diff options
| author | Mikkel Hjortshoej <Hjortshoej@handmade.network> | 2017-06-11 19:47:05 +0200 |
|---|---|---|
| committer | Mikkel Hjortshoej <Hjortshoej@handmade.network> | 2017-06-11 19:47:05 +0200 |
| commit | 47c03e376de85348abf1c11517b8873db9b76a1a (patch) | |
| tree | 8bf638b513851f8a77d7748dfca73def2360fea1 /src/check_expr.cpp | |
| parent | 8e32276283451a22cf42defe72de77b968afc91a (diff) | |
| parent | 366b306df04e14a5841868a40016cd844e120d99 (diff) | |
Merge branch 'master' of github.com:gingerBill/Odin
Diffstat (limited to 'src/check_expr.cpp')
| -rw-r--r-- | src/check_expr.cpp | 6664 |
1 files changed, 6664 insertions, 0 deletions
diff --git a/src/check_expr.cpp b/src/check_expr.cpp new file mode 100644 index 000000000..a8453f0cb --- /dev/null +++ b/src/check_expr.cpp @@ -0,0 +1,6664 @@ +void check_expr (Checker *c, Operand *operand, AstNode *expression); +void check_multi_expr (Checker *c, Operand *operand, AstNode *expression); +void check_expr_or_type (Checker *c, Operand *operand, AstNode *expression); +ExprKind check_expr_base (Checker *c, Operand *operand, AstNode *expression, Type *type_hint); +Type * check_type (Checker *c, AstNode *expression, Type *named_type = NULL); +void check_type_decl (Checker *c, Entity *e, AstNode *type_expr, Type *def); +Entity * check_selector (Checker *c, Operand *operand, AstNode *node, Type *type_hint); +void check_not_tuple (Checker *c, Operand *operand); +void convert_to_typed (Checker *c, Operand *operand, Type *target_type, i32 level); +gbString expr_to_string (AstNode *expression); +void check_entity_decl (Checker *c, Entity *e, DeclInfo *decl, Type *named_type); +void check_const_decl (Checker *c, Entity *e, AstNode *type_expr, AstNode *init_expr, Type *named_type); +void check_proc_body (Checker *c, Token token, DeclInfo *decl, Type *type, AstNode *body); +void update_expr_type (Checker *c, AstNode *e, Type *type, bool final); +bool check_is_terminating (AstNode *node); +bool check_has_break (AstNode *stmt, bool implicit); +void check_stmt (Checker *c, AstNode *node, u32 flags); +void check_stmt_list (Checker *c, Array<AstNode *> stmts, u32 flags); +void check_init_constant (Checker *c, Entity *e, Operand *operand); +bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value); +Type * check_call_arguments (Checker *c, Operand *operand, Type *proc_type, AstNode *call); + + +void error_operand_not_expression(Operand *o) { + if (o->mode == Addressing_Type) { + gbString err = expr_to_string(o->expr); + error_node(o->expr, "`%s` is not an expression but a type", err); + gb_string_free(err); + o->mode = Addressing_Invalid; + } +} + +void error_operand_no_value(Operand *o) { + if (o->mode == Addressing_NoValue) { + gbString err = expr_to_string(o->expr); + error_node(o->expr, "`%s` used as value", err); + gb_string_free(err); + o->mode = Addressing_Invalid; + } +} + + +void check_scope_decls(Checker *c, Array<AstNode *> nodes, isize reserve_size) { + Scope *s = c->context.scope; + GB_ASSERT(!s->is_file); + + check_collect_entities(c, nodes, false); + + for_array(i, s->elements.entries) { + Entity *e = s->elements.entries[i].value; + switch (e->kind) { + case Entity_Constant: + case Entity_TypeName: + case Entity_Procedure: + break; + default: + continue; + } + DeclInfo **found = map_get(&c->info.entities, hash_pointer(e)); + if (found != NULL) { + DeclInfo *d = *found; + check_entity_decl(c, e, d, NULL); + } + } + + for_array(i, s->elements.entries) { + Entity *e = s->elements.entries[i].value; + if (e->kind != Entity_Procedure) { + continue; + } + check_procedure_overloading(c, e); + } +} + + +bool check_is_assignable_to_using_subtype(Type *src, Type *dst) { + bool src_is_ptr = false; + Type *prev_src = src; + src = type_deref(src); + src_is_ptr = src != prev_src; + src = base_type(src); + + if (!is_type_struct(src) && !is_type_union(src)) { + return false; + } + + for (isize i = 0; i < src->Record.field_count; i++) { + Entity *f = src->Record.fields[i]; + if (f->kind != Entity_Variable || (f->flags&EntityFlag_Using) == 0) { + continue; + } + + if (are_types_identical(f->type, dst)) { + return true; + } + if (src_is_ptr && is_type_pointer(dst)) { + if (are_types_identical(f->type, type_deref(dst))) { + return true; + } + } + bool ok = check_is_assignable_to_using_subtype(f->type, dst); + if (ok) { + return true; + } + } + + return false; +} + + +// IMPORTANT TODO(bill): figure out the exact distance rules +// -1 is not convertable +// 0 is exact +// >0 is convertable + +i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) { + if (operand->mode == Addressing_Invalid || + type == t_invalid) { + return 0; + } + + if (operand->mode == Addressing_Builtin) { + return -1; + } + + Type *s = operand->type; + + if (are_types_identical(s, type)) { + return 0; + } + + Type *src = base_type(s); + Type *dst = base_type(type); + + if (is_type_untyped_nil(src)) { + if (type_has_nil(dst)) { + return 1; + } + return -1; + } + if (is_type_untyped(src)) { + if (is_type_any(dst)) { + // NOTE(bill): Anything can cast to `Any` + add_type_info_type(c, s); + return 10; + } + if (dst->kind == Type_Basic) { + if (operand->mode == Addressing_Constant) { + if (check_representable_as_constant(c, operand->value, dst, NULL)) { + if (is_type_typed(dst) && src->kind == Type_Basic) { + switch (src->Basic.kind) { + case Basic_UntypedInteger: + if (is_type_integer(dst) || is_type_rune(dst)) { + return 1; + } + break; + case Basic_UntypedFloat: + if (is_type_float(dst)) { + return 1; + } + break; + case Basic_UntypedComplex: + if (is_type_complex(dst)) { + return 1; + } + break; + } + } + return 2; + } + return -1; + } + if (src->kind == Type_Basic && src->Basic.kind == Basic_UntypedBool) { + if (is_type_boolean(dst)) { + if (is_type_typed(type)) { + return 2; + } + return 1; + } + return -1; + } + } + } + + if (are_types_identical(dst, src) && (!is_type_named(dst) || !is_type_named(src))) { + return 1; + } + + + if (is_type_bit_field_value(operand->type) && is_type_integer(type)) { + Type *bfv = base_type(operand->type); + i32 bits = bfv->BitFieldValue.bits; + i32 size = next_pow2((bits+7)/8); + i32 dst_size = type_size_of(c->allocator, type); + i32 diff = gb_abs(dst_size - size); + // TODO(bill): figure out a decent rule here + return 1; + } + + + if (check_is_assignable_to_using_subtype(operand->type, type)) { + return 4; + } + + // ^T <- rawptr +#if 0 + // TODO(bill): Should C-style (not C++) pointer cast be allowed? + if (is_type_pointer(dst) && is_type_rawptr(src)) { + return true; + } +#endif +#if 1 + + + // TODO(bill): Should I allow this implicit conversion at all?! + // rawptr <- ^T + if (are_types_identical(type, t_rawptr) && is_type_pointer(src)) { + return 5; + } +#endif + + if (is_type_union(dst)) { + for (isize i = 0; i < dst->Record.variant_count; i++) { + Entity *f = dst->Record.variants[i]; + if (are_types_identical(f->type, s)) { + return 1; + } + } + } + + if (is_type_proc(dst)) { + if (are_types_identical(src, dst)) { + return 3; + } + } + + if (is_type_vector(dst)) { + Type *elem = base_vector_type(dst); + i64 distance = check_distance_between_types(c, operand, elem); + if (distance >= 0) { + return distance + 5; + } + } + + + if (is_type_any(dst)) { + // NOTE(bill): Anything can cast to `Any` + add_type_info_type(c, s); + return 10; + } + + + + return -1; +} + + +i64 assign_score_function(i64 distance) { + // TODO(bill): A decent score function + return gb_max(1000000 - distance*distance, 0); +} + + +bool check_is_assignable_to_with_score(Checker *c, Operand *operand, Type *type, i64 *score_) { + i64 score = 0; + i64 distance = check_distance_between_types(c, operand, type); + bool ok = distance >= 0; + if (ok) { + score = assign_score_function(distance); + } + if (score_) *score_ = score; + return ok; +} + + +bool check_is_assignable_to(Checker *c, Operand *operand, Type *type) { + i64 score = 0; + return check_is_assignable_to_with_score(c, operand, type, &score); +} + + +// NOTE(bill): `content_name` is for debugging and error messages +void check_assignment(Checker *c, Operand *operand, Type *type, String context_name) { + check_not_tuple(c, operand); + if (operand->mode == Addressing_Invalid) { + return; + } + + if (is_type_untyped(operand->type)) { + Type *target_type = type; + if (type == NULL || is_type_any(type)) { + if (type == NULL && is_type_untyped_nil(operand->type)) { + error_node(operand->expr, "Use of untyped nil in %.*s", LIT(context_name)); + operand->mode = Addressing_Invalid; + return; + } + target_type = default_type(operand->type); + if (type != NULL && !is_type_any(type)) { + GB_ASSERT_MSG(is_type_typed(target_type), "%s", type_to_string(type)); + } + add_type_info_type(c, type); + add_type_info_type(c, target_type); + } + + if (target_type != NULL && is_type_vector(target_type)) { + // NOTE(bill): continue to below + } else { + convert_to_typed(c, operand, target_type, 0); + if (operand->mode == Addressing_Invalid) { + return; + } + } + } + + if (type == NULL) { + return; + } + + if (!check_is_assignable_to(c, operand, type)) { + gbString type_str = type_to_string(type); + gbString op_type_str = type_to_string(operand->type); + gbString expr_str = expr_to_string(operand->expr); + + if (operand->mode == Addressing_Builtin) { + // TODO(bill): is this a good enough error message? + // TODO(bill): Actually allow built in procedures to be passed around and thus be created on use + error_node(operand->expr, + "Cannot assign built-in procedure `%s` in %.*s", + expr_str, + LIT(context_name)); + } else { + // TODO(bill): is this a good enough error message? + error_node(operand->expr, + "Cannot assign value `%s` of type `%s` to `%s` in %.*s", + expr_str, + op_type_str, + type_str, + LIT(context_name)); + } + operand->mode = Addressing_Invalid; + + gb_string_free(expr_str); + gb_string_free(op_type_str); + gb_string_free(type_str); + return; + } +} + + +void populate_using_entity_map(Checker *c, AstNode *node, Type *t, Map<Entity *> *entity_map) { + t = base_type(type_deref(t)); + gbString str = NULL; + if (node != NULL) { + expr_to_string(node); + } + + if (t->kind == Type_Record) { + for (isize i = 0; i < t->Record.field_count; i++) { + Entity *f = t->Record.fields[i]; + GB_ASSERT(f->kind == Entity_Variable); + String name = f->token.string; + HashKey key = hash_string(name); + Entity **found = map_get(entity_map, key); + if (found != NULL) { + Entity *e = *found; + // TODO(bill): Better type error + if (str != NULL) { + error(e->token, "`%.*s` is already declared in `%s`", LIT(name), str); + } else { + error(e->token, "`%.*s` is already declared`", LIT(name)); + } + } else { + map_set(entity_map, key, f); + add_entity(c, c->context.scope, NULL, f); + if (f->flags & EntityFlag_Using) { + populate_using_entity_map(c, node, f->type, entity_map); + } + } + } + } + + gb_string_free(str); +} + + +// Returns filled field_count +isize check_fields(Checker *c, AstNode *node, Array<AstNode *> decls, + Entity **fields, isize field_count, + String context) { + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + + Map<Entity *> entity_map = {}; + map_init_with_reserve(&entity_map, c->tmp_allocator, 2*field_count); + + Entity *using_index_expr = NULL; + + if (node != NULL) { + GB_ASSERT(node->kind != AstNode_UnionType); + } + + isize field_index = 0; + for_array(decl_index, decls) { + AstNode *decl = decls[decl_index]; + if (decl->kind != AstNode_Field) { + continue; + } + ast_node(f, Field, decl); + + Type *type = check_type(c, f->type); + bool is_using = (f->flags&FieldFlag_using) != 0; + + if (is_using) { + if (f->names.count > 1) { + error_node(f->names[0], "Cannot apply `using` to more than one of the same type"); + is_using = false; + } + } + + for_array(name_index, f->names) { + AstNode *name = f->names[name_index]; + if (!ast_node_expect(name, AstNode_Ident)) { + continue; + } + + Token name_token = name->Ident; + + Entity *e = make_entity_field(c->allocator, c->context.scope, name_token, type, is_using, cast(i32)field_index); + e->identifier = name; + if (name_token.string == "_") { + fields[field_index++] = e; + } else if (name_token.string == "__tag") { + error_node(name, "`__tag` is a reserved identifier for fields"); + } else { + HashKey key = hash_string(name_token.string); + Entity **found = map_get(&entity_map, key); + if (found != NULL) { + Entity *e = *found; + // NOTE(bill): Scope checking already checks the declaration but in many cases, this can happen so why not? + // This may be a little janky but it's not really that much of a problem + error(name_token, "`%.*s` is already declared in this type", LIT(name_token.string)); + error(e->token, "\tpreviously declared"); + } else { + map_set(&entity_map, key, e); + fields[field_index++] = e; + add_entity(c, c->context.scope, name, e); + } + add_entity_use(c, name, e); + } + } + + + if (is_using) { + Type *t = base_type(type_deref(type)); + if (!is_type_struct(t) && !is_type_raw_union(t) && !is_type_bit_field(t) && + f->names.count >= 1 && + f->names[0]->kind == AstNode_Ident) { + Token name_token = f->names[0]->Ident; + if (is_type_indexable(t)) { + bool ok = true; + for_array(emi, entity_map.entries) { + Entity *e = entity_map.entries[emi].value; + if (e->kind == Entity_Variable && e->flags & EntityFlag_Using) { + if (is_type_indexable(e->type)) { + if (e->identifier != f->names[0]) { + ok = false; + using_index_expr = e; + break; + } + } + } + } + if (ok) { + using_index_expr = fields[field_index-1]; + } else { + fields[field_index-1]->flags &= ~EntityFlag_Using; + error(name_token, "Previous `using` for an index expression `%.*s`", LIT(name_token.string)); + } + } else { + gbString type_str = type_to_string(type); + error(name_token, "`using` cannot be applied to the field `%.*s` of type `%s`", LIT(name_token.string), type_str); + gb_string_free(type_str); + continue; + } + } + + populate_using_entity_map(c, node, type, &entity_map); + } + } + + gb_temp_arena_memory_end(tmp); + + return field_index; +} + + +// TODO(bill): Cleanup struct field reordering +// TODO(bill): Inline sorting procedure? +gb_global gbAllocator __checker_allocator = {}; + +GB_COMPARE_PROC(cmp_reorder_struct_fields) { + // Rule: + // `using` over non-`using` + // Biggest to smallest alignment + // if same alignment: biggest to smallest size + // if same size: order by source order + Entity *x = *(Entity **)a; + Entity *y = *(Entity **)b; + GB_ASSERT(x != NULL); + GB_ASSERT(y != NULL); + GB_ASSERT(x->kind == Entity_Variable); + GB_ASSERT(y->kind == Entity_Variable); + bool xu = (x->flags & EntityFlag_Using) != 0; + bool yu = (y->flags & EntityFlag_Using) != 0; + i64 xa = type_align_of(__checker_allocator, x->type); + i64 ya = type_align_of(__checker_allocator, y->type); + i64 xs = type_size_of(__checker_allocator, x->type); + i64 ys = type_size_of(__checker_allocator, y->type); + + if (xu != yu) { + return xu ? -1 : +1; + } + + if (xa != ya) { + return xa > ya ? -1 : xa < ya; + } + if (xs != ys) { + return xs > ys ? -1 : xs < ys; + } + i32 diff = x->Variable.field_index - y->Variable.field_index; + return diff < 0 ? -1 : diff > 0; +} + +Entity *make_names_field_for_record(Checker *c, Scope *scope) { + Entity *e = make_entity_field(c->allocator, scope, + make_token_ident(str_lit("names")), t_string_slice, false, 0); + e->Variable.is_immutable = true; + e->flags |= EntityFlag_TypeField; + return e; +} + +void check_struct_type(Checker *c, Type *struct_type, AstNode *node) { + GB_ASSERT(is_type_struct(struct_type)); + ast_node(st, StructType, node); + + isize field_count = 0; + for_array(field_index, st->fields) { + AstNode *field = st->fields[field_index]; + switch (field->kind) { + case_ast_node(f, Field, field); + field_count += f->names.count; + case_end; + } + } + + Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); + + field_count = check_fields(c, node, st->fields, fields, field_count, str_lit("struct")); + + struct_type->Record.is_packed = st->is_packed; + struct_type->Record.is_ordered = st->is_ordered; + struct_type->Record.fields = fields; + struct_type->Record.fields_in_src_order = fields; + struct_type->Record.field_count = field_count; + struct_type->Record.names = make_names_field_for_record(c, c->context.scope); + + type_set_offsets(c->allocator, struct_type); + + + if (!struct_type->failure && !st->is_packed && !st->is_ordered) { + struct_type->failure = false; + struct_type->Record.are_offsets_set = false; + struct_type->Record.offsets = NULL; + // NOTE(bill): Reorder fields for reduced size/performance + + Entity **reordered_fields = gb_alloc_array(c->allocator, Entity *, field_count); + for (isize i = 0; i < field_count; i++) { + reordered_fields[i] = struct_type->Record.fields_in_src_order[i]; + } + + // NOTE(bill): Hacky thing + // TODO(bill): Probably make an inline sorting procedure rather than use global variables + __checker_allocator = c->allocator; + // NOTE(bill): compound literal order must match source not layout + gb_sort_array(reordered_fields, field_count, cmp_reorder_struct_fields); + + for (isize i = 0; i < field_count; i++) { + reordered_fields[i]->Variable.field_index = i; + } + + struct_type->Record.fields = reordered_fields; + } + + type_set_offsets(c->allocator, struct_type); + + + if (st->align != NULL) { + if (st->is_packed) { + syntax_error_node(st->align, "`#align` cannot be applied with `#packed`"); + return; + } + + Operand o = {}; + check_expr(c, &o, st->align); + if (o.mode != Addressing_Constant) { + if (o.mode != Addressing_Invalid) { + error_node(st->align, "#align must be a constant"); + } + return; + } + + Type *type = base_type(o.type); + if (is_type_untyped(type) || is_type_integer(type)) { + if (o.value.kind == ExactValue_Integer) { + i64 align = i128_to_i64(o.value.value_integer); + if (align < 1 || !gb_is_power_of_two(align)) { + error_node(st->align, "#align must be a power of 2, got %lld", align); + return; + } + + // NOTE(bill): Success!!! + i64 custom_align = gb_clamp(align, 1, build_context.max_align); + if (custom_align < align) { + warning_node(st->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align); + } + struct_type->Record.custom_align = custom_align; + return; + } + } + + error_node(st->align, "#align must be an integer"); + return; + } + + +} +void check_union_type(Checker *c, Type *union_type, AstNode *node) { + GB_ASSERT(is_type_union(union_type)); + ast_node(ut, UnionType, node); + + isize variant_count = ut->variants.count+1; + isize field_count = 0; + for_array(i, ut->fields) { + AstNode *field = ut->fields[i]; + if (field->kind == AstNode_Field) { + ast_node(f, Field, field); + field_count += f->names.count; + } + } + + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + + Map<Entity *> entity_map = {}; // Key: String + map_init_with_reserve(&entity_map, c->tmp_allocator, 2*variant_count); + + Entity *using_index_expr = NULL; + + Entity **variants = gb_alloc_array(c->allocator, Entity *, variant_count); + Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); + + isize variant_index = 0; + variants[variant_index++] = make_entity_type_name(c->allocator, c->context.scope, empty_token, NULL); + + field_count = check_fields(c, NULL, ut->fields, fields, field_count, str_lit("union")); + + for (isize i = 0; i < field_count; i++) { + Entity *f = fields[i]; + String name = f->token.string; + map_set(&entity_map, hash_string(name), f); + } + + union_type->Record.fields = fields; + union_type->Record.fields_in_src_order = fields; + union_type->Record.field_count = field_count; + union_type->Record.are_offsets_set = false; + union_type->Record.is_ordered = true; + { + Entity *__tag = make_entity_field(c->allocator, NULL, make_token_ident(str_lit("__tag")), t_int, false, -1); + union_type->Record.union__tag = __tag; + } + + for_array(i, ut->variants) { + AstNode *variant = ut->variants[i]; + if (variant->kind != AstNode_UnionField) { + continue; + } + ast_node(f, UnionField, variant); + Token name_token = f->name->Ident; + + Type *base_type = make_type_struct(c->allocator); + { + ast_node(fl, FieldList, f->list); + + // NOTE(bill): Copy the contents for the common fields for now + Array<AstNode *> list = {}; + array_init_count(&list, c->allocator, ut->fields.count+fl->list.count); + gb_memmove_array(list.data, ut->fields.data, ut->fields.count); + gb_memmove_array(list.data+ut->fields.count, fl->list.data, fl->list.count); + + isize list_count = 0; + for_array(j, list) { + ast_node(f, Field, list[j]); + list_count += f->names.count; + } + + + Token token = name_token; + token.kind = Token_struct; + AstNode *dummy_struct = ast_struct_type(c->curr_ast_file, token, list, list_count, false, true, NULL); + + check_open_scope(c, dummy_struct); + Entity **fields = gb_alloc_array(c->allocator, Entity *, list_count); + isize field_count = check_fields(c, dummy_struct, list, fields, list_count, str_lit("variant")); + base_type->Record.is_packed = false; + base_type->Record.is_ordered = true; + base_type->Record.fields = fields; + base_type->Record.fields_in_src_order = fields; + base_type->Record.field_count = field_count; + base_type->Record.names = make_names_field_for_record(c, c->context.scope); + base_type->Record.node = dummy_struct; + + type_set_offsets(c->allocator, base_type); + + check_close_scope(c); + } + + Type *type = make_type_named(c->allocator, name_token.string, base_type, NULL); + Entity *e = make_entity_type_name(c->allocator, c->context.scope, name_token, type); + type->Named.type_name = e; + add_entity(c, c->context.scope, f->name, e); + + if (name_token.string == "_") { + error(name_token, "`_` cannot be used a union subtype"); + continue; + } + + HashKey key = hash_string(name_token.string); + if (map_get(&entity_map, key) != NULL) { + // NOTE(bill): Scope checking already checks the declaration + error(name_token, "`%.*s` is already declared in this union", LIT(name_token.string)); + } else { + map_set(&entity_map, key, e); + variants[variant_index++] = e; + } + add_entity_use(c, f->name, e); + } + + type_set_offsets(c->allocator, union_type); + + gb_temp_arena_memory_end(tmp); + + union_type->Record.variants = variants; + union_type->Record.variant_count = variant_index; +} + +void check_raw_union_type(Checker *c, Type *union_type, AstNode *node) { + GB_ASSERT(node->kind == AstNode_RawUnionType); + GB_ASSERT(is_type_raw_union(union_type)); + ast_node(ut, RawUnionType, node); + + isize field_count = 0; + for_array(field_index, ut->fields) { + AstNode *field = ut->fields[field_index]; + switch (field->kind) { + case_ast_node(f, Field, field); + field_count += f->names.count; + case_end; + } + } + + Entity **fields = gb_alloc_array(c->allocator, Entity *, field_count); + + field_count = check_fields(c, node, ut->fields, fields, field_count, str_lit("raw_union")); + + union_type->Record.fields = fields; + union_type->Record.field_count = field_count; + union_type->Record.names = make_names_field_for_record(c, c->context.scope); +} + + +void check_enum_type(Checker *c, Type *enum_type, Type *named_type, AstNode *node) { + ast_node(et, EnumType, node); + GB_ASSERT(is_type_enum(enum_type)); + + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + + Type *base_type = t_int; + if (et->base_type != NULL) { + base_type = check_type(c, et->base_type); + } + + if (base_type == NULL || !(is_type_integer(base_type) || is_type_float(base_type))) { + error_node(node, "Base type for enumeration must be numeric"); + return; + } + if (is_type_enum(base_type)) { + error_node(node, "Base type for enumeration cannot be another enumeration"); + return; + } + + // NOTE(bill): Must be up here for the `check_init_constant` system + enum_type->Record.enum_base_type = base_type; + + Map<Entity *> entity_map = {}; // Key: String + map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(et->fields.count)); + + Entity **fields = gb_alloc_array(c->allocator, Entity *, et->fields.count); + isize field_count = 0; + + Type *constant_type = enum_type; + if (named_type != NULL) { + constant_type = named_type; + } + + ExactValue iota = exact_value_i64(-1); + ExactValue min_value = exact_value_i64(0); + ExactValue max_value = exact_value_i64(0); + + for_array(i, et->fields) { + AstNode *field = et->fields[i]; + AstNode *ident = NULL; + AstNode *init = NULL; + if (field->kind == AstNode_FieldValue) { + ast_node(fv, FieldValue, field); + if (fv->field == NULL || fv->field->kind != AstNode_Ident) { + error_node(field, "An enum field's name must be an identifier"); + continue; + } + ident = fv->field; + init = fv->value; + } else if (field->kind == AstNode_Ident) { + ident = field; + } else { + error_node(field, "An enum field's name must be an identifier"); + continue; + } + String name = ident->Ident.string; + + if (init != NULL) { + Operand o = {}; + check_expr(c, &o, init); + if (o.mode != Addressing_Constant) { + error_node(init, "Enumeration value must be a constant"); + o.mode = Addressing_Invalid; + } + if (o.mode != Addressing_Invalid) { + check_assignment(c, &o, constant_type, str_lit("enumeration")); + } + if (o.mode != Addressing_Invalid) { + iota = o.value; + } else { + iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); + } + } else { + iota = exact_binary_operator_value(Token_Add, iota, exact_value_i64(1)); + } + + + // NOTE(bill): Skip blank identifiers + if (name == "_") { + continue; + } else if (name == "count") { + error_node(field, "`count` is a reserved identifier for enumerations"); + continue; + } else if (name == "min_value") { + error_node(field, "`min_value` is a reserved identifier for enumerations"); + continue; + } else if (name == "max_value") { + error_node(field, "`max_value` is a reserved identifier for enumerations"); + continue; + } else if (name == "names") { + error_node(field, "`names` is a reserved identifier for enumerations"); + continue; + }/* else if (name == "base_type") { + error_node(field, "`base_type` is a reserved identifier for enumerations"); + continue; + } */ + + if (compare_exact_values(Token_Gt, min_value, iota)) { + min_value = iota; + } + if (compare_exact_values(Token_Lt, max_value, iota)) { + max_value = iota; + } + + Entity *e = make_entity_constant(c->allocator, c->context.scope, ident->Ident, constant_type, iota); + e->identifier = ident; + e->flags |= EntityFlag_Visited; + + HashKey key = hash_string(name); + if (map_get(&entity_map, key) != NULL) { + error_node(ident, "`%.*s` is already declared in this enumeration", LIT(name)); + } else { + map_set(&entity_map, key, e); + add_entity(c, c->context.scope, NULL, e); + fields[field_count++] = e; + add_entity_use(c, field, e); + } + } + GB_ASSERT(field_count <= et->fields.count); + gb_temp_arena_memory_end(tmp); + + + enum_type->Record.fields = fields; + enum_type->Record.field_count = field_count; + + enum_type->Record.enum_count = make_entity_constant(c->allocator, c->context.scope, + make_token_ident(str_lit("count")), t_int, exact_value_i64(field_count)); + enum_type->Record.enum_min_value = make_entity_constant(c->allocator, c->context.scope, + make_token_ident(str_lit("min_value")), constant_type, min_value); + enum_type->Record.enum_max_value = make_entity_constant(c->allocator, c->context.scope, + make_token_ident(str_lit("max_value")), constant_type, max_value); + + enum_type->Record.names = make_names_field_for_record(c, c->context.scope); +} + + +void check_bit_field_type(Checker *c, Type *bit_field_type, Type *named_type, AstNode *node) { + ast_node(bft, BitFieldType, node); + GB_ASSERT(is_type_bit_field(bit_field_type)); + + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + + + Map<Entity *> entity_map = {}; // Key: String + map_init_with_reserve(&entity_map, c->tmp_allocator, 2*(bft->fields.count)); + + isize field_count = 0; + Entity **fields = gb_alloc_array(c->allocator, Entity *, bft->fields.count); + u32 * sizes = gb_alloc_array(c->allocator, u32, bft->fields.count); + u32 * offsets = gb_alloc_array(c->allocator, u32, bft->fields.count); + + u32 curr_offset = 0; + for_array(i, bft->fields) { + AstNode *field = bft->fields[i]; + GB_ASSERT(field->kind == AstNode_FieldValue); + AstNode *ident = field->FieldValue.field; + AstNode *value = field->FieldValue.value; + + if (ident->kind != AstNode_Ident) { + error_node(field, "A bit field value's name must be an identifier"); + continue; + } + String name = ident->Ident.string; + + Operand o = {}; + check_expr(c, &o, value); + if (o.mode != Addressing_Constant) { + error_node(value, "Bit field bit size must be a constant"); + continue; + } + ExactValue v = exact_value_to_integer(o.value); + if (v.kind != ExactValue_Integer) { + error_node(value, "Bit field bit size must be a constant integer"); + continue; + } + i64 bits = i128_to_i64(v.value_integer); + if (bits < 0 || bits > 128) { + error_node(value, "Bit field's bit size must be within the range 1..<128, got %lld", cast(long long)bits); + continue; + } + + Type *value_type = make_type_bit_field_value(c->allocator, bits); + Entity *e = make_entity_variable(c->allocator, bit_field_type->BitField.scope, ident->Ident, value_type, false); + e->identifier = ident; + e->flags |= EntityFlag_BitFieldValue; + + HashKey key = hash_string(name); + if (name != "_" && + map_get(&entity_map, key) != NULL) { + error_node(ident, "`%.*s` is already declared in this bit field", LIT(name)); + } else { + map_set(&entity_map, key, e); + add_entity(c, c->context.scope, NULL, e); + add_entity_use(c, field, e); + + fields [field_count] = e; + offsets[field_count] = curr_offset; + sizes [field_count] = bits; + field_count++; + + curr_offset += bits; + } + } + GB_ASSERT(field_count <= bft->fields.count); + gb_temp_arena_memory_end(tmp); + + bit_field_type->BitField.fields = fields; + bit_field_type->BitField.field_count = field_count; + bit_field_type->BitField.sizes = sizes; + bit_field_type->BitField.offsets = offsets; + + + if (bft->align != NULL) { + Operand o = {}; + check_expr(c, &o, bft->align); + if (o.mode != Addressing_Constant) { + if (o.mode != Addressing_Invalid) { + error_node(bft->align, "#align must be a constant"); + } + return; + } + + Type *type = base_type(o.type); + if (is_type_untyped(type) || is_type_integer(type)) { + if (o.value.kind == ExactValue_Integer) { + i64 align = i128_to_i64(o.value.value_integer); + if (align < 1 || !gb_is_power_of_two(align)) { + error_node(bft->align, "#align must be a power of 2, got %lld", align); + return; + } + + // NOTE(bill): Success!!! + i64 custom_align = gb_clamp(align, 1, build_context.max_align); + if (custom_align < align) { + warning_node(bft->align, "Custom alignment has been clamped to %lld from %lld", align, custom_align); + } + bit_field_type->BitField.custom_align = custom_align; + return; + } + } + + error_node(bft->align, "#align must be an integer"); + return; + } +} + + + + +Type *check_get_params(Checker *c, Scope *scope, AstNode *_params, bool *is_variadic_) { + if (_params == NULL) { + return NULL; + } + ast_node(field_list, FieldList, _params); + Array<AstNode *> params = field_list->list; + + if (params.count == 0) { + return NULL; + } + + isize variable_count = 0; + for_array(i, params) { + AstNode *field = params[i]; + if (ast_node_expect(field, AstNode_Field)) { + ast_node(f, Field, field); + variable_count += gb_max(f->names.count, 1); + } + } + + bool is_variadic = false; + Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count); + isize variable_index = 0; + for_array(i, params) { + if (params[i]->kind != AstNode_Field) { + continue; + } + ast_node(p, Field, params[i]); + AstNode *type_expr = p->type; + Type *type = NULL; + AstNode *default_value = p->default_value; + ExactValue value = {}; + + if (type_expr == NULL) { + Operand o = {}; + check_expr(c, &o, default_value); + + if (o.mode != Addressing_Constant) { + error_node(default_value, "Default parameter must be a constant"); + } else { + value = o.value; + } + + type = default_type(o.type); + } else { + if (type_expr->kind == AstNode_Ellipsis) { + type_expr = type_expr->Ellipsis.expr; + if (i+1 == params.count) { + is_variadic = true; + } else { + error_node(params[i], "Invalid AST: Invalid variadic parameter"); + } + } + + type = check_type(c, type_expr); + + if (default_value != NULL) { + Operand o = {}; + check_expr(c, &o, default_value); + + if (o.mode != Addressing_Constant) { + error_node(default_value, "Default parameter must be a constant"); + } else { + value = o.value; + } + + check_is_assignable_to(c, &o, type); + } + + } + if (type == NULL) { + error_node(params[i], "Invalid parameter type"); + type = t_invalid; + } + + if (p->flags&FieldFlag_no_alias) { + if (!is_type_pointer(type)) { + error_node(params[i], "`no_alias` can only be applied to fields of pointer type"); + p->flags &= ~FieldFlag_no_alias; // Remove the flag + } + } + + for_array(j, p->names) { + AstNode *name = p->names[j]; + if (ast_node_expect(name, AstNode_Ident)) { + Entity *param = make_entity_param(c->allocator, scope, name->Ident, type, + (p->flags&FieldFlag_using) != 0, (p->flags&FieldFlag_immutable) != 0); + if (p->flags&FieldFlag_no_alias) { + param->flags |= EntityFlag_NoAlias; + } + if (p->flags&FieldFlag_immutable) { + param->Variable.is_immutable = true; + } + param->Variable.default_value = value; + + add_entity(c, scope, name, param); + variables[variable_index++] = param; + } + } + } + + variable_count = variable_index; + + if (is_variadic) { + GB_ASSERT(params.count > 0); + // NOTE(bill): Change last variadic parameter to be a slice + // Custom Calling convention for variadic parameters + Entity *end = variables[variable_count-1]; + end->type = make_type_slice(c->allocator, end->type); + end->flags |= EntityFlag_Ellipsis; + } + + Type *tuple = make_type_tuple(c->allocator); + tuple->Tuple.variables = variables; + tuple->Tuple.variable_count = variable_count; + + if (is_variadic_) *is_variadic_ = is_variadic; + + return tuple; +} + +Type *check_get_results(Checker *c, Scope *scope, AstNode *_results) { + if (_results == NULL) { + return NULL; + } + ast_node(field_list, FieldList, _results); + Array<AstNode *> results = field_list->list; + + if (results.count == 0) { + return NULL; + } + Type *tuple = make_type_tuple(c->allocator); + + isize variable_count = 0; + for_array(i, results) { + AstNode *field = results[i]; + if (ast_node_expect(field, AstNode_Field)) { + ast_node(f, Field, field); + variable_count += gb_max(f->names.count, 1); + } + } + + Entity **variables = gb_alloc_array(c->allocator, Entity *, variable_count); + isize variable_index = 0; + for_array(i, results) { + ast_node(field, Field, results[i]); + Type *type = check_type(c, field->type); + if (field->names.count == 0) { + Token token = ast_node_token(field->type); + token.string = str_lit(""); + Entity *param = make_entity_param(c->allocator, scope, token, type, false, false); + variables[variable_index++] = param; + } else { + for_array(j, field->names) { + Token token = ast_node_token(field->type); + token.string = str_lit(""); + + AstNode *name = field->names[j]; + if (name->kind != AstNode_Ident) { + error_node(name, "Expected an identifer for as the field name"); + } else { + token = name->Ident; + } + + Entity *param = make_entity_param(c->allocator, scope, token, type, false, false); + variables[variable_index++] = param; + } + } + } + + for (isize i = 0; i < variable_index; i++) { + String x = variables[i]->token.string; + if (x.len == 0 || x == "_") { + continue; + } + for (isize j = i+1; j < variable_index; j++) { + String y = variables[j]->token.string; + if (y.len == 0 || y == "_") { + continue; + } + if (x == y) { + error(variables[j]->token, "Duplicate return value name `%.*s`", LIT(y)); + } + } + } + + tuple->Tuple.variables = variables; + tuple->Tuple.variable_count = variable_index; + + return tuple; +} + +Type *type_to_abi_compat_param_type(gbAllocator a, Type *original_type) { + Type *new_type = original_type; + + if (build_context.ODIN_OS == "windows") { + // NOTE(bill): Changing the passing parameter value type is to match C's ABI + // IMPORTANT TODO(bill): This only matches the ABI on MSVC at the moment + // SEE: https://msdn.microsoft.com/en-us/library/zthk2dkh.aspx + Type *bt = core_type(original_type); + switch (bt->kind) { + // Okay to pass by value + // Especially the only Odin types + case Type_Basic: break; + case Type_Pointer: break; + case Type_Proc: break; // NOTE(bill): Just a pointer + + // Odin only types + case Type_Slice: + case Type_DynamicArray: + case Type_Map: + break; + + // Odin specific + case Type_Array: + case Type_Vector: + // Could be in C too + case Type_Record: { + i64 align = type_align_of(a, original_type); + i64 size = type_size_of(a, original_type); + switch (8*size) { + case 8: new_type = t_u8; break; + case 16: new_type = t_u16; break; + case 32: new_type = t_u32; break; + case 64: new_type = t_u64; break; + default: + new_type = make_type_pointer(a, original_type); + break; + } + } break; + } + } else if (build_context.ODIN_OS == "linux") { + Type *bt = core_type(original_type); + switch (bt->kind) { + // Okay to pass by value + // Especially the only Odin types + case Type_Basic: break; + case Type_Pointer: break; + case Type_Proc: break; // NOTE(bill): Just a pointer + + // Odin only types + case Type_Slice: + case Type_DynamicArray: + case Type_Map: + break; + + // Odin specific + case Type_Array: + case Type_Vector: + // Could be in C too + case Type_Record: { + i64 align = type_align_of(a, original_type); + i64 size = type_size_of(a, original_type); + if (8*size > 16) { + new_type = make_type_pointer(a, original_type); + } + } break; + } + } else { + // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for + // their architectures + } + + return new_type; +} + +Type *reduce_tuple_to_single_type(Type *original_type) { + if (original_type != NULL) { + Type *t = core_type(original_type); + if (t->kind == Type_Tuple && t->Tuple.variable_count == 1) { + return t->Tuple.variables[0]->type; + } + } + return original_type; +} + +Type *type_to_abi_compat_result_type(gbAllocator a, Type *original_type) { + Type *new_type = original_type; + if (new_type == NULL) { + return NULL; + } + GB_ASSERT(is_type_tuple(original_type)); + + + + if (build_context.ODIN_OS == "windows") { + Type *bt = core_type(reduce_tuple_to_single_type(original_type)); + // NOTE(bill): This is just reversed engineered from LLVM IR output + switch (bt->kind) { + // Okay to pass by value + // Especially the only Odin types + case Type_Pointer: break; + case Type_Proc: break; // NOTE(bill): Just a pointer + case Type_Basic: break; + + + default: { + i64 align = type_align_of(a, original_type); + i64 size = type_size_of(a, original_type); + switch (8*size) { +#if 1 + case 8: new_type = t_u8; break; + case 16: new_type = t_u16; break; + case 32: new_type = t_u32; break; + case 64: new_type = t_u64; break; +#endif + } + } break; + } + } else if (build_context.ODIN_OS == "linux") { + + } else { + // IMPORTANT TODO(bill): figure out the ABI settings for Linux, OSX etc. for + // their architectures + } + + if (new_type != original_type) { + Type *tuple = make_type_tuple(a); + tuple->Tuple.variable_count = 1; + tuple->Tuple.variables = gb_alloc_array(a, Entity *, 1); + tuple->Tuple.variables[0] = make_entity_param(a, original_type->Tuple.variables[0]->scope, empty_token, new_type, false, false); + new_type = tuple; + } + + + // return reduce_tuple_to_single_type(new_type); + return new_type; +} + +bool abi_compat_return_by_value(gbAllocator a, ProcCallingConvention cc, Type *abi_return_type) { + if (abi_return_type == NULL) { + return false; + } + if (cc == ProcCC_Odin) { + return false; + } + + + if (build_context.ODIN_OS == "windows") { + i64 size = 8*type_size_of(a, abi_return_type); + switch (size) { + case 0: + case 8: + case 16: + case 32: + case 64: + return false; + default: + return true; + } + } + return false; +} + +void check_procedure_type(Checker *c, Type *type, AstNode *proc_type_node) { + ast_node(pt, ProcType, proc_type_node); + + bool variadic = false; + Type *params = check_get_params(c, c->context.scope, pt->params, &variadic); + Type *results = check_get_results(c, c->context.scope, pt->results); + + isize param_count = 0; + isize result_count = 0; + if (params) param_count = params ->Tuple.variable_count; + if (results) result_count = results->Tuple.variable_count; + + type->Proc.scope = c->context.scope; + type->Proc.params = params; + type->Proc.param_count = param_count; + type->Proc.results = results; + type->Proc.result_count = result_count; + type->Proc.variadic = variadic; + type->Proc.calling_convention = pt->calling_convention; + + + type->Proc.abi_compat_params = gb_alloc_array(c->allocator, Type *, param_count); + for (isize i = 0; i < param_count; i++) { + Type *original_type = type->Proc.params->Tuple.variables[i]->type; + Type *new_type = type_to_abi_compat_param_type(c->allocator, original_type); + type->Proc.abi_compat_params[i] = new_type; + } + + // NOTE(bill): The types are the same + type->Proc.abi_compat_result_type = type_to_abi_compat_result_type(c->allocator, type->Proc.results); + type->Proc.return_by_pointer = abi_compat_return_by_value(c->allocator, pt->calling_convention, type->Proc.abi_compat_result_type); +} + + +Entity *check_ident(Checker *c, Operand *o, AstNode *n, Type *named_type, Type *type_hint, bool allow_import_name) { + GB_ASSERT(n->kind == AstNode_Ident); + o->mode = Addressing_Invalid; + o->expr = n; + String name = n->Ident.string; + + Entity *e = scope_lookup_entity(c->context.scope, name); + if (e == NULL) { + if (name == "_") { + error(n->Ident, "`_` cannot be used as a value type"); + } else { + error(n->Ident, "Undeclared name: %.*s", LIT(name)); + } + o->type = t_invalid; + o->mode = Addressing_Invalid; + if (named_type != NULL) { + set_base_type(named_type, t_invalid); + } + return NULL; + } + if (e->parent_proc_decl != NULL && + e->parent_proc_decl != c->context.curr_proc_decl) { + if (e->kind == Entity_Variable) { + error(n->Ident, "Nested procedures do not capture its parent's variables: %.*s", LIT(name)); + return NULL; + } else if (e->kind == Entity_Label) { + error(n->Ident, "Nested procedures do not capture its parent's labels: %.*s", LIT(name)); + return NULL; + } + } + + bool is_overloaded = false; + isize overload_count = 0; + HashKey key = hash_string(name); + + if (e->kind == Entity_Procedure) { + // NOTE(bill): Overloads are only allowed with the same scope + Scope *s = e->scope; + overload_count = multi_map_count(&s->elements, key); + if (overload_count > 1) { + is_overloaded = true; + } + } + + if (is_overloaded) { + Scope *s = e->scope; + bool skip = false; + + Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count); + multi_map_get_all(&s->elements, key, procs); + if (type_hint != NULL) { + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + // NOTE(bill): These should be done + for (isize i = 0; i < overload_count; i++) { + Type *t = base_type(procs[i]->type); + if (t == t_invalid) { + continue; + } + Operand x = {}; + x.mode = Addressing_Value; + x.type = t; + if (check_is_assignable_to(c, &x, type_hint)) { + e = procs[i]; + add_entity_use(c, n, e); + skip = true; + break; + } + } + gb_temp_arena_memory_end(tmp); + + } + + if (!skip) { + o->mode = Addressing_Overload; + o->type = t_invalid; + o->overload_count = overload_count; + o->overload_entities = procs; + return NULL; + } + gb_free(heap_allocator(), procs); + } + + add_entity_use(c, n, e); + check_entity_decl(c, e, NULL, named_type); + + + if (e->type == NULL) { + compiler_error("How did this happen? type: %s; identifier: %.*s\n", type_to_string(e->type), LIT(name)); + // return NULL; + } + + e->flags |= EntityFlag_Used; + + Type *type = e->type; + switch (e->kind) { + case Entity_Constant: + if (type == t_invalid) { + o->type = t_invalid; + return e; + } + o->value = e->Constant.value; + if (o->value.kind == ExactValue_Invalid) { + return e; + } + o->mode = Addressing_Constant; + break; + + case Entity_Variable: + e->flags |= EntityFlag_Used; + if (type == t_invalid) { + o->type = t_invalid; + return e; + } + o->mode = Addressing_Variable; + if (e->flags & EntityFlag_Value) { + o->mode = Addressing_Value; + } + if (e->Variable.is_immutable) { + o->mode = Addressing_Immutable; + } + break; + + case Entity_TypeAlias: + case Entity_TypeName: + o->mode = Addressing_Type; + break; + + case Entity_Procedure: + o->mode = Addressing_Value; + break; + + case Entity_Builtin: + o->builtin_id = cast(BuiltinProcId)e->Builtin.id; + o->mode = Addressing_Builtin; + break; + + case Entity_ImportName: + if (!allow_import_name) { + error_node(n, "Use of import `%.*s` not in selector", LIT(name)); + } + return e; + case Entity_LibraryName: + error_node(n, "Use of library `%.*s` not in #foreign tag", LIT(name)); + return e; + + case Entity_Label: + o->mode = Addressing_NoValue; + break; + + case Entity_Nil: + o->mode = Addressing_Value; + break; + + default: + compiler_error("Unknown EntityKind"); + break; + } + + o->type = type; + return e; +} + +i64 check_array_or_map_count(Checker *c, AstNode *e, bool is_map) { + if (e == NULL) { + return 0; + } + Operand o = {}; + if (e->kind == AstNode_UnaryExpr && + e->UnaryExpr.op.kind == Token_Ellipsis) { + return -1; + } + + check_expr(c, &o, e); + if (o.mode != Addressing_Constant) { + if (o.mode != Addressing_Invalid) { + if (is_map) { + error_node(e, "Fixed map count must be a constant"); + } else { + error_node(e, "Array count must be a constant"); + } + } + return 0; + } + Type *type = base_type(o.type); + if (is_type_untyped(type) || is_type_integer(type)) { + if (o.value.kind == ExactValue_Integer) { + i64 count = i128_to_i64(o.value.value_integer); + if (is_map) { + if (count > 0) { + return count; + } + error_node(e, "Invalid fixed map count"); + } else { + if (count >= 0) { + return count; + } + error_node(e, "Invalid array count"); + } + return 0; + } + } + + if (is_map) { + error_node(e, "Fixed map count must be an integer"); + } else { + error_node(e, "Array count must be an integer"); + } + return 0; +} + +Type *make_optional_ok_type(gbAllocator a, Type *value) { + bool typed = true; + Type *t = make_type_tuple(a); + t->Tuple.variables = gb_alloc_array(a, Entity *, 2); + t->Tuple.variable_count = 2; + t->Tuple.variables[0] = make_entity_field(a, NULL, blank_token, value, false, 0); + t->Tuple.variables[1] = make_entity_field(a, NULL, blank_token, typed ? t_bool : t_untyped_bool, false, 1); + return t; +} + +void check_map_type(Checker *c, Type *type, AstNode *node) { + GB_ASSERT(type->kind == Type_Map); + ast_node(mt, MapType, node); + + i64 count = check_array_or_map_count(c, mt->count, true); + Type *key = check_type(c, mt->key); + Type *value = check_type(c, mt->value); + + if (!is_type_valid_for_keys(key)) { + if (is_type_boolean(key)) { + error_node(node, "A boolean cannot be used as a key for a map"); + } else { + gbString str = type_to_string(key); + error_node(node, "Invalid type of a key for a map, got `%s`", str); + gb_string_free(str); + } + } + + if (count > 0) { + count = 0; + error_node(node, "Fixed map types are not yet implemented"); + } + + type->Map.count = count; + type->Map.key = key; + type->Map.value = value; + + gbAllocator a = c->allocator; + + { + // NOTE(bill): The preload types may have not been set yet + if (t_map_key == NULL) { + init_preload(c); + } + GB_ASSERT(t_map_key != NULL); + + Type *entry_type = make_type_struct(a); + + /* + struct { + hash: Map_Key, + next: int, + key: Key_Type, + value: Value_Type, + } + */ + AstNode *dummy_node = gb_alloc_item(a, AstNode); + dummy_node->kind = AstNode_Invalid; + check_open_scope(c, dummy_node); + + isize field_count = 3; + Entity **fields = gb_alloc_array(a, Entity *, field_count); + fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("key")), t_map_key, false, 0); + fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("next")), t_int, false, 1); + fields[2] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("value")), value, false, 2); + + check_close_scope(c); + + entry_type->Record.fields = fields; + entry_type->Record.fields_in_src_order = fields; + entry_type->Record.field_count = field_count; + + type_set_offsets(a, entry_type); + type->Map.entry_type = entry_type; + } + + { + Type *generated_struct_type = make_type_struct(a); + + /* + struct { + hashes: [dynamic]int, + entries; [dynamic]Entry_Type, + } + */ + AstNode *dummy_node = gb_alloc_item(a, AstNode); + dummy_node->kind = AstNode_Invalid; + check_open_scope(c, dummy_node); + + Type *hashes_type = make_type_dynamic_array(a, t_int); + Type *entries_type = make_type_dynamic_array(a, type->Map.entry_type); + + isize field_count = 2; + Entity **fields = gb_alloc_array(a, Entity *, field_count); + fields[0] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("hashes")), hashes_type, false, 0); + fields[1] = make_entity_field(a, c->context.scope, make_token_ident(str_lit("entries")), entries_type, false, 1); + + check_close_scope(c); + + generated_struct_type->Record.fields = fields; + generated_struct_type->Record.fields_in_src_order = fields; + generated_struct_type->Record.field_count = field_count; + + type_set_offsets(a, generated_struct_type); + type->Map.generated_struct_type = generated_struct_type; + } + + type->Map.lookup_result_type = make_optional_ok_type(a, value); + + // error_node(node, "`map` types are not yet implemented"); +} + +bool check_type_internal(Checker *c, AstNode *e, Type **type, Type *named_type) { + GB_ASSERT_NOT_NULL(type); + if (e == NULL) { + *type = t_invalid; + return true; + } + + switch (e->kind) { + case_ast_node(i, Ident, e); + Operand o = {}; + check_ident(c, &o, e, named_type, NULL, false); + + switch (o.mode) { + case Addressing_Invalid: + break; + case Addressing_Type: { + *type = o.type; + return true; + } break; + case Addressing_NoValue: { + gbString err_str = expr_to_string(e); + error_node(e, "`%s` used as a type", err_str); + gb_string_free(err_str); + } break; + default: { + gbString err_str = expr_to_string(e); + error_node(e, "`%s` used as a type when not a type", err_str); + gb_string_free(err_str); + } break; + } + case_end; + + case_ast_node(se, SelectorExpr, e); + Operand o = {}; + check_selector(c, &o, e, NULL); + + switch (o.mode) { + case Addressing_Invalid: + break; + case Addressing_Type: + GB_ASSERT(o.type != NULL); + *type = o.type; + return true; + case Addressing_NoValue: { + gbString err_str = expr_to_string(e); + error_node(e, "`%s` used as a type", err_str); + gb_string_free(err_str); + } break; + default: { + gbString err_str = expr_to_string(e); + error_node(e, "`%s` is not a type", err_str); + gb_string_free(err_str); + } break; + } + case_end; + + case_ast_node(pe, ParenExpr, e); + *type = check_type(c, pe->expr, named_type); + return true; + case_end; + + case_ast_node(ue, UnaryExpr, e); + if (ue->op.kind == Token_Pointer) { + *type = make_type_pointer(c->allocator, check_type(c, ue->expr)); + return true; + } /* else if (ue->op.kind == Token_Maybe) { + *type = make_type_maybe(c->allocator, check_type(c, ue->expr)); + return true; + } */ + case_end; + + case_ast_node(ht, HelperType, e); + *type = check_type(c, ht->type); + return true; + case_end; + + case_ast_node(pt, PointerType, e); + Type *elem = check_type(c, pt->type); + i64 esz = type_size_of(c->allocator, elem); + *type = make_type_pointer(c->allocator, elem); + return true; + case_end; + + case_ast_node(at, AtomicType, e); + Type *elem = check_type(c, at->type); + i64 esz = type_size_of(c->allocator, elem); + *type = make_type_atomic(c->allocator, elem); + return true; + case_end; + + case_ast_node(at, ArrayType, e); + if (at->count != NULL) { + Type *elem = check_type(c, at->elem, NULL); + i64 count = check_array_or_map_count(c, at->count, false); + if (count < 0) { + error_node(at->count, ".. can only be used in conjuction with compound literals"); + count = 0; + } +#if 0 + i64 esz = type_size_of(c->allocator, elem); + if (esz == 0) { + gbString str = type_to_string(elem); + error_node(at->elem, "Zero sized element type `%s` is not allowed", str); + gb_string_free(str); + } +#endif + *type = make_type_array(c->allocator, elem, count); + } else { + Type *elem = check_type(c, at->elem); +#if 0 + i64 esz = type_size_of(c->allocator, elem); + if (esz == 0) { + gbString str = type_to_string(elem); + error_node(at->elem, "Zero sized element type `%s` is not allowed", str); + gb_string_free(str); + } +#endif + *type = make_type_slice(c->allocator, elem); + } + return true; + case_end; + + case_ast_node(dat, DynamicArrayType, e); + Type *elem = check_type(c, dat->elem); + i64 esz = type_size_of(c->allocator, elem); +#if 0 + if (esz == 0) { + gbString str = type_to_string(elem); + error_node(dat->elem, "Zero sized element type `%s` is not allowed", str); + gb_string_free(str); + } +#endif + *type = make_type_dynamic_array(c->allocator, elem); + return true; + case_end; + + + + case_ast_node(vt, VectorType, e); + Type *elem = check_type(c, vt->elem); + Type *be = base_type(elem); + i64 count = check_array_or_map_count(c, vt->count, false); + if (is_type_vector(be) || (!is_type_boolean(be) && !is_type_numeric(be))) { + gbString err_str = type_to_string(elem); + error_node(vt->elem, "Vector element type must be numerical or a boolean, got `%s`", err_str); + gb_string_free(err_str); + } + *type = make_type_vector(c->allocator, elem, count); + return true; + case_end; + + case_ast_node(st, StructType, e); + *type = make_type_struct(c->allocator); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_struct_type(c, *type, e); + check_close_scope(c); + (*type)->Record.node = e; + return true; + case_end; + + case_ast_node(ut, UnionType, e); + *type = make_type_union(c->allocator); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_union_type(c, *type, e); + check_close_scope(c); + (*type)->Record.node = e; + return true; + case_end; + + case_ast_node(rut, RawUnionType, e); + *type = make_type_raw_union(c->allocator); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_raw_union_type(c, *type, e); + check_close_scope(c); + (*type)->Record.node = e; + return true; + case_end; + + case_ast_node(et, EnumType, e); + *type = make_type_enum(c->allocator); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_enum_type(c, *type, named_type, e); + check_close_scope(c); + (*type)->Record.node = e; + return true; + case_end; + + case_ast_node(et, BitFieldType, e); + *type = make_type_bit_field(c->allocator); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_bit_field_type(c, *type, named_type, e); + check_close_scope(c); + return true; + case_end; + + case_ast_node(pt, ProcType, e); + *type = alloc_type(c->allocator, Type_Proc); + set_base_type(named_type, *type); + check_open_scope(c, e); + check_procedure_type(c, *type, e); + check_close_scope(c); + return true; + case_end; + + case_ast_node(mt, MapType, e); + *type = alloc_type(c->allocator, Type_Map); + set_base_type(named_type, *type); + check_map_type(c, *type, e); + return true; + case_end; + + case_ast_node(ce, CallExpr, e); + Operand o = {}; + check_expr_or_type(c, &o, e); + if (o.mode == Addressing_Type) { + *type = o.type; + return true; + } + case_end; + } + + *type = t_invalid; + return false; +} + + + +Type *check_type(Checker *c, AstNode *e, Type *named_type) { + Type *type = NULL; + bool ok = check_type_internal(c, e, &type, named_type); + + if (!ok) { + gbString err_str = expr_to_string(e); + error_node(e, "`%s` is not a type", err_str); + gb_string_free(err_str); + type = t_invalid; + } + + if (type == NULL) { + type = t_invalid; + } + + if (type->kind == Type_Named) { + if (type->Named.base == NULL) { + gbString name = type_to_string(type); + error_node(e, "Invalid type definition of %s", name); + gb_string_free(name); + type->Named.base = t_invalid; + } + } + + if (is_type_typed(type)) { + add_type_and_value(&c->info, e, Addressing_Type, type, empty_exact_value); + } else { + gbString name = type_to_string(type); + error_node(e, "Invalid type definition of %s", name); + gb_string_free(name); + type = t_invalid; + } + set_base_type(named_type, type); + + return type; +} + + +bool check_unary_op(Checker *c, Operand *o, Token op) { + if (o->type == NULL) { + gbString str = expr_to_string(o->expr); + error_node(o->expr, "Expression has no value `%s`", str); + gb_string_free(str); + return false; + } + // TODO(bill): Handle errors correctly + Type *type = base_type(base_vector_type(o->type)); + gbString str = NULL; + switch (op.kind) { + case Token_Add: + case Token_Sub: + if (!is_type_numeric(type)) { + str = expr_to_string(o->expr); + error(op, "Operator `%.*s` is not allowed with `%s`", LIT(op.string), str); + gb_string_free(str); + } + break; + + case Token_Xor: + if (!is_type_integer(type) && !is_type_boolean(type)) { + error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string)); + } + break; + + case Token_Not: + if (!is_type_boolean(type)) { + str = expr_to_string(o->expr); + error(op, "Operator `%.*s` is only allowed on boolean expression", LIT(op.string)); + gb_string_free(str); + } + break; + + default: + error(op, "Unknown operator `%.*s`", LIT(op.string)); + return false; + } + + return true; +} + +bool check_binary_op(Checker *c, Operand *o, Token op) { + // TODO(bill): Handle errors correctly + Type *type = base_type(base_vector_type(o->type)); + switch (op.kind) { + case Token_Sub: + case Token_SubEq: + if (!is_type_numeric(type) && !is_type_pointer(type)) { + error(op, "Operator `%.*s` is only allowed with numeric or pointer expressions", LIT(op.string)); + return false; + } + if (is_type_pointer(type)) { + o->type = t_int; + } + if (base_type(type) == t_rawptr) { + gbString str = type_to_string(type); + error_node(o->expr, "Invalid pointer type for pointer arithmetic: `%s`", str); + gb_string_free(str); + return false; + } + break; + + case Token_Add: + case Token_Mul: + case Token_Quo: + case Token_AddEq: + case Token_MulEq: + case Token_QuoEq: + if (!is_type_numeric(type)) { + error(op, "Operator `%.*s` is only allowed with numeric expressions", LIT(op.string)); + return false; + } + break; + + case Token_And: + case Token_Or: + case Token_AndEq: + case Token_OrEq: + case Token_Xor: + case Token_XorEq: + if (!is_type_integer(type) && !is_type_boolean(type)) { + error(op, "Operator `%.*s` is only allowed with integers or booleans", LIT(op.string)); + return false; + } + break; + + case Token_Mod: + case Token_ModMod: + case Token_AndNot: + case Token_ModEq: + case Token_ModModEq: + case Token_AndNotEq: + if (!is_type_integer(type)) { + error(op, "Operator `%.*s` is only allowed with integers", LIT(op.string)); + return false; + } + break; + + case Token_CmpAnd: + case Token_CmpOr: + case Token_CmpAndEq: + case Token_CmpOrEq: + if (!is_type_boolean(type)) { + error(op, "Operator `%.*s` is only allowed with boolean expressions", LIT(op.string)); + return false; + } + break; + + default: + error(op, "Unknown operator `%.*s`", LIT(op.string)); + return false; + } + + return true; + +} + +bool check_representable_as_constant(Checker *c, ExactValue in_value, Type *type, ExactValue *out_value) { + if (in_value.kind == ExactValue_Invalid) { + // NOTE(bill): There's already been an error + return true; + } + + type = core_type(type); + + if (is_type_boolean(type)) { + return in_value.kind == ExactValue_Bool; + } else if (is_type_string(type)) { + return in_value.kind == ExactValue_String; + } else if (is_type_integer(type) || is_type_rune(type)) { + ExactValue v = exact_value_to_integer(in_value); + if (v.kind != ExactValue_Integer) { + return false; + } + if (out_value) *out_value = v; + + + if (is_type_untyped(type)) { + return true; + } + + i128 i = v.value_integer; + u128 u = *cast(u128 *)&i; + i64 s = 8*type_size_of(c->allocator, type); + u128 umax = U128_NEG_ONE; + if (s < 128) { + umax = u128_sub(u128_shl(U128_ONE, s), U128_ONE); + } else { + // IMPORTANT TODO(bill): I NEED A PROPER BIG NUMBER LIBRARY THAT CAN SUPPORT 128 bit floats + s = 128; + } + i128 imax = i128_shl(I128_ONE, s-1ll); + + switch (type->Basic.kind) { + case Basic_rune: + case Basic_i8: + case Basic_i16: + case Basic_i32: + case Basic_i64: + case Basic_i128: + case Basic_int: + return i128_le(i128_neg(imax), i) && i128_le(i, i128_sub(imax, I128_ONE)); + + case Basic_u8: + case Basic_u16: + case Basic_u32: + case Basic_u64: + case Basic_u128: + case Basic_uint: + return !(u128_lt(u, U128_ZERO) || u128_gt(u, umax)); + + case Basic_UntypedInteger: + return true; + + default: GB_PANIC("Compiler error: Unknown integer type!"); break; + } + } else if (is_type_float(type)) { + ExactValue v = exact_value_to_float(in_value); + if (v.kind != ExactValue_Float) { + return false; + } + if (out_value) *out_value = v; + + + switch (type->Basic.kind) { + // case Basic_f16: + case Basic_f32: + case Basic_f64: + return true; + + case Basic_UntypedFloat: + return true; + } + } else if (is_type_complex(type)) { + ExactValue v = exact_value_to_complex(in_value); + if (v.kind != ExactValue_Complex) { + return false; + } + + switch (type->Basic.kind) { + case Basic_complex64: + case Basic_complex128: { + ExactValue real = exact_value_real(v); + ExactValue imag = exact_value_imag(v); + if (real.kind != ExactValue_Invalid && + imag.kind != ExactValue_Invalid) { + if (out_value) *out_value = exact_binary_operator_value(Token_Add, real, exact_value_make_imag(imag)); + return true; + } + } break; + case Basic_UntypedComplex: + return true; + } + + return false; + }else if (is_type_pointer(type)) { + if (in_value.kind == ExactValue_Pointer) { + return true; + } + if (in_value.kind == ExactValue_Integer) { + return false; + // return true; + } + if (out_value) *out_value = in_value; + } + + + return false; +} + +void check_is_expressible(Checker *c, Operand *o, Type *type) { + GB_ASSERT(is_type_constant_type(type)); + GB_ASSERT(o->mode == Addressing_Constant); + if (!check_representable_as_constant(c, o->value, type, &o->value)) { + gbString a = expr_to_string(o->expr); + gbString b = type_to_string(type); + if (is_type_numeric(o->type) && is_type_numeric(type)) { + if (!is_type_integer(o->type) && is_type_integer(type)) { + error_node(o->expr, "`%s` truncated to `%s`", a, b); + } else { + char buf[127] = {}; + String str = {}; + i128 i = o->value.value_integer; + if (is_type_unsigned(o->type)) { + str = u128_to_string(*cast(u128 *)&i, buf, gb_size_of(buf)); + } else { + str = i128_to_string(i, buf, gb_size_of(buf)); + } + error_node(o->expr, "`%s = %.*s` overflows `%s`", a, str, b); + } + } else { + error_node(o->expr, "Cannot convert `%s` to `%s`", a, b); + } + + gb_string_free(b); + gb_string_free(a); + o->mode = Addressing_Invalid; + } +} + +bool check_is_expr_vector_index(Checker *c, AstNode *expr) { + // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode + expr = unparen_expr(expr); + if (expr->kind == AstNode_IndexExpr) { + ast_node(ie, IndexExpr, expr); + Type *t = type_deref(type_of_expr(&c->info, ie->expr)); + if (t != NULL) { + return is_type_vector(t); + } + } + return false; +} + +bool check_is_vector_elem(Checker *c, AstNode *expr) { + // HACK(bill): Handle this correctly. Maybe with a custom AddressingMode + expr = unparen_expr(expr); + if (expr->kind == AstNode_SelectorExpr) { + ast_node(se, SelectorExpr, expr); + Type *t = type_deref(type_of_expr(&c->info, se->expr)); + if (t != NULL && is_type_vector(t)) { + return true; + } + } + return false; +} + +bool check_is_not_addressable(Checker *c, Operand *o) { + if (o->mode != Addressing_Variable) { + return true; + } + if (is_type_bit_field_value(o->type)) { + return true; + } + if (check_is_expr_vector_index(c, o->expr)) { + return true; + } + if (check_is_vector_elem(c, o->expr)) { + return true; + } + + return false; +} + +void check_unary_expr(Checker *c, Operand *o, Token op, AstNode *node) { + switch (op.kind) { + case Token_And: { // Pointer address + if (o->mode == Addressing_Type) { + o->type = make_type_pointer(c->allocator, o->type); + return; + } + if (check_is_not_addressable(c, o)) { + if (ast_node_expect(node, AstNode_UnaryExpr)) { + ast_node(ue, UnaryExpr, node); + gbString str = expr_to_string(ue->expr); + error(op, "Cannot take the pointer address of `%s`", str); + gb_string_free(str); + } + o->mode = Addressing_Invalid; + return; + } + o->mode = Addressing_Value; + o->type = make_type_pointer(c->allocator, o->type); + return; + } + } + + if (!check_unary_op(c, o, op)) { + o->mode = Addressing_Invalid; + return; + } + + if (o->mode == Addressing_Constant && !is_type_vector(o->type)) { + Type *type = base_type(o->type); + if (!is_type_constant_type(o->type)) { + gbString xt = type_to_string(o->type); + gbString err_str = expr_to_string(node); + error(op, "Invalid type, `%s`, for constant unary expression `%s`", xt, err_str); + gb_string_free(err_str); + gb_string_free(xt); + o->mode = Addressing_Invalid; + return; + } + + + i32 precision = 0; + if (is_type_unsigned(type)) { + precision = cast(i32)(8 * type_size_of(c->allocator, type)); + } + o->value = exact_unary_operator_value(op.kind, o->value, precision); + + if (is_type_typed(type)) { + if (node != NULL) { + o->expr = node; + } + check_is_expressible(c, o, type); + } + return; + } + + o->mode = Addressing_Value; +} + +void check_comparison(Checker *c, Operand *x, Operand *y, TokenKind op) { + if (x->mode == Addressing_Type && y->mode == Addressing_Type) { + bool comp = are_types_identical(x->type, y->type); + switch (op) { + case Token_CmpEq: comp = comp; break; + case Token_NotEq: comp = !comp; break; + } + x->mode = Addressing_Constant; + x->type = t_untyped_bool; + x->value = exact_value_bool(comp); + return; + } + + gbString err_str = NULL; + gbTempArenaMemory tmp = gb_temp_arena_memory_begin(&c->tmp_arena); + if (check_is_assignable_to(c, x, y->type) || + check_is_assignable_to(c, y, x->type)) { + Type *err_type = x->type; + bool defined = false; + switch (op) { + case Token_CmpEq: + case Token_NotEq: + defined = is_type_comparable(x->type) || + (is_operand_nil(*x) && type_has_nil(y->type)) || + (is_operand_nil(*y) && type_has_nil(x->type)); + break; + case Token_Lt: + case Token_Gt: + case Token_LtEq: + case Token_GtEq: { + defined = is_type_ordered(x->type); + } break; + } + + if (!defined) { + if (x->type == err_type && is_operand_nil(*x)) { + err_type = y->type; + } + gb_printf_err("%d %d\n", is_operand_nil(*x), type_has_nil(y->type)); + gb_printf_err("%d %d\n", is_operand_nil(*y), type_has_nil(x->type)); + gbString type_string = type_to_string(err_type); + err_str = gb_string_make(c->tmp_allocator, + gb_bprintf("operator `%.*s` not defined for type `%s`", LIT(token_strings[op]), type_string)); + gb_string_free(type_string); + } + } else { + gbString xt = type_to_string(x->type); + gbString yt = type_to_string(y->type); + err_str = gb_string_make(c->tmp_allocator, + gb_bprintf("mismatched types `%s` and `%s`", xt, yt)); + gb_string_free(yt); + gb_string_free(xt); + } + + if (err_str != NULL) { + error_node(x->expr, "Cannot compare expression, %s", err_str); + x->type = t_untyped_bool; + } else { + if (x->mode == Addressing_Constant && + y->mode == Addressing_Constant) { + x->value = exact_value_bool(compare_exact_values(op, x->value, y->value)); + } else { + x->mode = Addressing_Value; + + + update_expr_type(c, x->expr, default_type(x->type), true); + update_expr_type(c, y->expr, default_type(y->type), true); + } + + if (is_type_vector(base_type(y->type))) { + x->type = make_type_vector(c->allocator, t_bool, base_type(y->type)->Vector.count); + } else { + x->type = t_untyped_bool; + } + } + + if (err_str != NULL) { + gb_string_free(err_str); + } + gb_temp_arena_memory_end(tmp); +} + +void check_shift(Checker *c, Operand *x, Operand *y, AstNode *node) { + GB_ASSERT(node->kind == AstNode_BinaryExpr); + ast_node(be, BinaryExpr, node); + + ExactValue x_val = {}; + if (x->mode == Addressing_Constant) { + x_val = exact_value_to_integer(x->value); + } + + bool x_is_untyped = is_type_untyped(x->type); + if (!(is_type_integer(x->type) || (x_is_untyped && x_val.kind == ExactValue_Integer))) { + gbString err_str = expr_to_string(x->expr); + error_node(node, "Shifted operand `%s` must be an integer", err_str); + gb_string_free(err_str); + x->mode = Addressing_Invalid; + return; + } + + if (is_type_unsigned(y->type)) { + + } else if (is_type_untyped(y->type)) { + convert_to_typed(c, y, t_untyped_integer, 0); + if (y->mode == Addressing_Invalid) { + x->mode = Addressing_Invalid; + return; + } + } else { + gbString err_str = expr_to_string(y->expr); + error_node(node, "Shift amount `%s` must be an unsigned integer", err_str); + gb_string_free(err_str); + x->mode = Addressing_Invalid; + return; + } + + + if (x->mode == Addressing_Constant) { + if (y->mode == Addressing_Constant) { + ExactValue y_val = exact_value_to_integer(y->value); + if (y_val.kind != ExactValue_Integer) { + gbString err_str = expr_to_string(y->expr); + error_node(node, "Shift amount `%s` must be an unsigned integer", err_str); + gb_string_free(err_str); + x->mode = Addressing_Invalid; + return; + } + + i64 amount = i128_to_i64(y_val.value_integer); + if (amount > 128) { + gbString err_str = expr_to_string(y->expr); + error_node(node, "Shift amount too large: `%s`", err_str); + gb_string_free(err_str); + x->mode = Addressing_Invalid; + return; + } + + if (!is_type_integer(x->type)) { + // NOTE(bill): It could be an untyped float but still representable + // as an integer + x->type = t_untyped_integer; + } + + x->value = exact_value_shift(be->op.kind, x_val, exact_value_i64(amount)); + + if (is_type_typed(x->type)) { + check_is_expressible(c, x, base_type(x->type)); + } + return; + } + + TokenPos pos = ast_node_token(x->expr).pos; + if (x_is_untyped) { + ExprInfo *info = map_get(&c->info.untyped, hash_pointer(x->expr)); + if (info != NULL) { + info->is_lhs = true; + } + x->mode = Addressing_Value; + // x->value = x_val; + return; + } + } + + if (y->mode == Addressing_Constant && i128_lt(y->value.value_integer, I128_ZERO)) { + gbString err_str = expr_to_string(y->expr); + error_node(node, "Shift amount cannot be negative: `%s`", err_str); + gb_string_free(err_str); + } + + if (!is_type_integer(x->type)) { + gbString err_str = expr_to_string(y->expr); + error_node(node, "Shift operand `%s` must be an integer", err_str); + gb_string_free(err_str); + x->mode = Addressing_Invalid; + return; + } + + x->mode = Addressing_Value; +} + + +String check_down_cast_name(Type *dst_, Type *src_) { + String result = {}; + Type *dst = type_deref(dst_); + Type *src = type_deref(src_); + Type *dst_s = base_type(dst); + GB_ASSERT(is_type_struct(dst_s) || is_type_raw_union(dst_s)); + for (isize i = 0; i < dst_s->Record.field_count; i++) { + Entity *f = dst_s->Record.fields[i]; + GB_ASSERT(f->kind == Entity_Variable && f->flags & EntityFlag_Field); + if (f->flags & EntityFlag_Using) { + if (are_types_identical(f->type, src_)) { + return f->token.string; + } + if (are_types_identical(type_deref(f->type), src_)) { + return f->token.string; + } + + if (!is_type_pointer(f->type)) { + result = check_down_cast_name(f->type, src_); + if (result.len > 0) { + return result; + } + } + } + } + + return result; +} + +Operand check_ptr_addition(Checker *c, TokenKind op, Operand *ptr, Operand *offset, AstNode *node) { + GB_ASSERT(node->kind == AstNode_BinaryExpr); + ast_node(be, BinaryExpr, node); + GB_ASSERT(is_type_pointer(ptr->type)); + GB_ASSERT(is_type_integer(offset->type)); + GB_ASSERT(op == Token_Add || op == Token_Sub); + + Operand operand = {}; + operand.mode = Addressing_Value; + operand.type = ptr->type; + operand.expr = node; + + if (base_type(ptr->type) == t_rawptr) { + gbString str = type_to_string(ptr->type); + error_node(node, "Invalid pointer type for pointer arithmetic: `%s`", str); + gb_string_free(str); + operand.mode = Addressing_Invalid; + return operand; + } + + Type *base_ptr = base_type(ptr->type); GB_ASSERT(base_ptr->kind == Type_Pointer); + Type *elem = base_ptr->Pointer.elem; + i64 elem_size = type_size_of(c->allocator, elem); + + if (elem_size <= 0) { + gbString str = type_to_string(elem); + error_node(node, "Size of pointer's element type `%s` is zero and cannot be used for pointer arithmetic", str); + gb_string_free(str); + operand.mode = Addressing_Invalid; + return operand; + } + + if (ptr->mode == Addressing_Constant && offset->mode == Addressing_Constant) { + i64 ptr_val = ptr->value.value_pointer; + i64 offset_val = i128_to_i64(exact_value_to_integer(offset->value).value_integer); + i64 new_ptr_val = ptr_val; + if (op == Token_Add) { + new_ptr_val += elem_size*offset_val; + } else { + new_ptr_val -= elem_size*offset_val; + } + operand.mode = Addressing_Constant; + operand.value = exact_value_pointer(new_ptr_val); + } + + return operand; +} + + + +bool check_is_castable_to(Checker *c, Operand *operand, Type *y) { + if (check_is_assignable_to(c, operand, y)) { + return true; + } + + Type *x = operand->type; + Type *src = core_type(x); + Type *dst = core_type(y); + if (are_types_identical(src, dst)) { + return true; + } + + + if (dst->kind == Type_Array && src->kind == Type_Array) { + if (are_types_identical(dst->Array.elem, src->Array.elem)) { + return dst->Array.count == src->Array.count; + } + } + + if (dst->kind == Type_Slice && src->kind == Type_Slice) { + return are_types_identical(dst->Slice.elem, src->Slice.elem); + } + + // Cast between booleans and integers + if (is_type_boolean(src) || is_type_integer(src)) { + if (is_type_boolean(dst) || is_type_integer(dst)) { + return true; + } + } + + // Cast between numbers + if (is_type_integer(src) || is_type_float(src)) { + if (is_type_integer(dst) || is_type_float(dst)) { + return true; + } + } + + if (is_type_integer(src) && is_type_rune(dst)) { + return true; + } + if (is_type_rune(src) && is_type_integer(dst)) { + return true; + } + + if (is_type_complex(src) && is_type_complex(dst)) { + return true; + } + + if (is_type_bit_field_value(src) && is_type_integer(dst)) { + return true; + } + + if (is_type_bit_field_value(src) && is_type_boolean(dst)) { + return src->BitFieldValue.bits == 1; + } + + // Cast between pointers + if (is_type_pointer(src) && is_type_pointer(dst)) { + Type *s = base_type(type_deref(src)); + if (is_type_union(s)) { + // NOTE(bill): Should the error be here?! + // NOTE(bill): This error should suppress the next casting error as it's at the same position + gbString xs = type_to_string(x); + gbString ys = type_to_string(y); + error_node(operand->expr, "Cannot cast from a union pointer `%s` to `%s`, try using `union_cast` or cast to a `rawptr`", xs, ys); + gb_string_free(ys); + gb_string_free(xs); + return false; + } + return true; + } + + // (u)int <-> rawptr + if (is_type_int_or_uint(src) && is_type_rawptr(dst)) { + return true; + } + if (is_type_rawptr(src) && is_type_int_or_uint(dst)) { + return true; + } + + // []byte/[]u8 <-> string + if (is_type_u8_slice(src) && is_type_string(dst)) { + return true; + } + if (is_type_string(src) && is_type_u8_slice(dst)) { + // if (is_type_typed(src)) { + return true; + // } + } + + // proc <-> proc + if (is_type_proc(src) && is_type_proc(dst)) { + return true; + } + + // proc -> rawptr + if (is_type_proc(src) && is_type_rawptr(dst)) { + return true; + } + // rawptr -> proc + if (is_type_rawptr(src) && is_type_proc(dst)) { + return true; + } + + return false; +} + +void check_cast(Checker *c, Operand *x, Type *type) { + bool is_const_expr = x->mode == Addressing_Constant; + bool can_convert = false; + + Type *bt = base_type(type); + if (is_const_expr && is_type_constant_type(bt)) { + if (core_type(bt)->kind == Type_Basic) { + if (check_representable_as_constant(c, x->value, bt, &x->value)) { + can_convert = true; + } else if (is_type_pointer(type) && check_is_castable_to(c, x, type)) { + can_convert = true; + } + } + } else if (check_is_castable_to(c, x, type)) { + if (x->mode != Addressing_Constant) { + x->mode = Addressing_Value; + } else if (is_type_slice(type) && is_type_string(x->type)) { + x->mode = Addressing_Value; + } else if (!is_type_vector(x->type) && is_type_vector(type)) { + x->mode = Addressing_Value; + } + can_convert = true; + } + + if (!can_convert) { + gbString expr_str = expr_to_string(x->expr); + gbString to_type = type_to_string(type); + gbString from_type = type_to_string(x->type); + error_node(x->expr, "Cannot cast `%s` as `%s` from `%s`", expr_str, to_type, from_type); + gb_string_free(from_type); + gb_string_free(to_type); + gb_string_free(expr_str); + + x->mode = Addressing_Invalid; + return; + } + + if (is_type_untyped(x->type)) { + Type *final_type = type; + if (is_const_expr && !is_type_constant_type(type)) { + final_type = default_type(x->type); + } + update_expr_type(c, x->expr, final_type, true); + } + + x->type = type; +} + +bool check_binary_vector_expr(Checker *c, Token op, Operand *x, Operand *y) { + if (is_type_vector(x->type) && !is_type_vector(y->type)) { + if (check_is_assignable_to(c, y, x->type)) { + if (check_binary_op(c, x, op)) { + return true; + } + } + } + return false; +} + + +void check_binary_expr(Checker *c, Operand *x, AstNode *node) { + GB_ASSERT(node->kind == AstNode_BinaryExpr); + Operand y_ = {}, *y = &y_; + + ast_node(be, BinaryExpr, node); + + Token op = be->op; + switch (op.kind) { + case Token_CmpEq: + case Token_NotEq: { + // NOTE(bill): Allow comparisons between types + check_expr_or_type(c, x, be->left); + check_expr_or_type(c, y, be->right); + bool xt = x->mode == Addressing_Type; + bool yt = y->mode == Addressing_Type; + // If only one is a type, this is an error + if (xt ^ yt) { + GB_ASSERT(xt != yt); + if (xt) error_operand_not_expression(x); + if (yt) error_operand_not_expression(y); + } + } break; + + default: + check_expr(c, x, be->left); + check_expr(c, y, be->right); + break; + } + if (x->mode == Addressing_Invalid) { + return; + } + if (y->mode == Addressing_Invalid) { + x->mode = Addressing_Invalid; + x->expr = y->expr; + return; + } + + if (token_is_shift(op.kind)) { + check_shift(c, x, y, node); + return; + } + + if (op.kind == Token_Add || op.kind == Token_Sub) { + if (is_type_pointer(x->type) && is_type_integer(y->type)) { + *x = check_ptr_addition(c, op.kind, x, y, node); + return; + } else if (is_type_integer(x->type) && is_type_pointer(y->type)) { + if (op.kind == Token_Sub) { + gbString lhs = expr_to_string(x->expr); + gbString rhs = expr_to_string(y->expr); + error_node(node, "Invalid pointer arithmetic, did you mean `%s %.*s %s`?", rhs, LIT(op.string), lhs); + gb_string_free(rhs); + gb_string_free(lhs); + x->mode = Addressing_Invalid; + return; + } + *x = check_ptr_addition(c, op.kind, y, x, node); + return; + } + } + + + convert_to_typed(c, x, y->type, 0); + if (x->mode == Addressing_Invalid) { + return; + } + convert_to_typed(c, y, x->type, 0); + if (y->mode == Addressing_Invalid) { + x->mode = Addressing_Invalid; + return; + } + + if (token_is_comparison(op.kind)) { + check_comparison(c, x, y, op.kind); + return; + } + + + if (check_binary_vector_expr(c, op, x, y)) { + x->mode = Addressing_Value; + x->type = x->type; + return; + } + if (check_binary_vector_expr(c, op, y, x)) { + x->mode = Addressing_Value; + x->type = y->type; + return; + } + if (!are_types_identical(x->type, y->type)) { + if (x->type != t_invalid && + y->type != t_invalid) { + gbString xt = type_to_string(x->type); + gbString yt = type_to_string(y->type); + gbString expr_str = expr_to_string(x->expr); + error(op, "Mismatched types in binary expression `%s` : `%s` vs `%s`", expr_str, xt, yt); + gb_string_free(expr_str); + gb_string_free(yt); + gb_string_free(xt); + } + x->mode = Addressing_Invalid; + return; + } + + if (!check_binary_op(c, x, op)) { + x->mode = Addressing_Invalid; + return; + } + + switch (op.kind) { + case Token_Quo: + case Token_Mod: + case Token_ModMod: + case Token_QuoEq: + case Token_ModEq: + case Token_ModModEq: + if ((x->mode == Addressing_Constant || is_type_integer(x->type)) && + y->mode == Addressing_Constant) { + bool fail = false; + switch (y->value.kind) { + case ExactValue_Integer: + if (i128_eq(y->value.value_integer, I128_ZERO)) { + fail = true; + } + break; + case ExactValue_Float: + if (y->value.value_float == 0.0) { + fail = true; + } + break; + } + + if (fail) { + error_node(y->expr, "Division by zero not allowed"); + x->mode = Addressing_Invalid; + return; + } + } + } + + if (x->mode == Addressing_Constant && + y->mode == Addressing_Constant) { + ExactValue a = x->value; + ExactValue b = y->value; + + Type *type = base_type(x->type); + if (is_type_pointer(type)) { + GB_ASSERT(op.kind == Token_Sub); + i64 bytes = a.value_pointer - b.value_pointer; + i64 diff = bytes/type_size_of(c->allocator, type); + x->value = exact_value_pointer(diff); + return; + } + + if (!is_type_constant_type(type)) { + gbString xt = type_to_string(x->type); + gbString err_str = expr_to_string(node); + error(op, "Invalid type, `%s`, for constant binary expression `%s`", xt, err_str); + gb_string_free(err_str); + gb_string_free(xt); + x->mode = Addressing_Invalid; + return; + } + + if (op.kind == Token_Quo && is_type_integer(type)) { + op.kind = Token_QuoEq; // NOTE(bill): Hack to get division of integers + } + x->value = exact_binary_operator_value(op.kind, a, b); + if (is_type_typed(type)) { + if (node != NULL) { + x->expr = node; + } + check_is_expressible(c, x, type); + } + return; + } + + x->mode = Addressing_Value; +} + + +void update_expr_type(Checker *c, AstNode *e, Type *type, bool final) { + HashKey key = hash_pointer(e); + ExprInfo *found = map_get(&c->info.untyped, key); + if (found == NULL) { + return; + } + ExprInfo old = *found; + + switch (e->kind) { + case_ast_node(ue, UnaryExpr, e); + if (old.value.kind != ExactValue_Invalid) { + // NOTE(bill): if `e` is constant, the operands will be constant too. + // They don't need to be updated as they will be updated later and + // checked at the end of general checking stage. + break; + } + update_expr_type(c, ue->expr, type, final); + case_end; + + case_ast_node(be, BinaryExpr, e); + if (old.value.kind != ExactValue_Invalid) { + // See above note in UnaryExpr case + break; + } + if (token_is_comparison(be->op.kind)) { + // NOTE(bill): Do nothing as the types are fine + } else if (token_is_shift(be->op.kind)) { + update_expr_type(c, be->left, type, final); + } else { + update_expr_type(c, be->left, type, final); + update_expr_type(c, be->right, type, final); + } + case_end; + + case_ast_node(pe, ParenExpr, e); + update_expr_type(c, pe->expr, type, final); + case_end; + } + + if (!final && is_type_untyped(type)) { + old.type = base_type(type); + map_set(&c->info.untyped, key, old); + return; + } + + // We need to remove it and then give it a new one + map_remove(&c->info.untyped, key); + + if (old.is_lhs && !is_type_integer(type)) { + gbString expr_str = expr_to_string(e); + gbString type_str = type_to_string(type); + error_node(e, "Shifted operand %s must be an integer, got %s", expr_str, type_str); + gb_string_free(type_str); + gb_string_free(expr_str); + return; + } + + add_type_and_value(&c->info, e, old.mode, type, old.value); +} + +void update_expr_value(Checker *c, AstNode *e, ExactValue value) { + ExprInfo *found = map_get(&c->info.untyped, hash_pointer(e)); + if (found) { + found->value = value; + } +} + +void convert_untyped_error(Checker *c, Operand *operand, Type *target_type) { + gbString expr_str = expr_to_string(operand->expr); + gbString type_str = type_to_string(target_type); + char *extra_text = ""; + + if (operand->mode == Addressing_Constant) { + if (i128_eq(operand->value.value_integer, I128_ZERO)) { + if (make_string_c(expr_str) != "nil") { // HACK NOTE(bill): Just in case + // NOTE(bill): Doesn't matter what the type is as it's still zero in the union + extra_text = " - Did you want `nil`?"; + } + } + } + error_node(operand->expr, "Cannot convert `%s` to `%s`%s", expr_str, type_str, extra_text); + + gb_string_free(type_str); + gb_string_free(expr_str); + operand->mode = Addressing_Invalid; +} + +ExactValue convert_exact_value_for_type(ExactValue v, Type *type) { + Type *t = core_type(type); + if (is_type_boolean(t)) { + // v = exact_value_to_boolean(v); + } else if (is_type_float(t)) { + v = exact_value_to_float(v); + } else if (is_type_integer(t)) { + v = exact_value_to_integer(v); + } else if (is_type_pointer(t)) { + v = exact_value_to_integer(v); + } else if (is_type_complex(t)) { + v = exact_value_to_complex(v); + } + return v; +} + +// NOTE(bill): Set initial level to 0 +void convert_to_typed(Checker *c, Operand *operand, Type *target_type, i32 level) { + GB_ASSERT_NOT_NULL(target_type); + if (operand->mode == Addressing_Invalid || + operand->mode == Addressing_Type || + is_type_typed(operand->type) || + target_type == t_invalid) { + return; + } + + if (is_type_untyped(target_type)) { + GB_ASSERT(operand->type->kind == Type_Basic); + GB_ASSERT(target_type->kind == Type_Basic); + BasicKind x_kind = operand->type->Basic.kind; + BasicKind y_kind = target_type->Basic.kind; + if (is_type_numeric(operand->type) && is_type_numeric(target_type)) { + if (x_kind < y_kind) { + operand->type = target_type; + update_expr_type(c, operand->expr, target_type, false); + } + } else if (x_kind != y_kind) { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + return; + } + + Type *t = core_type(target_type); + switch (t->kind) { + case Type_Basic: + if (operand->mode == Addressing_Constant) { + check_is_expressible(c, operand, t); + if (operand->mode == Addressing_Invalid) { + return; + } + update_expr_value(c, operand->expr, operand->value); + } else { + switch (operand->type->Basic.kind) { + case Basic_UntypedBool: + if (!is_type_boolean(target_type)) { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + break; + case Basic_UntypedInteger: + case Basic_UntypedFloat: + case Basic_UntypedComplex: + case Basic_UntypedRune: + if (!is_type_numeric(target_type)) { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + break; + + case Basic_UntypedNil: + if (is_type_any(target_type)) { + target_type = t_untyped_nil; + } else if (!type_has_nil(target_type)) { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + break; + } + } + break; + + case Type_Vector: { + Type *elem = base_vector_type(t); + if (check_is_assignable_to(c, operand, elem)) { + operand->mode = Addressing_Value; + } else { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + } break; + + + default: + if (!is_type_untyped_nil(operand->type) || !type_has_nil(target_type)) { + operand->mode = Addressing_Invalid; + convert_untyped_error(c, operand, target_type); + return; + } + target_type = t_untyped_nil; + break; + } + + operand->type = target_type; + update_expr_type(c, operand->expr, target_type, true); +} + +bool check_index_value(Checker *c, bool open_range, AstNode *index_value, i64 max_count, i64 *value) { + Operand operand = {Addressing_Invalid}; + check_expr(c, &operand, index_value); + if (operand.mode == Addressing_Invalid) { + if (value) *value = 0; + return false; + } + + convert_to_typed(c, &operand, t_int, 0); + if (operand.mode == Addressing_Invalid) { + if (value) *value = 0; + return false; + } + + if (!is_type_integer(operand.type)) { + gbString expr_str = expr_to_string(operand.expr); + error_node(operand.expr, "Index `%s` must be an integer", expr_str); + gb_string_free(expr_str); + if (value) *value = 0; + return false; + } + + if (operand.mode == Addressing_Constant && + (c->context.stmt_state_flags & StmtStateFlag_no_bounds_check) == 0) { + i64 i = i128_to_i64(exact_value_to_integer(operand.value).value_integer); + if (i < 0) { + gbString expr_str = expr_to_string(operand.expr); + error_node(operand.expr, "Index `%s` cannot be a negative value", expr_str); + gb_string_free(expr_str); + if (value) *value = 0; + return false; + } + + if (max_count >= 0) { // NOTE(bill): Do array bound checking + if (value) *value = i; + bool out_of_bounds = false; + if (open_range) { + out_of_bounds = i >= max_count; + } else { + out_of_bounds = i > max_count; + } + if (out_of_bounds) { + gbString expr_str = expr_to_string(operand.expr); + error_node(operand.expr, "Index `%s` is out of bounds range 0..<%lld", expr_str, max_count); + gb_string_free(expr_str); + return false; + } + + + return true; + } + } + + // NOTE(bill): It's alright :D + if (value) *value = -1; + return true; +} + +isize entity_overload_count(Scope *s, String name) { + Entity *e = scope_lookup_entity(s, name); + if (e == NULL) { + return 0; + } + if (e->kind == Entity_Procedure) { + // NOTE(bill): Overloads are only allowed with the same scope + return multi_map_count(&s->elements, hash_string(e->token.string)); + } + return 1; +} + +bool check_is_field_exported(Checker *c, Entity *field) { + if (field == NULL) { + // NOTE(bill): Just incase + return true; + } + if (field->kind != Entity_Variable) { + return true; + } + Scope *file_scope = field->scope; + if (file_scope == NULL) { + return true; + } + while (!file_scope->is_file) { + file_scope = file_scope->parent; + } + if (!is_entity_exported(field) && file_scope != c->context.file_scope) { + return false; + } + return true; +} + +Entity *check_selector(Checker *c, Operand *operand, AstNode *node, Type *type_hint) { + ast_node(se, SelectorExpr, node); + + bool check_op_expr = true; + Entity *expr_entity = NULL; + Entity *entity = NULL; + Selection sel = {}; // NOTE(bill): Not used if it's an import name + + operand->expr = node; + + AstNode *op_expr = se->expr; + AstNode *selector = unparen_expr(se->selector); + if (selector == NULL) { + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + if (selector->kind != AstNode_Ident && selector->kind != AstNode_BasicLit) { + // if (selector->kind != AstNode_Ident) { + error_node(selector, "Illegal selector kind: `%.*s`", LIT(ast_node_strings[selector->kind])); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + if (op_expr->kind == AstNode_Ident) { + String op_name = op_expr->Ident.string; + Entity *e = scope_lookup_entity(c->context.scope, op_name); + + add_entity_use(c, op_expr, e); + expr_entity = e; + + Entity *original_e = e; + if (e != NULL && e->kind == Entity_ImportName && selector->kind == AstNode_Ident) { + // IMPORTANT NOTE(bill): This is very sloppy code but it's also very fragile + // It pretty much needs to be in this order and this way + // If you can clean this up, please do but be really careful + String import_name = op_name; + Scope *import_scope = e->ImportName.scope; + String entity_name = selector->Ident.string; + + check_op_expr = false; + entity = scope_lookup_entity(import_scope, entity_name); + bool is_declared = entity != NULL; + if (is_declared) { + if (entity->kind == Entity_Builtin) { + // NOTE(bill): Builtin's are in the universe scope which is part of every scopes hierarchy + // This means that we should just ignore the found result through it + is_declared = false; + } else if (entity->scope->is_global && !import_scope->is_global) { + is_declared = false; + } + } + if (!is_declared) { + error_node(op_expr, "`%.*s` is not declared by `%.*s`", LIT(entity_name), LIT(import_name)); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + check_entity_decl(c, entity, NULL, NULL); + GB_ASSERT(entity->type != NULL); + + isize overload_count = entity_overload_count(import_scope, entity_name); + bool is_overloaded = overload_count > 1; + + bool implicit_is_found = map_get(&e->ImportName.scope->implicit, hash_pointer(entity)) != NULL; + bool is_not_exported = !is_entity_exported(entity); + if (!implicit_is_found) { + is_not_exported = false; + } else if (entity->kind == Entity_ImportName) { + is_not_exported = true; + } + + if (is_not_exported) { + gbString sel_str = expr_to_string(selector); + error_node(op_expr, "`%s` is not exported by `%.*s`", sel_str, LIT(import_name)); + gb_string_free(sel_str); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + if (is_overloaded) { + HashKey key = hash_string(entity_name); + bool skip = false; + + Entity **procs = gb_alloc_array(heap_allocator(), Entity *, overload_count); + multi_map_get_all(&import_scope->elements, key, procs); + + for (isize i = 0; i < overload_count; i++) { + Type *t = base_type(procs[i]->type); + if (t == t_invalid) { + continue; + } + + // NOTE(bill): Check to see if it's imported + if (map_get(&import_scope->implicit, hash_pointer(procs[i]))) { + gb_swap(Entity *, procs[i], procs[overload_count-1]); + overload_count--; + i--; // NOTE(bill): Counteract the post event + continue; + } + + Operand x = {}; + x.mode = Addressing_Value; + x.type = t; + if (type_hint != NULL) { + if (check_is_assignable_to(c, &x, type_hint)) { + entity = procs[i]; + skip = true; + break; + } + } + } + + if (overload_count > 0 && !skip) { + operand->mode = Addressing_Overload; + operand->type = t_invalid; + operand->expr = node; + operand->overload_count = overload_count; + operand->overload_entities = procs; + return procs[0]; + } + } + } + } + + if (check_op_expr) { + check_expr_base(c, operand, op_expr, NULL); + if (operand->mode == Addressing_Invalid) { + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + } + + + if (entity == NULL && selector->kind == AstNode_Ident) { + String field_name = selector->Ident.string; + sel = lookup_field(c->allocator, operand->type, field_name, operand->mode == Addressing_Type); + + if (operand->mode != Addressing_Type && !check_is_field_exported(c, sel.entity)) { + error_node(op_expr, "`%.*s` is an unexported field", LIT(field_name)); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + entity = sel.entity; + + // NOTE(bill): Add type info needed for fields like `names` + if (entity != NULL && (entity->flags&EntityFlag_TypeField)) { + add_type_info_type(c, operand->type); + } + } + if (entity == NULL && selector->kind == AstNode_BasicLit) { + if (is_type_struct(operand->type) || is_type_tuple(operand->type)) { + Type *type = base_type(operand->type); + Operand o = {}; + check_expr(c, &o, selector); + if (o.mode != Addressing_Constant || + !is_type_integer(o.type)) { + error_node(op_expr, "Indexed based selectors must be a constant integer %s"); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + i64 index = i128_to_i64(o.value.value_integer); + if (index < 0) { + error_node(o.expr, "Index %lld cannot be a negative value", index); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + i64 max_count = 0; + switch (type->kind) { + case Type_Record: max_count = type->Record.field_count; break; + case Type_Tuple: max_count = type->Tuple.variable_count; break; + } + + if (index >= max_count) { + error_node(o.expr, "Index %lld is out of bounds range 0..<%lld", index, max_count); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + sel = lookup_field_from_index(heap_allocator(), type, index); + entity = sel.entity; + + GB_ASSERT(entity != NULL); + + } else { + error_node(op_expr, "Indexed based selectors may only be used on structs or tuples"); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + } + + if (entity == NULL && + operand->type != NULL && is_type_untyped(operand->type) && is_type_string(operand->type)) { + String s = operand->value.value_string; + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(s.len); + operand->type = t_untyped_integer; + return NULL; + } + + if (entity == NULL) { + gbString op_str = expr_to_string(op_expr); + gbString type_str = type_to_string(operand->type); + gbString sel_str = expr_to_string(selector); + error_node(op_expr, "`%s` of type `%s` has no field `%s`", op_str, type_str, sel_str); + gb_string_free(sel_str); + gb_string_free(type_str); + gb_string_free(op_str); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + if (expr_entity != NULL && expr_entity->kind == Entity_Constant && entity->kind != Entity_Constant) { + gbString op_str = expr_to_string(op_expr); + gbString type_str = type_to_string(operand->type); + gbString sel_str = expr_to_string(selector); + error_node(op_expr, "Cannot access non-constant field `%s` from `%s`", sel_str, op_str); + gb_string_free(sel_str); + gb_string_free(type_str); + gb_string_free(op_str); + operand->mode = Addressing_Invalid; + operand->expr = node; + return NULL; + } + + + + add_entity_use(c, selector, entity); + + switch (entity->kind) { + case Entity_Constant: + operand->mode = Addressing_Constant; + operand->value = entity->Constant.value; + break; + case Entity_Variable: + // TODO(bill): Is this the rule I need? + if (operand->mode == Addressing_Immutable) { + // Okay + } else if (sel.indirect || operand->mode != Addressing_Value) { + operand->mode = Addressing_Variable; + } else { + operand->mode = Addressing_Value; + } + break; + case Entity_TypeAlias: + case Entity_TypeName: + operand->mode = Addressing_Type; + break; + case Entity_Procedure: + operand->mode = Addressing_Value; + break; + case Entity_Builtin: + operand->mode = Addressing_Builtin; + operand->builtin_id = cast(BuiltinProcId)entity->Builtin.id; + break; + + // NOTE(bill): These cases should never be hit but are here for sanity reasons + case Entity_Nil: + operand->mode = Addressing_Value; + break; + } + + operand->type = entity->type; + operand->expr = node; + + return entity; +} + +bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id) { + GB_ASSERT(call->kind == AstNode_CallExpr); + ast_node(ce, CallExpr, call); + BuiltinProc *bp = &builtin_procs[id]; + { + char *err = NULL; + if (ce->args.count < bp->arg_count) { + err = "Too few"; + } else if (ce->args.count > bp->arg_count && !bp->variadic) { + err = "Too many"; + } + + if (err != NULL) { + gbString expr = expr_to_string(ce->proc); + error(ce->close, "%s arguments for `%s`, expected %td, got %td", + err, expr, + bp->arg_count, ce->args.count); + gb_string_free(expr); + return false; + } + } + + if (ce->args.count > 0) { + if (ce->args[0]->kind == AstNode_FieldValue) { + error_node(call, "`field = value` calling is not allowed on built-in procedures"); + return false; + } + } + + + bool vari_expand = (ce->ellipsis.pos.line != 0); + if (vari_expand && id != BuiltinProc_append) { + error(ce->ellipsis, "Invalid use of `..` with built-in procedure `append`"); + return false; + } + + + switch (id) { + case BuiltinProc_new: + case BuiltinProc_make: + case BuiltinProc_size_of: + case BuiltinProc_align_of: + case BuiltinProc_offset_of: + case BuiltinProc_type_info: + case BuiltinProc_transmute: + // NOTE(bill): The first arg may be a Type, this will be checked case by case + break; + default: + check_multi_expr(c, operand, ce->args[0]); + } + + switch (id) { + default: + GB_PANIC("Implement built-in procedure: %.*s", LIT(builtin_procs[id].name)); + break; + + case BuiltinProc_len: + case BuiltinProc_cap: { + // len :: proc(Type) -> int + // cap :: proc(Type) -> int + Type *op_type = type_deref(operand->type); + Type *type = t_int; + AddressingMode mode = Addressing_Invalid; + ExactValue value = {}; + if (is_type_string(op_type) && id == BuiltinProc_len) { + if (operand->mode == Addressing_Constant) { + mode = Addressing_Constant; + String str = operand->value.value_string; + value = exact_value_i64(str.len); + type = t_untyped_integer; + } else { + mode = Addressing_Value; + } + } else if (is_type_array(op_type)) { + Type *at = core_type(op_type); + mode = Addressing_Constant; + value = exact_value_i64(at->Array.count); + type = t_untyped_integer; + } else if (is_type_vector(op_type) && id == BuiltinProc_len) { + Type *at = core_type(op_type); + mode = Addressing_Constant; + value = exact_value_i64(at->Vector.count); + type = t_untyped_integer; + } else if (is_type_slice(op_type)) { + mode = Addressing_Value; + } else if (is_type_dynamic_array(op_type)) { + mode = Addressing_Value; + } else if (is_type_map(op_type)) { + mode = Addressing_Value; + } + + if (mode == Addressing_Invalid) { + String name = builtin_procs[id].name; + gbString t = type_to_string(operand->type); + error_node(call, "`%.*s` is not supported for `%s`", LIT(name), t); + return false; + } + + operand->mode = mode; + operand->value = value; + operand->type = type; + } break; + + case BuiltinProc_new: { + // new :: proc(Type) -> ^Type + Operand op = {}; + check_expr_or_type(c, &op, ce->args[0]); + Type *type = op.type; + if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `new`"); + return false; + } + operand->mode = Addressing_Value; + operand->type = make_type_pointer(c->allocator, type); + } break; + #if 0 + case BuiltinProc_new_slice: { + // new_slice :: proc(Type, len: int) -> []Type + // new_slice :: proc(Type, len, cap: int) -> []Type + Operand op = {}; + check_expr_or_type(c, &op, ce->args[0]); + Type *type = op.type; + if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `new_slice`"); + return false; + } + + isize arg_count = ce->args.count; + if (arg_count < 2 || 3 < arg_count) { + error_node(ce->args[0], "`new_slice` expects 2 or 3 arguments, found %td", arg_count); + // NOTE(bill): Return the correct type to reduce errors + } else { + // If any are constant + i64 sizes[2] = {}; + isize size_count = 0; + for (isize i = 1; i < arg_count; i++) { + i64 val = 0; + bool ok = check_index_value(c, ce->args[i], -1, &val); + if (ok && val >= 0) { + GB_ASSERT(size_count < gb_count_of(sizes)); + sizes[size_count++] = val; + } + } + + if (size_count == 2 && sizes[0] > sizes[1]) { + error_node(ce->args[1], "`new_slice` count and capacity are swapped"); + // No need quit + } + } + + operand->mode = Addressing_Value; + operand->type = make_type_slice(c->allocator, type); + } break; + #endif + case BuiltinProc_make: { + // make :: proc(Type, len: int) -> Type + // make :: proc(Type, len, cap: int) -> Type + Operand op = {}; + check_expr_or_type(c, &op, ce->args[0]); + Type *type = op.type; + if ((op.mode != Addressing_Type && type == NULL) || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `make`"); + return false; + } + + isize min_args = 0; + isize max_args = 1; + if (is_type_slice(type)) { + min_args = 2; + max_args = 3; + } else if (is_type_dynamic_map(type)) { + min_args = 1; + max_args = 2; + } else if (is_type_dynamic_array(type)) { + min_args = 1; + max_args = 3; + } else { + gbString str = type_to_string(type); + error_node(call, "Cannot `make` %s; type must be a slice, map, or dynamic array", str); + gb_string_free(str); + return false; + } + + isize arg_count = ce->args.count; + if (arg_count < min_args || max_args < arg_count) { + error_node(ce->args[0], "`make` expects %td or %d argument, found %td", min_args, max_args, arg_count); + return false; + } + + // If any are constant + i64 sizes[4] = {}; + isize size_count = 0; + for (isize i = 1; i < arg_count; i++) { + i64 val = 0; + bool ok = check_index_value(c, false, ce->args[i], -1, &val); + if (ok && val >= 0) { + GB_ASSERT(size_count < gb_count_of(sizes)); + sizes[size_count++] = val; + } + } + + if (size_count == 2 && sizes[0] > sizes[1]) { + error_node(ce->args[1], "`make` count and capacity are swapped"); + // No need quit + } + + operand->mode = Addressing_Value; + operand->type = type; + } break; + + case BuiltinProc_free: { + // free :: proc(^Type) + // free :: proc([]Type) + // free :: proc(string) + // free :: proc(map[K]T) + Type *type = operand->type; + bool ok = false; + if (is_type_pointer(type)) { + ok = true; + } else if (is_type_slice(type)) { + ok = true; + } else if (is_type_string(type)) { + ok = true; + } else if (is_type_dynamic_array(type)) { + ok = true; + } else if (is_type_dynamic_map(type)) { + ok = true; + } + + if (!ok) { + gbString type_str = type_to_string(type); + error_node(operand->expr, "Invalid type for `free`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + + operand->mode = Addressing_NoValue; + } break; + + + case BuiltinProc_reserve: { + // reserve :: proc([dynamic]Type, count: int) { + // reserve :: proc(map[Key]Type, count: int) { + Type *type = operand->type; + if (!is_type_dynamic_array(type) && !is_type_dynamic_map(type)) { + gbString str = type_to_string(type); + error_node(operand->expr, "Expected a dynamic array or dynamic map, got `%s`", str); + gb_string_free(str); + return false; + } + + AstNode *capacity = ce->args[1]; + Operand op = {}; + check_expr(c, &op, capacity); + if (op.mode == Addressing_Invalid) { + return false; + } + Type *arg_type = base_type(op.type); + if (!is_type_integer(arg_type)) { + error_node(operand->expr, "`reserve` capacities must be an integer"); + return false; + } + + operand->type = NULL; + operand->mode = Addressing_NoValue; + } break; + + case BuiltinProc_clear: { + Type *type = operand->type; + bool is_pointer = is_type_pointer(type); + type = base_type(type_deref(type)); + if (!is_type_dynamic_array(type) && !is_type_map(type) && !is_type_slice(type)) { + gbString str = type_to_string(type); + error_node(operand->expr, "Invalid type for `clear`, got `%s`", str); + gb_string_free(str); + return false; + } + + operand->type = NULL; + operand->mode = Addressing_NoValue; + } break; + + case BuiltinProc_append: { + // append :: proc([dynamic]Type, item: ..Type) + // append :: proc([]Type, item: ..Type) + Operand prev_operand = *operand; + + Type *type = operand->type; + bool is_pointer = is_type_pointer(type); + type = base_type(type_deref(type)); + if (!is_type_dynamic_array(type) && !is_type_slice(type)) { + gbString str = type_to_string(type); + error_node(operand->expr, "Expected a slice or dynamic array, got `%s`", str); + gb_string_free(str); + return false; + } + + bool is_addressable = operand->mode == Addressing_Variable; + if (is_pointer) { + is_addressable = true; + } + if (!is_addressable) { + error_node(operand->expr, "`append` can only operate on addressable values"); + return false; + } + + Type *elem = NULL; + if (is_type_dynamic_array(type)) { + elem = type->DynamicArray.elem; + } else { + elem = type->Slice.elem; + } + Type *slice_elem = make_type_slice(c->allocator, elem); + + Type *proc_type_params = make_type_tuple(c->allocator); + proc_type_params->Tuple.variables = gb_alloc_array(c->allocator, Entity *, 2); + proc_type_params->Tuple.variable_count = 2; + proc_type_params->Tuple.variables[0] = make_entity_param(c->allocator, NULL, blank_token, operand->type, false, false); + proc_type_params->Tuple.variables[1] = make_entity_param(c->allocator, NULL, blank_token, slice_elem, false, false); + Type *proc_type = make_type_proc(c->allocator, NULL, proc_type_params, 2, NULL, false, true, ProcCC_Odin); + + check_call_arguments(c, &prev_operand, proc_type, call); + + if (prev_operand.mode == Addressing_Invalid) { + return false; + } + operand->mode = Addressing_Value; + operand->type = t_int; + } break; + + case BuiltinProc_delete: { + // delete :: proc(map[Key]Value, key: Key) + Type *type = operand->type; + if (!is_type_map(type)) { + gbString str = type_to_string(type); + error_node(operand->expr, "Expected a map, got `%s`", str); + gb_string_free(str); + return false; + } + + Type *key = base_type(type)->Map.key; + Operand x = {Addressing_Invalid}; + AstNode *key_node = ce->args[1]; + Operand op = {}; + check_expr(c, &op, key_node); + if (op.mode == Addressing_Invalid) { + return false; + } + + if (!check_is_assignable_to(c, &op, key)) { + gbString kt = type_to_string(key); + gbString ot = type_to_string(op.type); + error_node(operand->expr, "Expected a key of type `%s`, got `%s`", key, ot); + gb_string_free(ot); + gb_string_free(kt); + return false; + } + + operand->mode = Addressing_NoValue; + } break; + + + case BuiltinProc_size_of: { + // size_of :: proc(Type) -> untyped int + Type *type = check_type(c, ce->args[0]); + if (type == NULL || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `size_of`"); + return false; + } + + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(type_size_of(c->allocator, type)); + operand->type = t_untyped_integer; + + } break; + + case BuiltinProc_size_of_val: + // size_of_val :: proc(val: Type) -> untyped int + check_assignment(c, operand, NULL, str_lit("argument of `size_of_val`")); + if (operand->mode == Addressing_Invalid) { + return false; + } + + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(type_size_of(c->allocator, operand->type)); + operand->type = t_untyped_integer; + break; + + case BuiltinProc_align_of: { + // align_of :: proc(Type) -> untyped int + Type *type = check_type(c, ce->args[0]); + if (type == NULL || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `align_of`"); + return false; + } + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(type_align_of(c->allocator, type)); + operand->type = t_untyped_integer; + } break; + + case BuiltinProc_align_of_val: + // align_of_val :: proc(val: Type) -> untyped int + check_assignment(c, operand, NULL, str_lit("argument of `align_of_val`")); + if (operand->mode == Addressing_Invalid) { + return false; + } + + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(type_align_of(c->allocator, operand->type)); + operand->type = t_untyped_integer; + break; + + case BuiltinProc_offset_of: { + // offset_of :: proc(Type, field) -> untyped int + Operand op = {}; + Type *bt = check_type(c, ce->args[0]); + Type *type = base_type(bt); + if (type == NULL || type == t_invalid) { + error_node(ce->args[0], "Expected a type for `offset_of`"); + return false; + } + + AstNode *field_arg = unparen_expr(ce->args[1]); + if (field_arg == NULL || + field_arg->kind != AstNode_Ident) { + error_node(field_arg, "Expected an identifier for field argument"); + return false; + } + if (is_type_array(type) || is_type_vector(type)) { + error_node(field_arg, "Invalid type for `offset_of`"); + return false; + } + + + ast_node(arg, Ident, field_arg); + Selection sel = lookup_field(c->allocator, type, arg->string, operand->mode == Addressing_Type); + if (sel.entity == NULL) { + gbString type_str = type_to_string(bt); + error_node(ce->args[0], + "`%s` has no field named `%.*s`", type_str, LIT(arg->string)); + gb_string_free(type_str); + return false; + } + if (sel.indirect) { + gbString type_str = type_to_string(bt); + error_node(ce->args[0], + "Field `%.*s` is embedded via a pointer in `%s`", LIT(arg->string), type_str); + gb_string_free(type_str); + return false; + } + + operand->mode = Addressing_Constant; + operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel)); + operand->type = t_untyped_integer; + } break; + + case BuiltinProc_offset_of_val: { + // offset_of_val :: proc(val: expression) -> untyped int + AstNode *arg = unparen_expr(ce->args[0]); + if (arg->kind != AstNode_SelectorExpr) { + gbString str = expr_to_string(arg); + error_node(arg, "`%s` is not a selector expression", str); + return false; + } + ast_node(s, SelectorExpr, arg); + + check_expr(c, operand, s->expr); + if (operand->mode == Addressing_Invalid) { + return false; + } + + Type *type = operand->type; + if (base_type(type)->kind == Type_Pointer) { + Type *p = base_type(type); + if (is_type_struct(p)) { + type = p->Pointer.elem; + } + } + if (is_type_array(type) || is_type_vector(type)) { + error_node(arg, "Invalid type for `offset_of_val`"); + return false; + } + + ast_node(i, Ident, s->selector); + Selection sel = lookup_field(c->allocator, type, i->string, operand->mode == Addressing_Type); + if (sel.entity == NULL) { + gbString type_str = type_to_string(type); + error_node(arg, + "`%s` has no field named `%.*s`", type_str, LIT(i->string)); + return false; + } + if (sel.indirect) { + gbString type_str = type_to_string(type); + error_node(ce->args[0], + "Field `%.*s` is embedded via a pointer in `%s`", LIT(i->string), type_str); + gb_string_free(type_str); + return false; + } + + operand->mode = Addressing_Constant; + // IMPORTANT TODO(bill): Fix for anonymous fields + operand->value = exact_value_i64(type_offset_of_from_selection(c->allocator, type, sel)); + operand->type = t_untyped_integer; + } break; + + case BuiltinProc_type_of_val: + // type_of_val :: proc(val: Type) -> type(Type) + check_assignment(c, operand, NULL, str_lit("argument of `type_of_val`")); + if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) { + return false; + } + if (operand->type == NULL || operand->type == t_invalid) { + error_node(operand->expr, "Invalid argument to `type_of_val`"); + return false; + } + operand->mode = Addressing_Type; + break; + + + case BuiltinProc_type_info: { + // type_info :: proc(Type) -> ^Type_Info + if (c->context.scope->is_global) { + compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works"); + } + + // NOTE(bill): The type information may not be setup yet + init_preload(c); + AstNode *expr = ce->args[0]; + Type *type = check_type(c, expr); + if (type == NULL || type == t_invalid) { + error_node(expr, "Invalid argument to `type_info`"); + return false; + } + + add_type_info_type(c, type); + + operand->mode = Addressing_Value; + operand->type = t_type_info_ptr; + } break; + + case BuiltinProc_type_info_of_val: { + // type_info_of_val :: proc(val: Type) -> ^Type_Info + if (c->context.scope->is_global) { + compiler_error("`type_info` Cannot be declared within a #shared_global_scope due to how the internals of the compiler works"); + } + + // NOTE(bill): The type information may not be setup yet + init_preload(c); + AstNode *expr = ce->args[0]; + check_assignment(c, operand, NULL, str_lit("argument of `type_info_of_val`")); + if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) + return false; + add_type_info_type(c, operand->type); + + operand->mode = Addressing_Value; + operand->type = t_type_info_ptr; + } break; + + case BuiltinProc_compile_assert: + // compile_assert :: proc(cond: bool) -> bool + + if (!is_type_boolean(operand->type) && operand->mode != Addressing_Constant) { + gbString str = expr_to_string(ce->args[0]); + error_node(call, "`%s` is not a constant boolean", str); + gb_string_free(str); + return false; + } + if (!operand->value.value_bool) { + gbString str = expr_to_string(ce->args[0]); + error_node(call, "Compile time assertion: `%s`", str); + gb_string_free(str); + } + + operand->mode = Addressing_Constant; + operand->type = t_untyped_bool; + break; + + case BuiltinProc_assert: + // assert :: proc(cond: bool) -> bool + + if (!is_type_boolean(operand->type)) { + gbString str = expr_to_string(ce->args[0]); + error_node(call, "`%s` is not a boolean", str); + gb_string_free(str); + return false; + } + + operand->mode = Addressing_Value; + operand->type = t_untyped_bool; + break; + + case BuiltinProc_panic: + // panic :: proc(msg: string) + + if (!is_type_string(operand->type)) { + gbString str = expr_to_string(ce->args[0]); + error_node(call, "`%s` is not a string", str); + gb_string_free(str); + return false; + } + + operand->mode = Addressing_NoValue; + break; + + case BuiltinProc_copy: { + // copy :: proc(x, y: []Type) -> int + Type *dest_type = NULL, *src_type = NULL; + + Type *d = base_type(operand->type); + if (d->kind == Type_Slice) { + dest_type = d->Slice.elem; + } + Operand op = {}; + check_expr(c, &op, ce->args[1]); + if (op.mode == Addressing_Invalid) { + return false; + } + Type *s = base_type(op.type); + if (s->kind == Type_Slice) { + src_type = s->Slice.elem; + } + + if (dest_type == NULL || src_type == NULL) { + error_node(call, "`copy` only expects slices as arguments"); + return false; + } + + if (!are_types_identical(dest_type, src_type)) { + gbString d_arg = expr_to_string(ce->args[0]); + gbString s_arg = expr_to_string(ce->args[1]); + gbString d_str = type_to_string(dest_type); + gbString s_str = type_to_string(src_type); + error_node(call, + "Arguments to `copy`, %s, %s, have different elem types: %s vs %s", + d_arg, s_arg, d_str, s_str); + gb_string_free(s_str); + gb_string_free(d_str); + gb_string_free(s_arg); + gb_string_free(d_arg); + return false; + } + + operand->type = t_int; // Returns number of elems copied + operand->mode = Addressing_Value; + } break; + + case BuiltinProc_swizzle: { + // swizzle :: proc(v: {N}T, T..) -> {M}T + Type *vector_type = base_type(operand->type); + if (!is_type_vector(vector_type)) { + gbString type_str = type_to_string(operand->type); + error_node(call, + "You can only `swizzle` a vector, got `%s`", + type_str); + gb_string_free(type_str); + return false; + } + + isize max_count = vector_type->Vector.count; + i128 max_count128 = i128_from_i64(max_count); + isize arg_count = 0; + for_array(i, ce->args) { + if (i == 0) { + continue; + } + AstNode *arg = ce->args[i]; + Operand op = {}; + check_expr(c, &op, arg); + if (op.mode == Addressing_Invalid) { + return false; + } + Type *arg_type = base_type(op.type); + if (!is_type_integer(arg_type) || op.mode != Addressing_Constant) { + error_node(op.expr, "Indices to `swizzle` must be constant integers"); + return false; + } + + if (i128_lt(op.value.value_integer, I128_ZERO)) { + error_node(op.expr, "Negative `swizzle` index"); + return false; + } + + if (i128_le(max_count128, op.value.value_integer)) { + error_node(op.expr, "`swizzle` index exceeds vector length"); + return false; + } + + arg_count++; + } + + if (arg_count > max_count) { + error_node(call, "Too many `swizzle` indices, %td > %td", arg_count, max_count); + return false; + } + + Type *elem_type = vector_type->Vector.elem; + operand->type = make_type_vector(c->allocator, elem_type, arg_count); + operand->mode = Addressing_Value; + } break; + + case BuiltinProc_complex: { + // complex :: proc(real, imag: float_type) -> complex_type + Operand x = *operand; + Operand y = {}; + + // NOTE(bill): Invalid will be the default till fixed + operand->type = t_invalid; + operand->mode = Addressing_Invalid; + + check_expr(c, &y, ce->args[1]); + if (y.mode == Addressing_Invalid) { + return false; + } + + convert_to_typed(c, &x, y.type, 0); if (x.mode == Addressing_Invalid) return false; + convert_to_typed(c, &y, x.type, 0); if (y.mode == Addressing_Invalid) return false; + if (x.mode == Addressing_Constant && + y.mode == Addressing_Constant) { + if (is_type_numeric(x.type) && exact_value_imag(x.value).value_float == 0) { + x.type = t_untyped_float; + } + if (is_type_numeric(y.type) && exact_value_imag(y.value).value_float == 0) { + y.type = t_untyped_float; + } + } + + if (!are_types_identical(x.type, y.type)) { + gbString tx = type_to_string(x.type); + gbString ty = type_to_string(y.type); + error_node(call, "Mismatched types to `complex`, `%s` vs `%s`", tx, ty); + gb_string_free(ty); + gb_string_free(tx); + return false; + } + + if (!is_type_float(x.type)) { + gbString s = type_to_string(x.type); + error_node(call, "Arguments have type `%s`, expected a floating point", s); + gb_string_free(s); + return false; + } + + if (x.mode == Addressing_Constant && y.mode == Addressing_Constant) { + operand->value = exact_binary_operator_value(Token_Add, x.value, y.value); + operand->mode = Addressing_Constant; + } else { + operand->mode = Addressing_Value; + } + + BasicKind kind = core_type(x.type)->Basic.kind; + switch (kind) { + // case Basic_f16: operand->type = t_complex32; break; + case Basic_f32: operand->type = t_complex64; break; + case Basic_f64: operand->type = t_complex128; break; + case Basic_UntypedFloat: operand->type = t_untyped_complex; break; + default: GB_PANIC("Invalid type"); break; + } + } break; + + case BuiltinProc_real: + case BuiltinProc_imag: { + // real :: proc(x: type) -> float_type + // imag :: proc(x: type) -> float_type + + Operand *x = operand; + if (is_type_untyped(x->type)) { + if (x->mode == Addressing_Constant) { + if (is_type_numeric(x->type)) { + x->type = t_untyped_complex; + } + } else { + convert_to_typed(c, x, t_complex128, 0); + if (x->mode == Addressing_Invalid) { + return false; + } + } + } + + if (!is_type_complex(x->type)) { + gbString s = type_to_string(x->type); + error_node(call, "Argument has type `%s`, expected a complex type", s); + gb_string_free(s); + return false; + } + + if (x->mode == Addressing_Constant) { + switch (id) { + case BuiltinProc_real: x->value = exact_value_real(x->value); break; + case BuiltinProc_imag: x->value = exact_value_imag(x->value); break; + } + } else { + x->mode = Addressing_Value; + } + + BasicKind kind = core_type(x->type)->Basic.kind; + switch (kind) { + case Basic_complex64: x->type = t_f32; break; + case Basic_complex128: x->type = t_f64; break; + case Basic_UntypedComplex: x->type = t_untyped_float; break; + default: GB_PANIC("Invalid type"); break; + } + } break; + + case BuiltinProc_conj: { + // conj :: proc(x: type) -> type + Operand *x = operand; + if (is_type_complex(x->type)) { + if (x->mode == Addressing_Constant) { + ExactValue v = exact_value_to_complex(x->value); + f64 r = v.value_complex.real; + f64 i = v.value_complex.imag; + x->value = exact_value_complex(r, i); + x->mode = Addressing_Constant; + } else { + x->mode = Addressing_Value; + } + } else { + gbString s = type_to_string(x->type); + error_node(call, "Expected a complex or quaternion, got `%s`", s); + gb_string_free(s); + return false; + } + + } break; + + case BuiltinProc_slice_ptr: { + // slice_ptr :: proc(a: ^T, len: int) -> []T + // slice_ptr :: proc(a: ^T, len, cap: int) -> []T + // ^T cannot be rawptr + Type *ptr_type = base_type(operand->type); + if (!is_type_pointer(ptr_type)) { + gbString type_str = type_to_string(operand->type); + error_node(call, "Expected a pointer to `slice_ptr`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + if (ptr_type == t_rawptr) { + error_node(call, "`rawptr` cannot have pointer arithmetic"); + return false; + } + + isize arg_count = ce->args.count; + if (arg_count < 2 || 3 < arg_count) { + error_node(ce->args[0], "`slice_ptr` expects 2 or 3 arguments, found %td", arg_count); + // NOTE(bill): Return the correct type to reduce errors + } else { + // If any are constant + i64 sizes[2] = {}; + isize size_count = 0; + for (isize i = 1; i < arg_count; i++) { + i64 val = 0; + bool ok = check_index_value(c, false, ce->args[i], -1, &val); + if (ok && val >= 0) { + GB_ASSERT(size_count < gb_count_of(sizes)); + sizes[size_count++] = val; + } + } + + if (size_count == 2 && sizes[0] > sizes[1]) { + error_node(ce->args[1], "`slice_ptr` count and capacity are swapped"); + // No need quit + } + } + operand->type = make_type_slice(c->allocator, ptr_type->Pointer.elem); + operand->mode = Addressing_Value; + } break; + + case BuiltinProc_slice_to_bytes: { + // slice_to_bytes :: proc(a: []T) -> []u8 + Type *slice_type = base_type(operand->type); + if (!is_type_slice(slice_type)) { + gbString type_str = type_to_string(operand->type); + error_node(call, "Expected a slice type, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + operand->type = t_u8_slice; + operand->mode = Addressing_Value; + } break; + + case BuiltinProc_min: { + // min :: proc(a, b: ordered) -> ordered + Type *type = base_type(operand->type); + if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { + gbString type_str = type_to_string(operand->type); + error_node(call, "Expected a ordered numeric type to `min`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + AstNode *other_arg = ce->args[1]; + Operand a = *operand; + Operand b = {}; + check_expr(c, &b, other_arg); + if (b.mode == Addressing_Invalid) { + return false; + } + if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) { + gbString type_str = type_to_string(b.type); + error_node(call, + "Expected a ordered numeric type to `min`, got `%s`", + type_str); + gb_string_free(type_str); + return false; + } + + if (a.mode == Addressing_Constant && + b.mode == Addressing_Constant) { + ExactValue x = a.value; + ExactValue y = b.value; + + operand->mode = Addressing_Constant; + if (compare_exact_values(Token_Lt, x, y)) { + operand->value = x; + operand->type = a.type; + } else { + operand->value = y; + operand->type = b.type; + } + } else { + operand->mode = Addressing_Value; + operand->type = type; + + convert_to_typed(c, &a, b.type, 0); + if (a.mode == Addressing_Invalid) { + return false; + } + convert_to_typed(c, &b, a.type, 0); + if (b.mode == Addressing_Invalid) { + return false; + } + + if (!are_types_identical(a.type, b.type)) { + gbString type_a = type_to_string(a.type); + gbString type_b = type_to_string(b.type); + error_node(call, + "Mismatched types to `min`, `%s` vs `%s`", + type_a, type_b); + gb_string_free(type_b); + gb_string_free(type_a); + return false; + } + } + + } break; + + case BuiltinProc_max: { + // min :: proc(a, b: ordered) -> ordered + Type *type = base_type(operand->type); + if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { + gbString type_str = type_to_string(operand->type); + error_node(call, + "Expected a ordered numeric or string type to `max`, got `%s`", + type_str); + gb_string_free(type_str); + return false; + } + + AstNode *other_arg = ce->args[1]; + Operand a = *operand; + Operand b = {}; + check_expr(c, &b, other_arg); + if (b.mode == Addressing_Invalid) { + return false; + } + if (!is_type_ordered(b.type) || !(is_type_numeric(b.type) || is_type_string(b.type))) { + gbString type_str = type_to_string(b.type); + error_node(call, + "Expected a ordered numeric or string type to `max`, got `%s`", + type_str); + gb_string_free(type_str); + return false; + } + + if (a.mode == Addressing_Constant && + b.mode == Addressing_Constant) { + ExactValue x = a.value; + ExactValue y = b.value; + + operand->mode = Addressing_Constant; + if (compare_exact_values(Token_Gt, x, y)) { + operand->value = x; + operand->type = a.type; + } else { + operand->value = y; + operand->type = b.type; + } + } else { + operand->mode = Addressing_Value; + operand->type = type; + + convert_to_typed(c, &a, b.type, 0); + if (a.mode == Addressing_Invalid) { + return false; + } + convert_to_typed(c, &b, a.type, 0); + if (b.mode == Addressing_Invalid) { + return false; + } + + if (!are_types_identical(a.type, b.type)) { + gbString type_a = type_to_string(a.type); + gbString type_b = type_to_string(b.type); + error_node(call, + "Mismatched types to `max`, `%s` vs `%s`", + type_a, type_b); + gb_string_free(type_b); + gb_string_free(type_a); + return false; + } + } + + } break; + + case BuiltinProc_abs: { + // abs :: proc(n: numeric) -> numeric + if (!is_type_numeric(operand->type) && !is_type_vector(operand->type)) { + gbString type_str = type_to_string(operand->type); + error_node(call, "Expected a numeric type to `abs`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + if (operand->mode == Addressing_Constant) { + switch (operand->value.kind) { + case ExactValue_Integer: + operand->value.value_integer = i128_abs(operand->value.value_integer); + break; + case ExactValue_Float: + operand->value.value_float = gb_abs(operand->value.value_float); + break; + case ExactValue_Complex: { + f64 r = operand->value.value_complex.real; + f64 i = operand->value.value_complex.imag; + operand->value = exact_value_float(gb_sqrt(r*r + i*i)); + } break; + default: + GB_PANIC("Invalid numeric constant"); + break; + } + } else { + operand->mode = Addressing_Value; + } + + if (is_type_complex(operand->type)) { + operand->type = base_complex_elem_type(operand->type); + } + GB_ASSERT(!is_type_complex(operand->type)); + } break; + + case BuiltinProc_clamp: { + // clamp :: proc(a, min, max: ordered) -> ordered + Type *type = base_type(operand->type); + if (!is_type_ordered(type) || !(is_type_numeric(type) || is_type_string(type))) { + gbString type_str = type_to_string(operand->type); + error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + AstNode *min_arg = ce->args[1]; + AstNode *max_arg = ce->args[2]; + Operand x = *operand; + Operand y = {}; + Operand z = {}; + + check_expr(c, &y, min_arg); + if (y.mode == Addressing_Invalid) { + return false; + } + if (!is_type_ordered(y.type) || !(is_type_numeric(y.type) || is_type_string(y.type))) { + gbString type_str = type_to_string(y.type); + error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + check_expr(c, &z, max_arg); + if (z.mode == Addressing_Invalid) { + return false; + } + if (!is_type_ordered(z.type) || !(is_type_numeric(z.type) || is_type_string(z.type))) { + gbString type_str = type_to_string(z.type); + error_node(call, "Expected a ordered numeric or string type to `clamp`, got `%s`", type_str); + gb_string_free(type_str); + return false; + } + + if (x.mode == Addressing_Constant && + y.mode == Addressing_Constant && + z.mode == Addressing_Constant) { + ExactValue a = x.value; + ExactValue b = y.value; + ExactValue c = z.value; + + operand->mode = Addressing_Constant; + if (compare_exact_values(Token_Lt, a, b)) { + operand->value = b; + operand->type = y.type; + } else if (compare_exact_values(Token_Gt, a, c)) { + operand->value = c; + operand->type = z.type; + } else { + operand->value = a; + operand->type = x.type; + } + } else { + operand->mode = Addressing_Value; + operand->type = type; + + convert_to_typed(c, &x, y.type, 0); + if (x.mode == Addressing_Invalid) { return false; } + convert_to_typed(c, &y, x.type, 0); + if (y.mode == Addressing_Invalid) { return false; } + convert_to_typed(c, &x, z.type, 0); + if (x.mode == Addressing_Invalid) { return false; } + convert_to_typed(c, &z, x.type, 0); + if (z.mode == Addressing_Invalid) { return false; } + convert_to_typed(c, &y, z.type, 0); + if (y.mode == Addressing_Invalid) { return false; } + convert_to_typed(c, &z, y.type, 0); + if (z.mode == Addressing_Invalid) { return false; } + + if (!are_types_identical(x.type, y.type) || !are_types_identical(x.type, z.type)) { + gbString type_x = type_to_string(x.type); + gbString type_y = type_to_string(y.type); + gbString type_z = type_to_string(z.type); + error_node(call, + "Mismatched types to `clamp`, `%s`, `%s`, `%s`", + type_x, type_y, type_z); + gb_string_free(type_z); + gb_string_free(type_y); + gb_string_free(type_x); + return false; + } + } + } break; + + case BuiltinProc_transmute: { + Operand op = {}; + check_expr_or_type(c, &op, ce->args[0]); + Type *t = op.type; + if ((op.mode != Addressing_Type && t == NULL) || t == t_invalid) { + error_node(ce->args[0], "Expected a type for `transmute`"); + return false; + } + AstNode *expr = ce->args[1]; + Operand *o = operand; + check_expr(c, o, expr); + if (o->mode == Addressing_Invalid) { + return false; + } + + if (o->mode == Addressing_Constant) { + gbString expr_str = expr_to_string(o->expr); + error_node(o->expr, "Cannot transmute a constant expression: `%s`", expr_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = expr; + return false; + } + + if (is_type_untyped(o->type)) { + gbString expr_str = expr_to_string(o->expr); + error_node(o->expr, "Cannot transmute untyped expression: `%s`", expr_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = expr; + return false; + } + + i64 srcz = type_size_of(c->allocator, o->type); + i64 dstz = type_size_of(c->allocator, t); + if (srcz != dstz) { + gbString expr_str = expr_to_string(o->expr); + gbString type_str = type_to_string(t); + error_node(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz); + gb_string_free(type_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = expr; + return false; + } + + o->mode = Addressing_Value; + o->type = t; + } break; + } + + return true; +} + +enum CallArgumentError { + CallArgumentError_None, + CallArgumentError_WrongTypes, + CallArgumentError_NonVariadicExpand, + CallArgumentError_VariadicTuple, + CallArgumentError_MultipleVariadicExpand, + CallArgumentError_ArgumentCount, + CallArgumentError_TooFewArguments, + CallArgumentError_TooManyArguments, + CallArgumentError_InvalidFieldValue, + CallArgumentError_ParameterNotFound, + CallArgumentError_ParameterMissing, + CallArgumentError_DuplicateParameter, +}; + +enum CallArgumentErrorMode { + CallArgumentMode_NoErrors, + CallArgumentMode_ShowErrors, +}; + + +struct ValidProcAndScore { + isize index; + i64 score; +}; + +int valid_proc_and_score_cmp(void const *a, void const *b) { + i64 si = (cast(ValidProcAndScore const *)a)->score; + i64 sj = (cast(ValidProcAndScore const *)b)->score; + return sj < si ? -1 : sj > si; +} + +bool check_unpack_arguments(Checker *c, isize lhs_count, Array<Operand> *operands, Array<AstNode *> rhs, bool allow_ok) { + bool optional_ok = false; + for_array(i, rhs) { + Operand o = {}; + check_multi_expr(c, &o, rhs[i]); + + if (o.type == NULL || o.type->kind != Type_Tuple) { + if (allow_ok && lhs_count == 2 && rhs.count == 1 && + (o.mode == Addressing_MapIndex || o.mode == Addressing_OptionalOk)) { + Type *tuple = make_optional_ok_type(c->allocator, o.type); + add_type_and_value(&c->info, o.expr, o.mode, tuple, o.value); + + Operand val = o; + Operand ok = o; + val.mode = Addressing_Value; + ok.mode = Addressing_Value; + ok.type = t_bool; + array_add(operands, val); + array_add(operands, ok); + + optional_ok = true; + } else { + array_add(operands, o); + } + } else { + TypeTuple *tuple = &o.type->Tuple; + for (isize j = 0; j < tuple->variable_count; j++) { + o.type = tuple->variables[j]->type; + array_add(operands, o); + } + } + } + + return optional_ok; +} + +#define CALL_ARGUMENT_CHECKER(name) CallArgumentError name(Checker *c, AstNode *call, Type *proc_type, Array<Operand> operands, CallArgumentErrorMode show_error_mode, i64 *score_) +typedef CALL_ARGUMENT_CHECKER(CallArgumentCheckerType); + + +CALL_ARGUMENT_CHECKER(check_call_arguments_internal) { + ast_node(ce, CallExpr, call); + isize param_count = 0; + isize param_count_excluding_defaults = 0; + bool variadic = proc_type->Proc.variadic; + bool vari_expand = (ce->ellipsis.pos.line != 0); + i64 score = 0; + bool show_error = show_error_mode == CallArgumentMode_ShowErrors; + + TypeTuple *param_tuple = NULL; + + if (proc_type->Proc.params != NULL) { + param_tuple = &proc_type->Proc.params->Tuple; + + param_count = param_tuple->variable_count; + if (variadic) { + param_count--; + } + } + + param_count_excluding_defaults = param_count; + if (param_tuple != NULL) { + for (isize i = param_count-1; i >= 0; i--) { + Entity *e = param_tuple->variables[i]; + GB_ASSERT(e->kind == Entity_Variable); + if (e->Variable.default_value.kind == ExactValue_Invalid) { + break; + } + param_count_excluding_defaults--; + } + } + + if (vari_expand && !variadic) { + if (show_error) { + error(ce->ellipsis, + "Cannot use `..` in call to a non-variadic procedure: `%.*s`", + LIT(ce->proc->Ident.string)); + } + if (score_) *score_ = score; + return CallArgumentError_NonVariadicExpand; + } + + if (operands.count == 0 && param_count_excluding_defaults == 0) { + if (score_) *score_ = score; + return CallArgumentError_None; + } + + i32 error_code = 0; + if (operands.count < param_count_excluding_defaults) { + error_code = -1; + } else if (!variadic && operands.count > param_count) { + error_code = +1; + } + if (error_code != 0) { + CallArgumentError err = CallArgumentError_TooManyArguments; + char *err_fmt = "Too many arguments for `%s`, expected %td arguments"; + if (error_code < 0) { + err = CallArgumentError_TooFewArguments; + err_fmt = "Too few arguments for `%s`, expected %td arguments"; + } + + if (show_error) { + gbString proc_str = expr_to_string(ce->proc); + error_node(call, err_fmt, proc_str, param_count_excluding_defaults); + gb_string_free(proc_str); + } + if (score_) *score_ = score; + return err; + } + + CallArgumentError err = CallArgumentError_None; + + GB_ASSERT(proc_type->Proc.params != NULL); + Entity **sig_params = param_tuple->variables; + isize operand_index = 0; + for (; operand_index < param_count_excluding_defaults; operand_index++) { + Type *t = sig_params[operand_index]->type; + Operand o = operands[operand_index]; + if (variadic) { + o = operands[operand_index]; + } + i64 s = 0; + if (!check_is_assignable_to_with_score(c, &o, t, &s)) { + if (show_error) { + check_assignment(c, &o, t, str_lit("argument")); + } + err = CallArgumentError_WrongTypes; + } + score += s; + } + + if (variadic) { + bool variadic_expand = false; + Type *slice = sig_params[param_count]->type; + GB_ASSERT(is_type_slice(slice)); + Type *elem = base_type(slice)->Slice.elem; + Type *t = elem; + for (; operand_index < operands.count; operand_index++) { + Operand o = operands[operand_index]; + if (vari_expand) { + variadic_expand = true; + t = slice; + if (operand_index != param_count) { + if (show_error) { + error_node(o.expr, "`..` in a variadic procedure can only have one variadic argument at the end"); + } + if (score_) *score_ = score; + return CallArgumentError_MultipleVariadicExpand; + } + } + i64 s = 0; + if (!check_is_assignable_to_with_score(c, &o, t, &s)) { + if (show_error) { + check_assignment(c, &o, t, str_lit("argument")); + } + err = CallArgumentError_WrongTypes; + } + score += s; + } + } + + if (score_) *score_ = score; + return err; +} + +bool is_call_expr_field_value(AstNodeCallExpr *ce) { + GB_ASSERT(ce != NULL); + + if (ce->args.count == 0) { + return false; + } + return ce->args[0]->kind == AstNode_FieldValue; +} + +isize lookup_procedure_parameter(TypeProc *pt, String parameter_name) { + isize param_count = pt->param_count; + for (isize i = 0; i < param_count; i++) { + Entity *e = pt->params->Tuple.variables[i]; + String name = e->token.string; + if (name == "_") { + continue; + } + if (name == parameter_name) { + return i; + } + } + return -1; +} + +CALL_ARGUMENT_CHECKER(check_named_call_arguments) { + ast_node(ce, CallExpr, call); + GB_ASSERT(is_type_proc(proc_type)); + TypeProc *pt = &base_type(proc_type)->Proc; + + i64 score = 0; + bool show_error = show_error_mode == CallArgumentMode_ShowErrors; + CallArgumentError err = CallArgumentError_None; + + isize param_count = pt->param_count; + bool *params_visited = gb_alloc_array(c->allocator, bool, param_count); + + for_array(i, ce->args) { + AstNode *arg = ce->args[i]; + ast_node(fv, FieldValue, arg); + if (fv->field->kind != AstNode_Ident) { + if (show_error) { + gbString expr_str = expr_to_string(fv->field); + error_node(arg, "Invalid parameter name `%s` in procedure call", expr_str); + gb_string_free(expr_str); + } + err = CallArgumentError_InvalidFieldValue; + continue; + } + String name = fv->field->Ident.string; + isize index = lookup_procedure_parameter(pt, name); + if (index < 0) { + if (show_error) { + error_node(arg, "No parameter named `%.*s` for this procedure type", LIT(name)); + } + err = CallArgumentError_ParameterNotFound; + continue; + } + if (params_visited[index]) { + if (show_error) { + error_node(arg, "Duplicate parameter `%.*s` in procedure call", LIT(name)); + } + err = CallArgumentError_DuplicateParameter; + continue; + } + + params_visited[index] = true; + Operand *o = &operands[i]; + + Type *param_type = pt->params->Tuple.variables[index]->type; + + i64 s = 0; + if (!check_is_assignable_to_with_score(c, o, param_type, &s)) { + if (show_error) { + check_assignment(c, o, param_type, str_lit("procedure argument")); + } + err = CallArgumentError_WrongTypes; + } + score += s; + } + + +#if 1 + isize param_count_to_check = param_count; + if (pt->variadic) { + param_count_to_check--; + } + for (isize i = 0; i < param_count_to_check; i++) { + if (!params_visited[i]) { + Entity *e = pt->params->Tuple.variables[i]; + if (e->token.string == "_") { + continue; + } + GB_ASSERT(e->kind == Entity_Variable); + if (e->Variable.default_value.kind != ExactValue_Invalid) { + score += assign_score_function(1); + continue; + } + + if (show_error) { + gbString str = type_to_string(e->type); + error_node(call, "Parameter `%.*s` of type `%s` is missing in procedure call", + LIT(e->token.string), str); + gb_string_free(str); + } + err = CallArgumentError_ParameterMissing; + } + } +#endif + + if (score_) *score_ = score; + + return err; +} + + +Type *check_call_arguments(Checker *c, Operand *operand, Type *proc_type, AstNode *call) { + ast_node(ce, CallExpr, call); + + CallArgumentCheckerType *call_checker = check_call_arguments_internal; + Array<Operand> operands = {}; + defer (array_free(&operands)); + + if (is_call_expr_field_value(ce)) { + call_checker = check_named_call_arguments; + + array_init_count(&operands, heap_allocator(), ce->args.count); + for_array(i, ce->args) { + AstNode *arg = ce->args[i]; + ast_node(fv, FieldValue, arg); + check_expr(c, &operands[i], fv->value); + } + + bool vari_expand = (ce->ellipsis.pos.line != 0); + if (vari_expand) { + error(ce->ellipsis, "Invalid use of `..` with `field = value` call`"); + } + + } else { + array_init(&operands, heap_allocator(), 2*ce->args.count); + check_unpack_arguments(c, -1, &operands, ce->args, false); + } + + if (operand->mode == Addressing_Overload) { + GB_ASSERT(operand->overload_entities != NULL && + operand->overload_count > 1); + + isize overload_count = operand->overload_count; + Entity ** procs = operand->overload_entities; + ValidProcAndScore *valids = gb_alloc_array(heap_allocator(), ValidProcAndScore, overload_count); + isize valid_count = 0; + + defer (gb_free(heap_allocator(), procs)); + defer (gb_free(heap_allocator(), valids)); + + String name = procs[0]->token.string; + + for (isize i = 0; i < overload_count; i++) { + Entity *e = procs[i]; + DeclInfo **found = map_get(&c->info.entities, hash_pointer(e)); + GB_ASSERT(found != NULL); + DeclInfo *d = *found; + check_entity_decl(c, e, d, NULL); + } + + for (isize i = 0; i < overload_count; i++) { + Entity *p = procs[i]; + Type *proc_type = base_type(p->type); + if (proc_type != NULL && is_type_proc(proc_type)) { + i64 score = 0; + CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_NoErrors, &score); + if (err == CallArgumentError_None) { + valids[valid_count].index = i; + valids[valid_count].score = score; + valid_count++; + } + } + } + + if (valid_count > 1) { + gb_sort_array(valids, valid_count, valid_proc_and_score_cmp); + i64 best_score = valids[0].score; + for (isize i = 0; i < valid_count; i++) { + if (best_score > valids[i].score) { + valid_count = i; + break; + } + best_score = valids[i].score; + } + } + + + if (valid_count == 0) { + error_node(operand->expr, "No overloads for `%.*s` that match with the given arguments", LIT(name)); + proc_type = t_invalid; + } else if (valid_count > 1) { + error_node(operand->expr, "Ambiguous procedure call `%.*s`, could be:", LIT(name)); + for (isize i = 0; i < valid_count; i++) { + Entity *proc = procs[valids[i].index]; + TokenPos pos = proc->token.pos; + gbString pt = type_to_string(proc->type); + gb_printf_err("\t%.*s :: %s at %.*s(%td:%td) with score %lld\n", LIT(name), pt, LIT(pos.file), pos.line, pos.column, valids[i].score); + gb_string_free(pt); + } + proc_type = t_invalid; + } else { + AstNode *expr = operand->expr; + while (expr->kind == AstNode_SelectorExpr) { + expr = expr->SelectorExpr.selector; + } + GB_ASSERT(expr->kind == AstNode_Ident); + Entity *e = procs[valids[0].index]; + add_entity_use(c, expr, e); + proc_type = e->type; + i64 score = 0; + CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_ShowErrors, &score); + } + } else { + i64 score = 0; + CallArgumentError err = call_checker(c, call, proc_type, operands, CallArgumentMode_ShowErrors, &score); + } + + + return proc_type; +} + + +Entity *find_using_index_expr(Type *t) { + t = base_type(t); + if (t->kind != Type_Record) { + return NULL; + } + + for (isize i = 0; i < t->Record.field_count; i++) { + Entity *f = t->Record.fields[i]; + if (f->kind == Entity_Variable && + (f->flags & EntityFlag_Field) != 0 && + (f->flags & EntityFlag_Using) != 0) { + if (is_type_indexable(f->type)) { + return f; + } + Entity *res = find_using_index_expr(f->type); + if (res != NULL) { + return res; + } + } + } + return NULL; +} + +ExprKind check_call_expr(Checker *c, Operand *operand, AstNode *call) { + GB_ASSERT(call->kind == AstNode_CallExpr); + ast_node(ce, CallExpr, call); + check_expr_or_type(c, operand, ce->proc); + + if (ce->args.count > 0) { + bool fail = false; + bool first_is_field_value = (ce->args[0]->kind == AstNode_FieldValue); + for_array(i, ce->args) { + AstNode *arg = ce->args[i]; + bool mix = false; + if (first_is_field_value) { + mix = arg->kind != AstNode_FieldValue; + } else { + mix = arg->kind == AstNode_FieldValue; + } + if (mix) { + error_node(arg, "Mixture of `field = value` and value elements in a procedure all is not allowed"); + fail = true; + } + } + + if (fail) { + operand->mode = Addressing_Invalid; + operand->expr = call; + return Expr_Stmt; + } + } + + if (operand->mode == Addressing_Invalid) { + for_array(i, ce->args) { + AstNode *arg = ce->args[i]; + if (arg->kind == AstNode_FieldValue) { + arg = arg->FieldValue.value; + } + check_expr_base(c, operand, arg, NULL); + } + operand->mode = Addressing_Invalid; + operand->expr = call; + return Expr_Stmt; + } + + if (operand->mode == Addressing_Type) { + Type *t = operand->type; + gbString str = type_to_string(t); + operand->mode = Addressing_Invalid; + isize arg_count = ce->args.count; + switch (arg_count) { + case 0: error_node(call, "Missing argument in conversion to `%s`", str); break; + default: error_node(call, "Too many arguments in conversion to `%s`", str); break; + case 1: { + AstNode *arg = ce->args[0]; + if (arg->kind == AstNode_FieldValue) { + error_node(call, "`field = value` cannot be used in a type conversion"); + arg = arg->FieldValue.value; + // NOTE(bill): Carry on the cast regardless + } + check_expr(c, operand, arg); + if (operand->mode != Addressing_Invalid) { + check_cast(c, operand, t); + } + } break; + } + + gb_string_free(str); + return Expr_Expr; + } + + if (operand->mode == Addressing_Builtin) { + i32 id = operand->builtin_id; + if (!check_builtin_procedure(c, operand, call, id)) { + operand->mode = Addressing_Invalid; + } + operand->expr = call; + return builtin_procs[id].kind; + } + + Type *proc_type = base_type(operand->type); + if (operand->mode != Addressing_Overload) { + bool valid_type = (proc_type != NULL) && is_type_proc(proc_type); + bool valid_mode = is_operand_value(*operand); + if (!valid_type || !valid_mode) { + AstNode *e = operand->expr; + gbString str = expr_to_string(e); + gbString type_str = type_to_string(operand->type); + error_node(e, "Cannot call a non-procedure: `%s` of type `%s`", str, type_str); + gb_string_free(type_str); + gb_string_free(str); + + operand->mode = Addressing_Invalid; + operand->expr = call; + + return Expr_Stmt; + } + } + + proc_type = check_call_arguments(c, operand, proc_type, call); + + gb_zero_item(operand); + + Type *pt = base_type(proc_type); + if (pt == NULL || !is_type_proc(pt)) { + operand->mode = Addressing_Invalid; + operand->type = t_invalid; + operand->expr = call; + return Expr_Stmt; + } + switch (pt->Proc.result_count) { + case 0: + operand->mode = Addressing_NoValue; + break; + case 1: + operand->mode = Addressing_Value; + operand->type = pt->Proc.results->Tuple.variables[0]->type; + break; + default: + operand->mode = Addressing_Value; + operand->type = pt->Proc.results; + break; + } + + operand->expr = call; + return Expr_Expr; +} + + +ExprKind check_macro_call_expr(Checker *c, Operand *operand, AstNode *call) { + GB_ASSERT(call->kind == AstNode_MacroCallExpr); + ast_node(mce, MacroCallExpr, call); + + error_node(call, "Macro call expressions are not yet supported"); + operand->mode = Addressing_Invalid; + operand->expr = call; + return Expr_Stmt; +} + +void check_expr_with_type_hint(Checker *c, Operand *o, AstNode *e, Type *t) { + check_expr_base(c, o, e, t); + check_not_tuple(c, o); + char *err_str = NULL; + switch (o->mode) { + case Addressing_NoValue: + err_str = "used as a value"; + break; + case Addressing_Type: + err_str = "is not an expression"; + break; + case Addressing_Builtin: + err_str = "must be called"; + break; + } + if (err_str != NULL) { + gbString str = expr_to_string(e); + error_node(e, "`%s` %s", str, err_str); + gb_string_free(str); + o->mode = Addressing_Invalid; + } +} + +void check_set_mode_with_indirection(Operand *o, bool indirection) { + if (o->mode != Addressing_Immutable) { + if (indirection) { + o->mode = Addressing_Variable; + } else if (o->mode != Addressing_Variable && + o->mode != Addressing_Constant) { + o->mode = Addressing_Value; + } + } +} + +bool check_set_index_data(Operand *o, Type *type, bool indirection, i64 *max_count) { + Type *t = base_type(type_deref(type)); + + switch (t->kind) { + case Type_Basic: + if (is_type_string(t)) { + if (o->mode == Addressing_Constant) { + *max_count = o->value.value_string.len; + } + check_set_mode_with_indirection(o, indirection); + o->type = t_u8; + return true; + } + break; + + case Type_Array: + *max_count = t->Array.count; + check_set_mode_with_indirection(o, indirection); + o->type = t->Array.elem; + return true; + + case Type_Vector: + *max_count = t->Vector.count; + check_set_mode_with_indirection(o, indirection); + o->type = t->Vector.elem; + return true; + + + case Type_Slice: + o->type = t->Slice.elem; + if (o->mode != Addressing_Immutable) { + o->mode = Addressing_Variable; + } + return true; + + case Type_DynamicArray: + o->type = t->DynamicArray.elem; + check_set_mode_with_indirection(o, indirection); + return true; + } + + return false; +} + + +ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *type_hint) { + ExprKind kind = Expr_Stmt; + + o->mode = Addressing_Invalid; + o->type = t_invalid; + + switch (node->kind) { + default: + return kind; + + case_ast_node(be, BadExpr, node) + return kind; + case_end; + + case_ast_node(i, Implicit, node) + switch (i->kind) { + case Token_context: + if (c->context.proc_name.len == 0) { + error_node(node, "`context` is only allowed within procedures"); + return kind; + } + + o->mode = Addressing_Value; + o->type = t_context; + break; + default: + error_node(node, "Illegal implicit name `%.*s`", LIT(i->string)); + return kind; + } + case_end; + + case_ast_node(i, Ident, node); + check_ident(c, o, node, NULL, type_hint, false); + case_end; + + + case_ast_node(bl, BasicLit, node); + Type *t = t_invalid; + switch (bl->kind) { + case Token_Integer: t = t_untyped_integer; break; + case Token_Float: t = t_untyped_float; break; + case Token_String: t = t_untyped_string; break; + case Token_Rune: t = t_untyped_rune; break; + case Token_Imag: { + String s = bl->string; + Rune r = s[s.len-1]; + switch (r) { + case 'i': t = t_untyped_complex; break; + } + } break; + default: GB_PANIC("Unknown literal"); break; + } + o->mode = Addressing_Constant; + o->type = t; + o->value = exact_value_from_basic_literal(*bl); + case_end; + + case_ast_node(bd, BasicDirective, node); + if (bd->name == "file") { + o->type = t_untyped_string; + o->value = exact_value_string(bd->token.pos.file); + } else if (bd->name == "line") { + o->type = t_untyped_integer; + o->value = exact_value_i64(bd->token.pos.line); + } else if (bd->name == "procedure") { + if (c->proc_stack.count == 0) { + error_node(node, "#procedure may only be used within procedures"); + o->type = t_untyped_string; + o->value = exact_value_string(str_lit("")); + } else { + o->type = t_untyped_string; + o->value = exact_value_string(c->context.proc_name); + } + + } else { + GB_PANIC("Unknown basic basic directive"); + } + o->mode = Addressing_Constant; + case_end; + + case_ast_node(pl, ProcLit, node); + CheckerContext prev_context = c->context; + DeclInfo *decl = NULL; + Type *type = alloc_type(c->allocator, Type_Proc); + check_open_scope(c, pl->type); + { + decl = make_declaration_info(c->allocator, c->context.scope, c->context.decl); + decl->proc_lit = pl->type; + c->context.decl = decl; + + if (pl->tags != 0) { + error_node(node, "A procedure literal cannot have tags"); + pl->tags = 0; // TODO(bill): Should I zero this?! + } + + check_procedure_type(c, type, pl->type); + if (!is_type_proc(type)) { + gbString str = expr_to_string(node); + error_node(node, "Invalid procedure literal `%s`", str); + gb_string_free(str); + check_close_scope(c); + return kind; + } + check_procedure_later(c, c->curr_ast_file, empty_token, decl, type, pl->body, pl->tags); + } + check_close_scope(c); + + c->context = prev_context; + + o->mode = Addressing_Value; + o->type = type; + case_end; + + case_ast_node(te, TernaryExpr, node); + Operand cond = {Addressing_Invalid}; + check_expr(c, &cond, te->cond); + if (cond.mode != Addressing_Invalid && !is_type_boolean(cond.type)) { + error_node(te->cond, "Non-boolean condition in if expression"); + } + + Operand x = {Addressing_Invalid}; + Operand y = {Addressing_Invalid}; + check_expr_with_type_hint(c, &x, te->x, type_hint); + + if (te->y != NULL) { + check_expr_with_type_hint(c, &y, te->y, type_hint); + } else { + error_node(node, "A ternary expression must have an else clause"); + return kind; + } + + if (x.type == NULL || x.type == t_invalid || + y.type == NULL || y.type == t_invalid) { + return kind; + } + + convert_to_typed(c, &x, y.type, 0); + if (x.mode == Addressing_Invalid) { + return kind; + } + convert_to_typed(c, &y, x.type, 0); + if (y.mode == Addressing_Invalid) { + x.mode = Addressing_Invalid; + return kind; + } + + + if (!are_types_identical(x.type, y.type)) { + gbString its = type_to_string(x.type); + gbString ets = type_to_string(y.type); + error_node(node, "Mismatched types in ternary expression, %s vs %s", its, ets); + gb_string_free(ets); + gb_string_free(its); + return kind; + } + + o->type = x.type; + o->mode = Addressing_Value; + + if (cond.mode == Addressing_Constant && is_type_boolean(cond.type) && + x.mode == Addressing_Constant && + y.mode == Addressing_Constant) { + + o->mode = Addressing_Constant; + + if (cond.value.value_bool) { + o->value = x.value; + } else { + o->value = y.value; + } + } + + case_end; + + case_ast_node(cl, CompoundLit, node); + Type *type = type_hint; + bool is_to_be_determined_array_count = false; + bool is_constant = true; + if (cl->type != NULL) { + type = NULL; + + // [..]Type + if (cl->type->kind == AstNode_ArrayType && cl->type->ArrayType.count != NULL) { + AstNode *count = cl->type->ArrayType.count; + if (count->kind == AstNode_UnaryExpr && + count->UnaryExpr.op.kind == Token_Ellipsis) { + type = make_type_array(c->allocator, check_type(c, cl->type->ArrayType.elem), -1); + is_to_be_determined_array_count = true; + } + } + + if (type == NULL) { + type = check_type(c, cl->type); + } + } + + if (type == NULL) { + error_node(node, "Missing type in compound literal"); + return kind; + } + + Type *t = base_type(type); + switch (t->kind) { + case Type_Record: { + if (!is_type_struct(t) && !is_type_union(t)) { + if (cl->elems.count != 0) { + gbString type_str = type_to_string(type); + error_node(node, "Illegal compound literal type `%s`", type_str); + gb_string_free(type_str); + } + break; + } + if (is_type_union(t)) { + is_constant = false; + } + if (cl->elems.count == 0) { + break; // NOTE(bill): No need to init + } + { // Checker values + isize field_count = t->Record.field_count; + if (cl->elems[0]->kind == AstNode_FieldValue) { + bool *fields_visited = gb_alloc_array(c->allocator, bool, field_count); + + for_array(i, cl->elems) { + AstNode *elem = cl->elems[i]; + if (elem->kind != AstNode_FieldValue) { + error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed"); + continue; + } + ast_node(fv, FieldValue, elem); + if (fv->field->kind != AstNode_Ident) { + gbString expr_str = expr_to_string(fv->field); + error_node(elem, "Invalid field name `%s` in structure literal", expr_str); + gb_string_free(expr_str); + continue; + } + String name = fv->field->Ident.string; + + Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type); + bool is_unknown = sel.entity == NULL; + if (is_unknown) { + error_node(elem, "Unknown field `%.*s` in structure literal", LIT(name)); + continue; + } + if (!is_unknown && !check_is_field_exported(c, sel.entity)) { + error_node(elem, "Cannot assign to an unexported field `%.*s` in structure literal", LIT(name)); + continue; + } + + + if (sel.index.count > 1) { + error_node(elem, "Cannot assign to an anonymous field `%.*s` in a structure literal (at the moment)", LIT(name)); + continue; + } + + Entity *field = t->Record.fields[sel.index[0]]; + add_entity_use(c, fv->field, field); + + if (fields_visited[sel.index[0]]) { + error_node(elem, "Duplicate field `%.*s` in structure literal", LIT(name)); + continue; + } + + fields_visited[sel.index[0]] = true; + check_expr(c, o, fv->value); + + if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) { + is_constant = false; + } + if (is_constant) { + is_constant = o->mode == Addressing_Constant; + } + + + check_assignment(c, o, field->type, str_lit("structure literal")); + } + } else { + bool all_fields_are_blank = true; + for (isize i = 0; i < t->Record.field_count; i++) { + Entity *field = t->Record.fields_in_src_order[i]; + if (field->token.string != "_") { + all_fields_are_blank = false; + break; + } + } + + for_array(index, cl->elems) { + AstNode *elem = cl->elems[index]; + if (elem->kind == AstNode_FieldValue) { + error_node(elem, "Mixture of `field = value` and value elements in a structure literal is not allowed"); + continue; + } + if (index >= field_count) { + error_node(o->expr, "Too many values in structure literal, expected %td", field_count); + break; + } + + Entity *field = t->Record.fields_in_src_order[index]; + if (!all_fields_are_blank && field->token.string == "_") { + // NOTE(bill): Ignore blank identifiers + continue; + } + check_expr(c, o, elem); + + if (!check_is_field_exported(c, field)) { + gbString t = type_to_string(type); + error_node(o->expr, "Implicit assignment to an unexported field `%.*s` in `%s` literal", + LIT(field->token.string), t); + gb_string_free(t); + continue; + } + + if (is_type_any(field->type) || is_type_union(field->type) || is_type_raw_union(field->type)) { + is_constant = false; + } + if (is_constant) { + is_constant = o->mode == Addressing_Constant; + } + + check_assignment(c, o, field->type, str_lit("structure literal")); + } + if (cl->elems.count < field_count) { + error(cl->close, "Too few values in structure literal, expected %td, got %td", field_count, cl->elems.count); + } + } + } + } break; + + case Type_Slice: + case Type_Array: + case Type_Vector: + case Type_DynamicArray: + { + Type *elem_type = NULL; + String context_name = {}; + i64 max_type_count = -1; + if (t->kind == Type_Slice) { + elem_type = t->Slice.elem; + context_name = str_lit("slice literal"); + } else if (t->kind == Type_Vector) { + elem_type = t->Vector.elem; + context_name = str_lit("vector literal"); + max_type_count = t->Vector.count; + } else if (t->kind == Type_Array) { + elem_type = t->Array.elem; + context_name = str_lit("array literal"); + max_type_count = t->Array.count; + } else if (t->kind == Type_DynamicArray) { + elem_type = t->DynamicArray.elem; + context_name = str_lit("dynamic array literal"); + is_constant = false; + } else { + GB_PANIC("unreachable"); + } + + + i64 max = 0; + isize index = 0; + isize elem_count = cl->elems.count; + + if (is_type_any(base_type(elem_type))) { + is_constant = false; + } + + for (; index < elem_count; index++) { + GB_ASSERT(cl->elems.data != NULL); + AstNode *e = cl->elems[index]; + if (e == NULL) { + error_node(node, "Invalid literal element"); + continue; + } + + if (e->kind == AstNode_FieldValue) { + error_node(e, "`field = value` is only allowed in struct literals"); + continue; + } + + if (0 <= max_type_count && max_type_count <= index) { + error_node(e, "Index %lld is out of bounds (>= %lld) for %.*s", index, max_type_count, LIT(context_name)); + } + + Operand operand = {}; + check_expr_with_type_hint(c, &operand, e, elem_type); + check_assignment(c, &operand, elem_type, context_name); + + if (is_constant) { + is_constant = operand.mode == Addressing_Constant; + } + } + if (max < index) { + max = index; + } + + if (t->kind == Type_Vector) { + if (t->Vector.count > 1 && gb_is_between(index, 2, t->Vector.count-1)) { + error_node(cl->elems[0], "Expected either 1 (broadcast) or %td elements in vector literal, got %td", t->Vector.count, index); + } + } + + if (t->kind == Type_Array && is_to_be_determined_array_count) { + t->Array.count = max; + } + } break; + + case Type_Basic: { + if (!is_type_any(t)) { + if (cl->elems.count != 0) { + error_node(node, "Illegal compound literal"); + } + break; + } + if (cl->elems.count == 0) { + break; // NOTE(bill): No need to init + } + { // Checker values + Type *field_types[2] = {t_rawptr, t_type_info_ptr}; + isize field_count = 2; + if (cl->elems[0]->kind == AstNode_FieldValue) { + bool fields_visited[2] = {}; + + for_array(i, cl->elems) { + AstNode *elem = cl->elems[i]; + if (elem->kind != AstNode_FieldValue) { + error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed"); + continue; + } + ast_node(fv, FieldValue, elem); + if (fv->field->kind != AstNode_Ident) { + gbString expr_str = expr_to_string(fv->field); + error_node(elem, "Invalid field name `%s` in `any` literal", expr_str); + gb_string_free(expr_str); + continue; + } + String name = fv->field->Ident.string; + + Selection sel = lookup_field(c->allocator, type, name, o->mode == Addressing_Type); + if (sel.entity == NULL) { + error_node(elem, "Unknown field `%.*s` in `any` literal", LIT(name)); + continue; + } + + isize index = sel.index[0]; + + if (fields_visited[index]) { + error_node(elem, "Duplicate field `%.*s` in `any` literal", LIT(name)); + continue; + } + + fields_visited[index] = true; + check_expr(c, o, fv->value); + + // NOTE(bill): `any` literals can never be constant + is_constant = false; + + check_assignment(c, o, field_types[index], str_lit("`any` literal")); + } + } else { + for_array(index, cl->elems) { + AstNode *elem = cl->elems[index]; + if (elem->kind == AstNode_FieldValue) { + error_node(elem, "Mixture of `field = value` and value elements in a `any` literal is not allowed"); + continue; + } + + + check_expr(c, o, elem); + if (index >= field_count) { + error_node(o->expr, "Too many values in `any` literal, expected %td", field_count); + break; + } + + // NOTE(bill): `any` literals can never be constant + is_constant = false; + + check_assignment(c, o, field_types[index], str_lit("`any` literal")); + } + if (cl->elems.count < field_count) { + error(cl->close, "Too few values in `any` literal, expected %td, got %td", field_count, cl->elems.count); + } + } + } + } break; + + case Type_Map: { + if (cl->elems.count == 0) { + break; + } + is_constant = false; + { // Checker values + for_array(i, cl->elems) { + AstNode *elem = cl->elems[i]; + if (elem->kind != AstNode_FieldValue) { + error_node(elem, "Only `field = value` elements are allowed in a map literal"); + continue; + } + ast_node(fv, FieldValue, elem); + check_expr_with_type_hint(c, o, fv->field, t->Map.key); + check_assignment(c, o, t->Map.key, str_lit("map literal")); + if (o->mode == Addressing_Invalid) { + continue; + } + + check_expr_with_type_hint(c, o, fv->value, t->Map.value); + check_assignment(c, o, t->Map.value, str_lit("map literal")); + } + } + } break; + + default: { + gbString str = type_to_string(type); + error_node(node, "Invalid compound literal type `%s`", str); + gb_string_free(str); + return kind; + } break; + } + + if (is_constant) { + o->mode = Addressing_Constant; + o->value = exact_value_compound(node); + } else { + o->mode = Addressing_Value; + } + o->type = type; + case_end; + + case_ast_node(pe, ParenExpr, node); + kind = check_expr_base(c, o, pe->expr, type_hint); + o->expr = node; + case_end; + + case_ast_node(te, TagExpr, node); + String name = te->name.string; + error_node(node, "Unknown tag expression, #%.*s", LIT(name)); + if (te->expr) { + kind = check_expr_base(c, o, te->expr, type_hint); + } + o->expr = node; + case_end; + + case_ast_node(re, RunExpr, node); + // TODO(bill): Tag expressions + kind = check_expr_base(c, o, re->expr, type_hint); + o->expr = node; + case_end; + + case_ast_node(ta, TypeAssertion, node); + check_expr(c, o, ta->expr); + if (o->mode == Addressing_Invalid) { + o->expr = node; + return kind; + } + Type *t = check_type(c, ta->type); + + if (o->mode == Addressing_Constant) { + gbString expr_str = expr_to_string(o->expr); + error_node(o->expr, "A type assertion cannot be applied to a constant expression: `%s`", expr_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + if (is_type_untyped(o->type)) { + gbString expr_str = expr_to_string(o->expr); + error_node(o->expr, "A type assertion cannot be applied to an untyped expression: `%s`", expr_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + + bool src_is_ptr = is_type_pointer(o->type); + bool dst_is_ptr = is_type_pointer(t); + Type *src = type_deref(o->type); + Type *dst = type_deref(t); + Type *bsrc = base_type(src); + Type *bdst = base_type(dst); + + if (src_is_ptr != dst_is_ptr) { + gbString src_type_str = type_to_string(o->type); + gbString dst_type_str = type_to_string(t); + error_node(o->expr, "Invalid type assertion types: `%s` and `%s`", src_type_str, dst_type_str); + gb_string_free(dst_type_str); + gb_string_free(src_type_str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + if (is_type_union(src)) { + bool ok = false; + for (isize i = 1; i < bsrc->Record.variant_count; i++) { + Entity *f = bsrc->Record.variants[i]; + if (are_types_identical(f->type, dst)) { + ok = true; + break; + } + } + + if (!ok) { + gbString expr_str = expr_to_string(o->expr); + gbString dst_type_str = type_to_string(t); + error_node(o->expr, "Cannot type assert `%s` to `%s`", expr_str, dst_type_str); + gb_string_free(dst_type_str); + gb_string_free(expr_str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + add_type_info_type(c, o->type); + add_type_info_type(c, t); + + o->type = t; + o->mode = Addressing_OptionalOk; + } else if (is_type_any(o->type)) { + o->type = t; + o->mode = Addressing_OptionalOk; + + add_type_info_type(c, o->type); + add_type_info_type(c, t); + } else { + error_node(o->expr, "Type assertions can only operate on unions"); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + case_end; + + case_ast_node(ue, UnaryExpr, node); + check_expr_base(c, o, ue->expr, type_hint); + if (o->mode == Addressing_Invalid) { + o->expr = node; + return kind; + } + check_unary_expr(c, o, ue->op, node); + if (o->mode == Addressing_Invalid) { + o->expr = node; + return kind; + } + case_end; + + + case_ast_node(be, BinaryExpr, node); + check_binary_expr(c, o, node); + if (o->mode == Addressing_Invalid) { + o->expr = node; + return kind; + } + case_end; + + + + case_ast_node(se, SelectorExpr, node); + check_selector(c, o, node, type_hint); + case_end; + + + case_ast_node(ie, IndexExpr, node); + check_expr(c, o, ie->expr); + if (o->mode == Addressing_Invalid) { + o->expr = node; + return kind; + } + + Type *t = base_type(type_deref(o->type)); + bool is_ptr = is_type_pointer(o->type); + bool is_const = o->mode == Addressing_Constant; + + if (is_type_map(t)) { + Operand key = {}; + check_expr(c, &key, ie->index); + check_assignment(c, &key, t->Map.key, str_lit("map index")); + if (key.mode == Addressing_Invalid) { + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + o->mode = Addressing_MapIndex; + o->type = t->Map.value; + o->expr = node; + return Expr_Expr; + } + + i64 max_count = -1; + bool valid = check_set_index_data(o, t, is_ptr, &max_count); + + if (is_const) { + valid = false; + } + + if (!valid && (is_type_struct(t) || is_type_raw_union(t))) { + Entity *found = find_using_index_expr(t); + if (found != NULL) { + valid = check_set_index_data(o, found->type, is_type_pointer(found->type), &max_count); + } + } + + if (!valid) { + gbString str = expr_to_string(o->expr); + if (is_const) { + error_node(o->expr, "Cannot index a constant `%s`", str); + } else { + error_node(o->expr, "Cannot index `%s`", str); + } + gb_string_free(str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + if (ie->index == NULL) { + gbString str = expr_to_string(o->expr); + error_node(o->expr, "Missing index for `%s`", str); + gb_string_free(str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + i64 index = 0; + bool ok = check_index_value(c, false, ie->index, max_count, &index); + + case_end; + + + + case_ast_node(se, SliceExpr, node); + check_expr(c, o, se->expr); + if (o->mode == Addressing_Invalid) { + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + bool valid = false; + i64 max_count = -1; + Type *t = base_type(type_deref(o->type)); + switch (t->kind) { + case Type_Basic: + if (is_type_string(t)) { + if (se->index3) { + error_node(node, "3-index slice on a string in not needed"); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + valid = true; + if (o->mode == Addressing_Constant) { + max_count = o->value.value_string.len; + } + o->type = t_string; + } + break; + + case Type_Array: + valid = true; + max_count = t->Array.count; + if (o->mode != Addressing_Variable) { + gbString str = expr_to_string(node); + error_node(node, "Cannot slice array `%s`, value is not addressable", str); + gb_string_free(str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + o->type = make_type_slice(c->allocator, t->Array.elem); + break; + + case Type_Slice: + valid = true; + break; + + case Type_DynamicArray: + valid = true; + o->type = make_type_slice(c->allocator, t->DynamicArray.elem); + break; + } + + if (!valid) { + gbString str = expr_to_string(o->expr); + error_node(o->expr, "Cannot slice `%s`", str); + gb_string_free(str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + if (o->mode != Addressing_Immutable) { + o->mode = Addressing_Value; + } + + if (se->low == NULL && se->high != NULL) { + error(se->interval0, "1st index is required if a 2nd index is specified"); + // It is okay to continue as it will assume the 1st index is zero + } + + if (se->index3 && (se->high == NULL || se->max == NULL)) { + error(se->close, "2nd and 3rd indices are required in a 3-index slice"); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + if (se->index3 && se->interval0.kind != se->interval1.kind) { + error(se->close, "The interval separators for in a 3-index slice must be the same"); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + + + TokenKind interval_kind = se->interval0.kind; + + i64 indices[2] = {}; + AstNode *nodes[3] = {se->low, se->high, se->max}; + for (isize i = 0; i < gb_count_of(nodes); i++) { + i64 index = max_count; + if (nodes[i] != NULL) { + i64 capacity = -1; + if (max_count >= 0) { + capacity = max_count; + } + i64 j = 0; + if (check_index_value(c, interval_kind == Token_Ellipsis, nodes[i], capacity, &j)) { + index = j; + } + } else if (i == 0) { + index = 0; + } + indices[i] = index; + } + + for (isize i = 0; i < gb_count_of(indices); i++) { + i64 a = indices[i]; + for (isize j = i+1; j < gb_count_of(indices); j++) { + i64 b = indices[j]; + if (a > b && b >= 0) { + error(se->close, "Invalid slice indices: [%td > %td]", a, b); + } + } + } + + case_end; + + + case_ast_node(ce, CallExpr, node); + return check_call_expr(c, o, node); + case_end; + + case_ast_node(ce, MacroCallExpr, node); + return check_macro_call_expr(c, o, node); + case_end; + + case_ast_node(de, DerefExpr, node); + check_expr_or_type(c, o, de->expr); + if (o->mode == Addressing_Invalid) { + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } else { + Type *t = base_type(o->type); + if (t->kind == Type_Pointer) { + if (o->mode != Addressing_Immutable) { + o->mode = Addressing_Variable; + } + o->type = t->Pointer.elem; + } else { + gbString str = expr_to_string(o->expr); + error_node(o->expr, "Cannot dereference `%s`", str); + gb_string_free(str); + o->mode = Addressing_Invalid; + o->expr = node; + return kind; + } + } + case_end; + + case AstNode_HelperType: + case AstNode_ProcType: + case AstNode_PointerType: + case AstNode_ArrayType: + case AstNode_DynamicArrayType: + case AstNode_VectorType: + case AstNode_StructType: + case AstNode_UnionType: + case AstNode_RawUnionType: + case AstNode_EnumType: + case AstNode_MapType: + o->mode = Addressing_Type; + o->type = check_type(c, node); + break; + } + + kind = Expr_Expr; + o->expr = node; + return kind; +} + +ExprKind check_expr_base(Checker *c, Operand *o, AstNode *node, Type *type_hint) { + ExprKind kind = check_expr_base_internal(c, o, node, type_hint); + Type *type = NULL; + ExactValue value = {ExactValue_Invalid}; + switch (o->mode) { + case Addressing_Invalid: + type = t_invalid; + break; + case Addressing_NoValue: + type = NULL; + break; + case Addressing_Constant: + type = o->type; + value = o->value; + break; + default: + type = o->type; + break; + } + + if (type != NULL && is_type_untyped(type)) { + add_untyped(&c->info, node, false, o->mode, type, value); + } else { + add_type_and_value(&c->info, node, o->mode, type, value); + } + return kind; +} + + + +void check_multi_expr(Checker *c, Operand *o, AstNode *e) { + check_expr_base(c, o, e, NULL); + switch (o->mode) { + default: + return; // NOTE(bill): Valid + case Addressing_NoValue: + error_operand_no_value(o); + break; + case Addressing_Type: + error_operand_not_expression(o); + break; + } + o->mode = Addressing_Invalid; +} + +void check_not_tuple(Checker *c, Operand *o) { + if (o->mode == Addressing_Value) { + // NOTE(bill): Tuples are not first class thus never named + if (o->type->kind == Type_Tuple) { + isize count = o->type->Tuple.variable_count; + GB_ASSERT(count != 1); + error_node(o->expr, + "%td-valued tuple found where single value expected", count); + o->mode = Addressing_Invalid; + } + } +} + +void check_expr(Checker *c, Operand *o, AstNode *e) { + check_multi_expr(c, o, e); + check_not_tuple(c, o); +} + + +void check_expr_or_type(Checker *c, Operand *o, AstNode *e) { + check_expr_base(c, o, e, NULL); + check_not_tuple(c, o); + error_operand_no_value(o); +} + + +gbString write_expr_to_string(gbString str, AstNode *node); + +gbString write_record_fields_to_string(gbString str, Array<AstNode *> params) { + for_array(i, params) { + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, params[i]); + } + return str; +} + +gbString string_append_token(gbString str, Token token) { + if (token.string.len > 0) { + return gb_string_append_length(str, &token.string[0], token.string.len); + } + return str; +} + + +gbString write_expr_to_string(gbString str, AstNode *node) { + if (node == NULL) + return str; + + if (is_ast_node_stmt(node)) { + GB_ASSERT("stmt passed to write_expr_to_string"); + } + + switch (node->kind) { + default: + str = gb_string_appendc(str, "(BadExpr)"); + break; + + case_ast_node(i, Ident, node); + str = string_append_token(str, *i); + case_end; + + case_ast_node(i, Implicit, node); + str = string_append_token(str, *i); + case_end; + + case_ast_node(bl, BasicLit, node); + str = string_append_token(str, *bl); + case_end; + + case_ast_node(bd, BasicDirective, node); + str = gb_string_appendc(str, "#"); + str = gb_string_append_length(str, &bd->name[0], bd->name.len); + case_end; + + case_ast_node(pl, ProcLit, node); + str = write_expr_to_string(str, pl->type); + case_end; + + case_ast_node(cl, CompoundLit, node); + str = write_expr_to_string(str, cl->type); + str = gb_string_appendc(str, "{"); + for_array(i, cl->elems) { + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, cl->elems[i]); + } + str = gb_string_appendc(str, "}"); + case_end; + + + case_ast_node(te, TagExpr, node); + str = gb_string_appendc(str, "#"); + str = string_append_token(str, te->name); + str = write_expr_to_string(str, te->expr); + case_end; + + case_ast_node(ue, UnaryExpr, node); + str = string_append_token(str, ue->op); + str = write_expr_to_string(str, ue->expr); + case_end; + + case_ast_node(de, DerefExpr, node); + str = write_expr_to_string(str, de->expr); + str = gb_string_appendc(str, "^"); + case_end; + + case_ast_node(be, BinaryExpr, node); + str = write_expr_to_string(str, be->left); + str = gb_string_appendc(str, " "); + str = string_append_token(str, be->op); + str = gb_string_appendc(str, " "); + str = write_expr_to_string(str, be->right); + case_end; + + case_ast_node(pe, ParenExpr, node); + str = gb_string_appendc(str, "("); + str = write_expr_to_string(str, pe->expr); + str = gb_string_appendc(str, ")"); + case_end; + + case_ast_node(se, SelectorExpr, node); + str = write_expr_to_string(str, se->expr); + str = gb_string_appendc(str, "."); + str = write_expr_to_string(str, se->selector); + case_end; + + case_ast_node(ta, TypeAssertion, node); + str = write_expr_to_string(str, ta->expr); + str = gb_string_appendc(str, ".("); + str = write_expr_to_string(str, ta->type); + str = gb_string_appendc(str, ")"); + case_end; + + case_ast_node(ie, IndexExpr, node); + str = write_expr_to_string(str, ie->expr); + str = gb_string_appendc(str, "["); + str = write_expr_to_string(str, ie->index); + str = gb_string_appendc(str, "]"); + case_end; + + case_ast_node(se, SliceExpr, node); + str = write_expr_to_string(str, se->expr); + str = gb_string_appendc(str, "["); + str = write_expr_to_string(str, se->low); + str = gb_string_appendc(str, ".."); + str = write_expr_to_string(str, se->high); + if (se->index3) { + str = gb_string_appendc(str, ".."); + str = write_expr_to_string(str, se->max); + } + str = gb_string_appendc(str, "]"); + case_end; + + case_ast_node(e, Ellipsis, node); + str = gb_string_appendc(str, ".."); + case_end; + + case_ast_node(fv, FieldValue, node); + str = write_expr_to_string(str, fv->field); + str = gb_string_appendc(str, " = "); + str = write_expr_to_string(str, fv->value); + case_end; + + case_ast_node(pt, PointerType, node); + str = gb_string_appendc(str, "^"); + str = write_expr_to_string(str, pt->type); + case_end; + + case_ast_node(at, ArrayType, node); + str = gb_string_appendc(str, "["); + if (at->count != NULL && + at->count->kind == AstNode_UnaryExpr && + at->count->UnaryExpr.op.kind == Token_Ellipsis) { + str = gb_string_appendc(str, ".."); + } else { + str = write_expr_to_string(str, at->count); + } + str = gb_string_appendc(str, "]"); + str = write_expr_to_string(str, at->elem); + case_end; + + case_ast_node(at, DynamicArrayType, node); + str = gb_string_appendc(str, "[..]"); + str = write_expr_to_string(str, at->elem); + case_end; + + case_ast_node(vt, VectorType, node); + str = gb_string_appendc(str, "[vector "); + str = write_expr_to_string(str, vt->count); + str = gb_string_appendc(str, "]"); + str = write_expr_to_string(str, vt->elem); + case_end; + + case_ast_node(f, Field, node); + if (f->flags&FieldFlag_using) { + str = gb_string_appendc(str, "using "); + } + if (f->flags&FieldFlag_immutable) { + str = gb_string_appendc(str, "immutable "); + } + if (f->flags&FieldFlag_no_alias) { + str = gb_string_appendc(str, "no_alias "); + } + + for_array(i, f->names) { + AstNode *name = f->names[i]; + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, name); + } + if (f->names.count > 0) { + str = gb_string_appendc(str, ": "); + } + if (f->flags&FieldFlag_ellipsis) { + str = gb_string_appendc(str, ".."); + } + str = write_expr_to_string(str, f->type); + case_end; + + case_ast_node(f, FieldList, node); + for_array(i, f->list) { + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, f->list[i]); + } + case_end; + + case_ast_node(f, UnionField, node); + str = write_expr_to_string(str, f->name); + str = gb_string_appendc(str, "{"); + str = write_expr_to_string(str, f->list); + str = gb_string_appendc(str, "}"); + case_end; + + case_ast_node(ce, CallExpr, node); + str = write_expr_to_string(str, ce->proc); + str = gb_string_appendc(str, "("); + + for_array(i, ce->args) { + AstNode *arg = ce->args[i]; + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, arg); + } + str = gb_string_appendc(str, ")"); + case_end; + + case_ast_node(pt, ProcType, node); + str = gb_string_appendc(str, "proc("); + str = write_expr_to_string(str, pt->params); + str = gb_string_appendc(str, ")"); + case_end; + + case_ast_node(st, StructType, node); + str = gb_string_appendc(str, "struct "); + if (st->is_packed) str = gb_string_appendc(str, "#packed "); + if (st->is_ordered) str = gb_string_appendc(str, "#ordered "); + str = gb_string_appendc(str, "{"); + str = write_record_fields_to_string(str, st->fields); + str = gb_string_appendc(str, "}"); + case_end; + + case_ast_node(st, RawUnionType, node); + str = gb_string_appendc(str, "raw_union "); + str = gb_string_appendc(str, "{"); + str = write_record_fields_to_string(str, st->fields); + str = gb_string_appendc(str, "}"); + case_end; + + case_ast_node(st, UnionType, node); + str = gb_string_appendc(str, "union "); + str = gb_string_appendc(str, "{"); + str = write_record_fields_to_string(str, st->fields); + str = gb_string_appendc(str, "}"); + case_end; + + case_ast_node(et, EnumType, node); + str = gb_string_appendc(str, "enum "); + if (et->base_type != NULL) { + str = write_expr_to_string(str, et->base_type); + str = gb_string_appendc(str, " "); + } + str = gb_string_appendc(str, "{"); + for_array(i, et->fields) { + if (i > 0) { + str = gb_string_appendc(str, ", "); + } + str = write_expr_to_string(str, et->fields[i]); + } + str = gb_string_appendc(str, "}"); + case_end; + + case_ast_node(ht, HelperType, node); + str = gb_string_appendc(str, "#type "); + str = write_expr_to_string(str, ht->type); + case_end; + + case_ast_node(at, AtomicType, node); + str = gb_string_appendc(str, "atomic "); + str = write_expr_to_string(str, at->type); + case_end; + } + + return str; +} + +gbString expr_to_string(AstNode *expression) { + return write_expr_to_string(gb_string_make(heap_allocator(), ""), expression); +} |