]");
+ case_end;
+
+ case_ast_node(se, SliceExpr, node);
+ str = write_expr_to_string(str, se->expr);
+ str = gb_string_appendc(str, "[");
+ str = write_expr_to_string(str, se->low);
+ str = gb_string_appendc(str, "..");
+ str = write_expr_to_string(str, se->high);
+ if (se->index3) {
+ str = gb_string_appendc(str, "..");
+ str = write_expr_to_string(str, se->max);
+ }
+ str = gb_string_appendc(str, "]");
+ case_end;
+
+ case_ast_node(e, Ellipsis, node);
+ str = gb_string_appendc(str, "..");
+ case_end;
+
+ case_ast_node(fv, FieldValue, node);
+ str = write_expr_to_string(str, fv->field);
+ str = gb_string_appendc(str, " = ");
+ str = write_expr_to_string(str, fv->value);
+ case_end;
+
+ case_ast_node(pt, PointerType, node);
+ str = gb_string_appendc(str, "^");
+ str = write_expr_to_string(str, pt->type);
+ case_end;
+
+ case_ast_node(at, ArrayType, node);
+ str = gb_string_appendc(str, "[");
+ if (at->count != NULL &&
+ at->count->kind == AstNode_UnaryExpr &&
+ at->count->UnaryExpr.op.kind == Token_Ellipsis) {
+ str = gb_string_appendc(str, "..");
+ } else {
+ str = write_expr_to_string(str, at->count);
+ }
+ str = gb_string_appendc(str, "]");
+ str = write_expr_to_string(str, at->elem);
+ case_end;
+
+ case_ast_node(at, DynamicArrayType, node);
+ str = gb_string_appendc(str, "[..]");
+ str = write_expr_to_string(str, at->elem);
+ case_end;
+
+ case_ast_node(vt, VectorType, node);
+ str = gb_string_appendc(str, "[vector ");
+ str = write_expr_to_string(str, vt->count);
+ str = gb_string_appendc(str, "]");
+ str = write_expr_to_string(str, vt->elem);
+ case_end;
+
+ case_ast_node(f, Field, node);
+ if (f->flags&FieldFlag_using) {
+ str = gb_string_appendc(str, "using ");
+ }
+ if (f->flags&FieldFlag_immutable) {
+ str = gb_string_appendc(str, "immutable ");
+ }
+ if (f->flags&FieldFlag_no_alias) {
+ str = gb_string_appendc(str, "no_alias ");
+ }
+
+ for_array(i, f->names) {
+ AstNode *name = f->names[i];
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, name);
+ }
+ if (f->names.count > 0) {
+ str = gb_string_appendc(str, ": ");
+ }
+ if (f->flags&FieldFlag_ellipsis) {
+ str = gb_string_appendc(str, "..");
+ }
+ str = write_expr_to_string(str, f->type);
+ case_end;
+
+ case_ast_node(f, FieldList, node);
+ for_array(i, f->list) {
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, f->list[i]);
+ }
+ case_end;
+
+ case_ast_node(f, UnionField, node);
+ str = write_expr_to_string(str, f->name);
+ str = gb_string_appendc(str, "{");
+ str = write_expr_to_string(str, f->list);
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+ case_ast_node(ce, CallExpr, node);
+ str = write_expr_to_string(str, ce->proc);
+ str = gb_string_appendc(str, "(");
+
+ for_array(i, ce->args) {
+ AstNode *arg = ce->args[i];
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, arg);
+ }
+ str = gb_string_appendc(str, ")");
+ case_end;
+
+ case_ast_node(pt, ProcType, node);
+ str = gb_string_appendc(str, "proc(");
+ str = write_expr_to_string(str, pt->params);
+ str = gb_string_appendc(str, ")");
+ case_end;
+
+ case_ast_node(st, StructType, node);
+ str = gb_string_appendc(str, "struct ");
+ if (st->is_packed) str = gb_string_appendc(str, "#packed ");
+ if (st->is_ordered) str = gb_string_appendc(str, "#ordered ");
+ str = gb_string_appendc(str, "{");
+ str = write_record_fields_to_string(str, st->fields);
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+ case_ast_node(st, RawUnionType, node);
+ str = gb_string_appendc(str, "raw_union ");
+ str = gb_string_appendc(str, "{");
+ str = write_record_fields_to_string(str, st->fields);
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+ case_ast_node(st, UnionType, node);
+ str = gb_string_appendc(str, "union ");
+ str = gb_string_appendc(str, "{");
+ str = write_record_fields_to_string(str, st->fields);
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+ case_ast_node(et, EnumType, node);
+ str = gb_string_appendc(str, "enum ");
+ if (et->base_type != NULL) {
+ str = write_expr_to_string(str, et->base_type);
+ str = gb_string_appendc(str, " ");
+ }
+ str = gb_string_appendc(str, "{");
+ for_array(i, et->fields) {
+ if (i > 0) {
+ str = gb_string_appendc(str, ", ");
+ }
+ str = write_expr_to_string(str, et->fields[i]);
+ }
+ str = gb_string_appendc(str, "}");
+ case_end;
+
+ case_ast_node(ht, HelperType, node);
+ str = gb_string_appendc(str, "#type ");
+ str = write_expr_to_string(str, ht->type);
+ case_end;
+
+ case_ast_node(at, AtomicType, node);
+ str = gb_string_appendc(str, "atomic ");
+ str = write_expr_to_string(str, at->type);
+ case_end;
+ }
+
+ return str;
+}
+
+gbString expr_to_string(AstNode *expression) {
+ return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression);
+}