aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorgingerBill <gingerBill@users.noreply.github.com>2021-10-26 21:08:08 +0100
committerGitHub <noreply@github.com>2021-10-26 21:08:08 +0100
commitc4d2aae0ed55d972b0074031ac82db6f9546447e (patch)
treec23fe528ddaee43ea2c9ecfd5b95d93ef7fba467 /src
parentc722665c3239019fe9f90d247726cc42c921e1db (diff)
parent549a383cf06ad45edd634e67c27a1246323a9d8c (diff)
Merge pull request #1245 from odin-lang/new-matrix-type
`matrix` type
Diffstat (limited to 'src')
-rw-r--r--src/check_builtin.cpp194
-rw-r--r--src/check_expr.cpp385
-rw-r--r--src/check_type.cpp68
-rw-r--r--src/checker.cpp11
-rw-r--r--src/checker_builtin_procs.hpp14
-rw-r--r--src/llvm_abi.cpp13
-rw-r--r--src/llvm_backend.cpp65
-rw-r--r--src/llvm_backend.hpp23
-rw-r--r--src/llvm_backend_const.cpp101
-rw-r--r--src/llvm_backend_expr.cpp749
-rw-r--r--src/llvm_backend_general.cpp64
-rw-r--r--src/llvm_backend_proc.cpp119
-rw-r--r--src/llvm_backend_type.cpp19
-rw-r--r--src/llvm_backend_utility.cpp296
-rw-r--r--src/parser.cpp56
-rw-r--r--src/parser.hpp7
-rw-r--r--src/parser_pos.cpp4
-rw-r--r--src/tokenizer.cpp1
-rw-r--r--src/types.cpp356
19 files changed, 2375 insertions, 170 deletions
diff --git a/src/check_builtin.cpp b/src/check_builtin.cpp
index a07c1f267..2373317c3 100644
--- a/src/check_builtin.cpp
+++ b/src/check_builtin.cpp
@@ -25,6 +25,7 @@ BuiltinTypeIsProc *builtin_type_is_procs[BuiltinProc__type_simple_boolean_end -
is_type_simple_compare,
is_type_dereferenceable,
is_type_valid_for_keys,
+ is_type_valid_for_matrix_elems,
is_type_named,
is_type_pointer,
@@ -40,6 +41,7 @@ BuiltinTypeIsProc *builtin_type_is_procs[BuiltinProc__type_simple_boolean_end -
is_type_proc,
is_type_bit_set,
is_type_simd_vector,
+ is_type_matrix,
is_type_polymorphic_record_specialized,
is_type_polymorphic_record_unspecialized,
@@ -1266,7 +1268,10 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
case BuiltinProc_conj: {
// conj :: proc(x: type) -> type
Operand *x = operand;
- if (is_type_complex(x->type)) {
+ Type *t = x->type;
+ Type *elem = core_array_type(t);
+
+ if (is_type_complex(t)) {
if (x->mode == Addressing_Constant) {
ExactValue v = exact_value_to_complex(x->value);
f64 r = v.value_complex->real;
@@ -1276,7 +1281,7 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
} else {
x->mode = Addressing_Value;
}
- } else if (is_type_quaternion(x->type)) {
+ } else if (is_type_quaternion(t)) {
if (x->mode == Addressing_Constant) {
ExactValue v = exact_value_to_quaternion(x->value);
f64 r = +v.value_quaternion->real;
@@ -1288,7 +1293,11 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
} else {
x->mode = Addressing_Value;
}
- } else {
+ } else if (is_type_array_like(t) && (is_type_complex(elem) || is_type_quaternion(elem))) {
+ x->mode = Addressing_Value;
+ } else if (is_type_matrix(t) && (is_type_complex(elem) || is_type_quaternion(elem))) {
+ x->mode = Addressing_Value;
+ }else {
gbString s = type_to_string(x->type);
error(call, "Expected a complex or quaternion, got '%s'", s);
gb_string_free(s);
@@ -1966,13 +1975,13 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
return false;
}
if (!is_operand_value(x)) {
- error(call, "'soa_unzip' expects an #soa slice");
+ error(call, "'%.*s' expects an #soa slice", LIT(builtin_name));
return false;
}
Type *t = base_type(x.type);
if (!is_type_soa_struct(t) || t->Struct.soa_kind != StructSoa_Slice) {
gbString s = type_to_string(x.type);
- error(call, "'soa_unzip' expects an #soa slice, got %s", s);
+ error(call, "'%.*s' expects an #soa slice, got %s", LIT(builtin_name), s);
gb_string_free(s);
return false;
}
@@ -1987,7 +1996,180 @@ bool check_builtin_procedure(CheckerContext *c, Operand *operand, Ast *call, i32
operand->mode = Addressing_Value;
break;
}
-
+
+ case BuiltinProc_transpose: {
+ Operand x = {};
+ check_expr(c, &x, ce->args[0]);
+ if (x.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_operand_value(x)) {
+ error(call, "'%.*s' expects a matrix or array", LIT(builtin_name));
+ return false;
+ }
+ Type *t = base_type(x.type);
+ if (!is_type_matrix(t) && !is_type_array(t)) {
+ gbString s = type_to_string(x.type);
+ error(call, "'%.*s' expects a matrix or array, got %s", LIT(builtin_name), s);
+ gb_string_free(s);
+ return false;
+ }
+
+ operand->mode = Addressing_Value;
+ if (is_type_array(t)) {
+ // Do nothing
+ operand->type = x.type;
+ } else {
+ GB_ASSERT(t->kind == Type_Matrix);
+ operand->type = alloc_type_matrix(t->Matrix.elem, t->Matrix.column_count, t->Matrix.row_count);
+ }
+ operand->type = check_matrix_type_hint(operand->type, type_hint);
+ break;
+ }
+
+ case BuiltinProc_outer_product: {
+ Operand x = {};
+ Operand y = {};
+ check_expr(c, &x, ce->args[0]);
+ if (x.mode == Addressing_Invalid) {
+ return false;
+ }
+ check_expr(c, &y, ce->args[1]);
+ if (y.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_operand_value(x) || !is_operand_value(y)) {
+ error(call, "'%.*s' expects only arrays", LIT(builtin_name));
+ return false;
+ }
+
+ if (!is_type_array(x.type) && !is_type_array(y.type)) {
+ gbString s1 = type_to_string(x.type);
+ gbString s2 = type_to_string(y.type);
+ error(call, "'%.*s' expects only arrays, got %s and %s", LIT(builtin_name), s1, s2);
+ gb_string_free(s2);
+ gb_string_free(s1);
+ return false;
+ }
+
+ Type *xt = base_type(x.type);
+ Type *yt = base_type(y.type);
+ GB_ASSERT(xt->kind == Type_Array);
+ GB_ASSERT(yt->kind == Type_Array);
+ if (!are_types_identical(xt->Array.elem, yt->Array.elem)) {
+ gbString s1 = type_to_string(xt->Array.elem);
+ gbString s2 = type_to_string(yt->Array.elem);
+ error(call, "'%.*s' mismatched element types, got %s vs %s", LIT(builtin_name), s1, s2);
+ gb_string_free(s2);
+ gb_string_free(s1);
+ return false;
+ }
+
+ Type *elem = xt->Array.elem;
+
+ if (!is_type_valid_for_matrix_elems(elem)) {
+ gbString s = type_to_string(elem);
+ error(call, "Matrix elements types are limited to integers, floats, and complex, got %s", s);
+ gb_string_free(s);
+ }
+
+ if (xt->Array.count == 0 || yt->Array.count == 0) {
+ gbString s1 = type_to_string(x.type);
+ gbString s2 = type_to_string(y.type);
+ error(call, "'%.*s' expects only arrays of non-zero length, got %s and %s", LIT(builtin_name), s1, s2);
+ gb_string_free(s2);
+ gb_string_free(s1);
+ return false;
+ }
+
+ i64 max_count = xt->Array.count*yt->Array.count;
+ if (max_count > MATRIX_ELEMENT_COUNT_MAX) {
+ error(call, "Product of the array lengths exceed the maximum matrix element count, got %d, expected a maximum of %d", cast(int)max_count, MATRIX_ELEMENT_COUNT_MAX);
+ return false;
+ }
+
+ operand->mode = Addressing_Value;
+ operand->type = alloc_type_matrix(elem, xt->Array.count, yt->Array.count);
+ operand->type = check_matrix_type_hint(operand->type, type_hint);
+ break;
+ }
+
+ case BuiltinProc_hadamard_product: {
+ Operand x = {};
+ Operand y = {};
+ check_expr(c, &x, ce->args[0]);
+ if (x.mode == Addressing_Invalid) {
+ return false;
+ }
+ check_expr(c, &y, ce->args[1]);
+ if (y.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_operand_value(x) || !is_operand_value(y)) {
+ error(call, "'%.*s' expects a matrix or array types", LIT(builtin_name));
+ return false;
+ }
+ if (!is_type_matrix(x.type) && !is_type_array(y.type)) {
+ gbString s1 = type_to_string(x.type);
+ gbString s2 = type_to_string(y.type);
+ error(call, "'%.*s' expects matrix or array values, got %s and %s", LIT(builtin_name), s1, s2);
+ gb_string_free(s2);
+ gb_string_free(s1);
+ return false;
+ }
+
+ if (!are_types_identical(x.type, y.type)) {
+ gbString s1 = type_to_string(x.type);
+ gbString s2 = type_to_string(y.type);
+ error(call, "'%.*s' values of the same type, got %s and %s", LIT(builtin_name), s1, s2);
+ gb_string_free(s2);
+ gb_string_free(s1);
+ return false;
+ }
+
+ Type *elem = core_array_type(x.type);
+ if (!is_type_valid_for_matrix_elems(elem)) {
+ gbString s = type_to_string(elem);
+ error(call, "'%.*s' expects elements to be types are limited to integers, floats, and complex, got %s", LIT(builtin_name), s);
+ gb_string_free(s);
+ }
+
+ operand->mode = Addressing_Value;
+ operand->type = x.type;
+ operand->type = check_matrix_type_hint(operand->type, type_hint);
+ break;
+ }
+
+ case BuiltinProc_matrix_flatten: {
+ Operand x = {};
+ check_expr(c, &x, ce->args[0]);
+ if (x.mode == Addressing_Invalid) {
+ return false;
+ }
+ if (!is_operand_value(x)) {
+ error(call, "'%.*s' expects a matrix or array", LIT(builtin_name));
+ return false;
+ }
+ Type *t = base_type(x.type);
+ if (!is_type_matrix(t) && !is_type_array(t)) {
+ gbString s = type_to_string(x.type);
+ error(call, "'%.*s' expects a matrix or array, got %s", LIT(builtin_name), s);
+ gb_string_free(s);
+ return false;
+ }
+
+ operand->mode = Addressing_Value;
+ if (is_type_array(t)) {
+ // Do nothing
+ operand->type = x.type;
+ } else {
+ GB_ASSERT(t->kind == Type_Matrix);
+ operand->type = alloc_type_array(t->Matrix.elem, t->Matrix.row_count*t->Matrix.column_count);
+ }
+ operand->type = check_matrix_type_hint(operand->type, type_hint);
+ break;
+ }
+
case BuiltinProc_simd_vector: {
Operand x = {};
Operand y = {};
diff --git a/src/check_expr.cpp b/src/check_expr.cpp
index 275210c6c..d8ca190b7 100644
--- a/src/check_expr.cpp
+++ b/src/check_expr.cpp
@@ -657,6 +657,14 @@ i64 check_distance_between_types(CheckerContext *c, Operand *operand, Type *type
return distance + 6;
}
}
+
+ if (is_type_matrix(dst)) {
+ Type *elem = base_array_type(dst);
+ i64 distance = check_distance_between_types(c, operand, elem);
+ if (distance >= 0) {
+ return distance + 7;
+ }
+ }
if (is_type_any(dst)) {
if (!is_type_polymorphic(src)) {
@@ -897,6 +905,34 @@ void check_assignment(CheckerContext *c, Operand *operand, Type *type, String co
}
}
+bool polymorphic_assign_index(Type **gt_, i64 *dst_count, i64 source_count) {
+ Type *gt = *gt_;
+
+ GB_ASSERT(gt->kind == Type_Generic);
+ Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
+ GB_ASSERT(e != nullptr);
+ if (e->kind == Entity_TypeName) {
+ *gt_ = nullptr;
+ *dst_count = source_count;
+
+ e->kind = Entity_Constant;
+ e->Constant.value = exact_value_i64(source_count);
+ e->type = t_untyped_integer;
+ return true;
+ } else if (e->kind == Entity_Constant) {
+ *gt_ = nullptr;
+ if (e->Constant.value.kind != ExactValue_Integer) {
+ return false;
+ }
+ i64 count = big_int_to_i64(&e->Constant.value.value_integer);
+ if (count != source_count) {
+ return false;
+ }
+ *dst_count = source_count;
+ return true;
+ }
+ return false;
+}
bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source, bool compound, bool modify_type) {
Operand o = {Addressing_Value};
@@ -951,28 +987,7 @@ bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source,
case Type_Array:
if (source->kind == Type_Array) {
if (poly->Array.generic_count != nullptr) {
- Type *gt = poly->Array.generic_count;
- GB_ASSERT(gt->kind == Type_Generic);
- Entity *e = scope_lookup(gt->Generic.scope, gt->Generic.name);
- GB_ASSERT(e != nullptr);
- if (e->kind == Entity_TypeName) {
- poly->Array.generic_count = nullptr;
- poly->Array.count = source->Array.count;
-
- e->kind = Entity_Constant;
- e->Constant.value = exact_value_i64(source->Array.count);
- e->type = t_untyped_integer;
- } else if (e->kind == Entity_Constant) {
- poly->Array.generic_count = nullptr;
- if (e->Constant.value.kind != ExactValue_Integer) {
- return false;
- }
- i64 count = big_int_to_i64(&e->Constant.value.value_integer);
- if (count != source->Array.count) {
- return false;
- }
- poly->Array.count = source->Array.count;
- } else {
+ if (!polymorphic_assign_index(&poly->Array.generic_count, &poly->Array.count, source->Array.count)) {
return false;
}
}
@@ -1165,6 +1180,27 @@ bool is_polymorphic_type_assignable(CheckerContext *c, Type *poly, Type *source,
return key || value;
}
return false;
+
+ case Type_Matrix:
+ if (source->kind == Type_Matrix) {
+ if (poly->Matrix.generic_row_count != nullptr) {
+ poly->Matrix.stride_in_bytes = 0;
+ if (!polymorphic_assign_index(&poly->Matrix.generic_row_count, &poly->Matrix.row_count, source->Matrix.row_count)) {
+ return false;
+ }
+ }
+ if (poly->Matrix.generic_column_count != nullptr) {
+ poly->Matrix.stride_in_bytes = 0;
+ if (!polymorphic_assign_index(&poly->Matrix.generic_column_count, &poly->Matrix.column_count, source->Matrix.column_count)) {
+ return false;
+ }
+ }
+ if (poly->Matrix.row_count == source->Matrix.row_count &&
+ poly->Matrix.column_count == source->Matrix.column_count) {
+ return is_polymorphic_type_assignable(c, poly->Matrix.elem, source->Matrix.elem, true, modify_type);
+ }
+ }
+ return false;
}
return false;
}
@@ -1400,8 +1436,9 @@ bool check_unary_op(CheckerContext *c, Operand *o, Token op) {
}
bool check_binary_op(CheckerContext *c, Operand *o, Token op) {
+ Type *main_type = o->type;
// TODO(bill): Handle errors correctly
- Type *type = base_type(core_array_type(o->type));
+ Type *type = base_type(core_array_type(main_type));
Type *ct = core_type(type);
switch (op.kind) {
case Token_Sub:
@@ -1414,10 +1451,15 @@ bool check_binary_op(CheckerContext *c, Operand *o, Token op) {
}
break;
- case Token_Mul:
case Token_Quo:
- case Token_MulEq:
case Token_QuoEq:
+ if (is_type_matrix(main_type)) {
+ error(op, "Operator '%.*s' is only allowed with matrix types", LIT(op.string));
+ return false;
+ }
+ /*fallthrough*/
+ case Token_Mul:
+ case Token_MulEq:
case Token_AddEq:
if (is_type_bit_set(type)) {
return true;
@@ -1458,6 +1500,10 @@ bool check_binary_op(CheckerContext *c, Operand *o, Token op) {
case Token_ModMod:
case Token_ModEq:
case Token_ModModEq:
+ if (is_type_matrix(main_type)) {
+ error(op, "Operator '%.*s' is only allowed with matrix types", LIT(op.string));
+ return false;
+ }
if (!is_type_integer(type)) {
error(op, "Operator '%.*s' is only allowed with integers", LIT(op.string));
return false;
@@ -2414,6 +2460,26 @@ bool check_is_castable_to(CheckerContext *c, Operand *operand, Type *y) {
if (is_type_quaternion(src) && is_type_quaternion(dst)) {
return true;
}
+
+ if (is_type_matrix(src) && is_type_matrix(dst)) {
+ GB_ASSERT(src->kind == Type_Matrix);
+ GB_ASSERT(dst->kind == Type_Matrix);
+ if (!are_types_identical(src->Matrix.elem, dst->Matrix.elem)) {
+ return false;
+ }
+
+ if (src->Matrix.row_count != src->Matrix.column_count) {
+ i64 src_count = src->Matrix.row_count*src->Matrix.column_count;
+ i64 dst_count = dst->Matrix.row_count*dst->Matrix.column_count;
+ return src_count == dst_count;
+ }
+
+ if (dst->Matrix.row_count != dst->Matrix.column_count) {
+ return false;
+ }
+
+ return true;
+ }
// Cast between pointers
@@ -2670,6 +2736,127 @@ bool can_use_other_type_as_type_hint(bool use_lhs_as_type_hint, Type *other_type
return false;
}
+Type *check_matrix_type_hint(Type *matrix, Type *type_hint) {
+ Type *xt = base_type(matrix);
+ if (type_hint != nullptr) {
+ Type *th = base_type(type_hint);
+ if (are_types_identical(th, xt)) {
+ return type_hint;
+ } else if (xt->kind == Type_Matrix && th->kind == Type_Array) {
+ if (!are_types_identical(xt->Matrix.elem, th->Array.elem)) {
+ // ignore
+ } else if (xt->Matrix.row_count == 1 && xt->Matrix.column_count == th->Array.count) {
+ return type_hint;
+ } else if (xt->Matrix.column_count == 1 && xt->Matrix.row_count == th->Array.count) {
+ return type_hint;
+ }
+ }
+ }
+ return matrix;
+}
+
+
+void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand *y, Type *type_hint, bool use_lhs_as_type_hint) {
+ if (!check_binary_op(c, x, op)) {
+ x->mode = Addressing_Invalid;
+ return;
+ }
+
+ Type *xt = base_type(x->type);
+ Type *yt = base_type(y->type);
+
+ if (is_type_matrix(x->type)) {
+ GB_ASSERT(xt->kind == Type_Matrix);
+ if (op.kind == Token_Mul) {
+ if (yt->kind == Type_Matrix) {
+ if (!are_types_identical(xt->Matrix.elem, yt->Matrix.elem)) {
+ goto matrix_error;
+ }
+
+ if (xt->Matrix.column_count != yt->Matrix.row_count) {
+ goto matrix_error;
+ }
+ x->mode = Addressing_Value;
+ x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, yt->Matrix.column_count);
+ goto matrix_success;
+ } else if (yt->kind == Type_Array) {
+ if (!are_types_identical(xt->Matrix.elem, yt->Array.elem)) {
+ goto matrix_error;
+ }
+
+ if (xt->Matrix.column_count != yt->Array.count) {
+ goto matrix_error;
+ }
+
+ // Treat arrays as column vectors
+ x->mode = Addressing_Value;
+ if (type_hint == nullptr && xt->Matrix.row_count == yt->Array.count) {
+ x->type = y->type;
+ } else {
+ x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, 1);
+ }
+ goto matrix_success;
+ }
+ }
+ if (!are_types_identical(xt, yt)) {
+ goto matrix_error;
+ }
+ x->mode = Addressing_Value;
+ x->type = xt;
+ goto matrix_success;
+ } else {
+ GB_ASSERT(is_type_matrix(yt));
+ GB_ASSERT(!is_type_matrix(xt));
+
+ if (op.kind == Token_Mul) {
+ // NOTE(bill): no need to handle the matrix case here since it should be handled above
+ if (xt->kind == Type_Array) {
+ if (!are_types_identical(yt->Matrix.elem, xt->Array.elem)) {
+ goto matrix_error;
+ }
+
+ if (xt->Array.count != yt->Matrix.row_count) {
+ goto matrix_error;
+ }
+
+ // Treat arrays as row vectors
+ x->mode = Addressing_Value;
+ if (type_hint == nullptr && yt->Matrix.column_count == xt->Array.count) {
+ x->type = x->type;
+ } else {
+ x->type = alloc_type_matrix(yt->Matrix.elem, 1, yt->Matrix.column_count);
+ }
+ goto matrix_success;
+ }
+ }
+ if (!are_types_identical(xt, yt)) {
+ goto matrix_error;
+ }
+ x->mode = Addressing_Value;
+ x->type = xt;
+ goto matrix_success;
+ }
+
+matrix_success:
+ x->type = check_matrix_type_hint(x->type, type_hint);
+
+ return;
+
+
+matrix_error:
+ gbString xts = type_to_string(x->type);
+ gbString yts = type_to_string(y->type);
+ gbString expr_str = expr_to_string(x->expr);
+ error(op, "Mismatched types in binary matrix expression '%s' for operator '%.*s' : '%s' vs '%s'", expr_str, LIT(op.string), xts, yts);
+ gb_string_free(expr_str);
+ gb_string_free(yts);
+ gb_string_free(xts);
+ x->type = t_invalid;
+ x->mode = Addressing_Invalid;
+ return;
+
+}
+
void check_binary_expr(CheckerContext *c, Operand *x, Ast *node, Type *type_hint, bool use_lhs_as_type_hint=false) {
GB_ASSERT(node->kind == Ast_BinaryExpr);
@@ -2874,6 +3061,13 @@ void check_binary_expr(CheckerContext *c, Operand *x, Ast *node, Type *type_hint
x->type = y->type;
return;
}
+ if (is_type_matrix(x->type) || is_type_matrix(y->type)) {
+ check_binary_matrix(c, op, x, y, type_hint, use_lhs_as_type_hint);
+ x->expr = node;
+ return;
+ }
+
+
if (!are_types_identical(x->type, y->type)) {
if (x->type != t_invalid &&
y->type != t_invalid) {
@@ -3262,6 +3456,29 @@ void convert_to_typed(CheckerContext *c, Operand *operand, Type *target_type) {
break;
}
+
+ case Type_Matrix: {
+ Type *elem = base_array_type(t);
+ if (check_is_assignable_to(c, operand, elem)) {
+ if (t->Matrix.row_count != t->Matrix.column_count) {
+ operand->mode = Addressing_Invalid;
+ begin_error_block();
+ defer (end_error_block());
+
+ convert_untyped_error(c, operand, target_type);
+ error_line("\tNote: Only a square matrix types can be initialized with a scalar value\n");
+ return;
+ } else {
+ operand->mode = Addressing_Value;
+ }
+ } else {
+ operand->mode = Addressing_Invalid;
+ convert_untyped_error(c, operand, target_type);
+ return;
+ }
+ break;
+ }
+
case Type_Union:
if (!is_operand_nil(*operand) && !is_operand_undef(*operand)) {
@@ -6219,6 +6436,16 @@ bool check_set_index_data(Operand *o, Type *t, bool indirection, i64 *max_count,
}
o->type = t->EnumeratedArray.elem;
return true;
+
+ case Type_Matrix:
+ *max_count = t->Matrix.column_count;
+ if (indirection) {
+ o->mode = Addressing_Variable;
+ } else if (o->mode != Addressing_Variable) {
+ o->mode = Addressing_Value;
+ }
+ o->type = alloc_type_array(t->Matrix.elem, t->Matrix.row_count);
+ return true;
case Type_Slice:
o->type = t->Slice.elem;
@@ -6517,6 +6744,72 @@ void check_promote_optional_ok(CheckerContext *c, Operand *x, Type **val_type_,
}
+void check_matrix_index_expr(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
+ ast_node(ie, MatrixIndexExpr, node);
+
+ check_expr(c, o, ie->expr);
+ node->viral_state_flags |= ie->expr->viral_state_flags;
+ if (o->mode == Addressing_Invalid) {
+ o->expr = node;
+ return;
+ }
+
+ Type *t = base_type(type_deref(o->type));
+ bool is_ptr = is_type_pointer(o->type);
+ bool is_const = o->mode == Addressing_Constant;
+
+ if (t->kind != Type_Matrix) {
+ gbString str = expr_to_string(o->expr);
+ gbString type_str = type_to_string(o->type);
+ defer (gb_string_free(str));
+ defer (gb_string_free(type_str));
+ if (is_const) {
+ error(o->expr, "Cannot use matrix indexing on constant '%s' of type '%s'", str, type_str);
+ } else {
+ error(o->expr, "Cannot use matrix indexing on '%s' of type '%s'", str, type_str);
+ }
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return;
+ }
+ o->type = t->Matrix.elem;
+ if (is_ptr) {
+ o->mode = Addressing_Variable;
+ } else if (o->mode != Addressing_Variable) {
+ o->mode = Addressing_Value;
+ }
+
+ if (ie->row_index == nullptr) {
+ gbString str = expr_to_string(o->expr);
+ error(o->expr, "Missing row index for '%s'", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return;
+ }
+ if (ie->column_index == nullptr) {
+ gbString str = expr_to_string(o->expr);
+ error(o->expr, "Missing column index for '%s'", str);
+ gb_string_free(str);
+ o->mode = Addressing_Invalid;
+ o->expr = node;
+ return;
+ }
+
+ i64 row_count = t->Matrix.row_count;
+ i64 column_count = t->Matrix.column_count;
+
+ i64 row_index = 0;
+ i64 column_index = 0;
+ bool row_ok = check_index_value(c, t, false, ie->row_index, row_count, &row_index, nullptr);
+ bool column_ok = check_index_value(c, t, false, ie->column_index, column_count, &column_index, nullptr);
+
+
+ gb_unused(row_ok);
+ gb_unused(column_ok);
+}
+
+
ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type *type_hint) {
u32 prev_state_flags = c->state_flags;
defer (c->state_flags = prev_state_flags);
@@ -7150,6 +7443,7 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
case Type_Array:
case Type_DynamicArray:
case Type_SimdVector:
+ case Type_Matrix:
{
Type *elem_type = nullptr;
String context_name = {};
@@ -7176,6 +7470,10 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
elem_type = t->SimdVector.elem;
context_name = str_lit("simd vector literal");
max_type_count = t->SimdVector.count;
+ } else if (t->kind == Type_Matrix) {
+ elem_type = t->Matrix.elem;
+ context_name = str_lit("matrix literal");
+ max_type_count = t->Matrix.row_count*t->Matrix.column_count;
} else {
GB_PANIC("unreachable");
}
@@ -8214,6 +8512,8 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
// Okay
} else if (is_type_relative_slice(t)) {
// Okay
+ } else if (is_type_matrix(t)) {
+ // Okay
} else {
valid = false;
}
@@ -8278,10 +8578,14 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
}
}
}
+
+ if (type_hint != nullptr && is_type_matrix(t)) {
+ // TODO(bill): allow matrix columns to be assignable to other types which are the same internally
+ // if a type hint exists
+ }
+
case_end;
-
-
case_ast_node(se, SliceExpr, node);
check_expr(c, o, se->expr);
node->viral_state_flags |= se->expr->viral_state_flags;
@@ -8454,7 +8758,12 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
}
case_end;
-
+
+ case_ast_node(mie, MatrixIndexExpr, node);
+ check_matrix_index_expr(c, o, node, type_hint);
+ o->expr = node;
+ return Expr_Expr;
+ case_end;
case_ast_node(ce, CallExpr, node);
return check_call_expr(c, o, node, ce->proc, ce->args, ce->inlining, type_hint);
@@ -8561,6 +8870,7 @@ ExprKind check_expr_base_internal(CheckerContext *c, Operand *o, Ast *node, Type
case Ast_EnumType:
case Ast_MapType:
case Ast_BitSetType:
+ case Ast_MatrixType:
o->mode = Addressing_Type;
o->type = check_type(c, node);
break;
@@ -8964,6 +9274,15 @@ gbString write_expr_to_string(gbString str, Ast *node, bool shorthand) {
str = gb_string_append_rune(str, ']');
case_end;
+ case_ast_node(mie, MatrixIndexExpr, node);
+ str = write_expr_to_string(str, mie->expr, shorthand);
+ str = gb_string_append_rune(str, '[');
+ str = write_expr_to_string(str, mie->row_index, shorthand);
+ str = gb_string_appendc(str, ", ");
+ str = write_expr_to_string(str, mie->column_index, shorthand);
+ str = gb_string_append_rune(str, ']');
+ case_end;
+
case_ast_node(e, Ellipsis, node);
str = gb_string_appendc(str, "..");
str = write_expr_to_string(str, e->expr, shorthand);
@@ -9035,6 +9354,16 @@ gbString write_expr_to_string(gbString str, Ast *node, bool shorthand) {
str = gb_string_append_rune(str, ']');
str = write_expr_to_string(str, mt->value, shorthand);
case_end;
+
+ case_ast_node(mt, MatrixType, node);
+ str = gb_string_appendc(str, "matrix[");
+ str = write_expr_to_string(str, mt->row_count, shorthand);
+ str = gb_string_appendc(str, ", ");
+ str = write_expr_to_string(str, mt->column_count, shorthand);
+ str = gb_string_append_rune(str, ']');
+ str = write_expr_to_string(str, mt->elem, shorthand);
+ case_end;
+
case_ast_node(f, Field, node);
if (f->flags&FieldFlag_using) {
diff --git a/src/check_type.cpp b/src/check_type.cpp
index 0d5c0f977..813990020 100644
--- a/src/check_type.cpp
+++ b/src/check_type.cpp
@@ -997,8 +997,8 @@ void check_bit_set_type(CheckerContext *c, Type *type, Type *named_type, Ast *no
GB_ASSERT(lower <= upper);
- i64 bits = MAX_BITS;
- if (bs->underlying != nullptr) {
+ i64 bits = MAX_BITS
+; if (bs->underlying != nullptr) {
Type *u = check_type(c, bs->underlying);
if (!is_type_integer(u)) {
gbString ts = type_to_string(u);
@@ -1154,7 +1154,11 @@ Type *determine_type_from_polymorphic(CheckerContext *ctx, Type *poly_type, Oper
bool show_error = modify_type && !ctx->hide_polymorphic_errors;
if (!is_operand_value(operand)) {
if (show_error) {
- error(operand.expr, "Cannot determine polymorphic type from parameter");
+ gbString pts = type_to_string(poly_type);
+ gbString ots = type_to_string(operand.type);
+ defer (gb_string_free(pts));
+ defer (gb_string_free(ots));
+ error(operand.expr, "Cannot determine polymorphic type from parameter: '%s' to '%s'", ots, pts);
}
return t_invalid;
}
@@ -2200,6 +2204,57 @@ void check_map_type(CheckerContext *ctx, Type *type, Ast *node) {
// error(node, "'map' types are not yet implemented");
}
+void check_matrix_type(CheckerContext *ctx, Type **type, Ast *node) {
+ ast_node(mt, MatrixType, node);
+
+ Operand row = {};
+ Operand column = {};
+
+ i64 row_count = check_array_count(ctx, &row, mt->row_count);
+ i64 column_count = check_array_count(ctx, &column, mt->column_count);
+
+ Type *elem = check_type_expr(ctx, mt->elem, nullptr);
+
+ Type *generic_row = nullptr;
+ Type *generic_column = nullptr;
+
+ if (row.mode == Addressing_Type && row.type->kind == Type_Generic) {
+ generic_row = row.type;
+ }
+
+ if (column.mode == Addressing_Type && column.type->kind == Type_Generic) {
+ generic_column = column.type;
+ }
+
+ if (row_count < MATRIX_ELEMENT_COUNT_MIN && generic_row == nullptr) {
+ gbString s = expr_to_string(row.expr);
+ error(row.expr, "Invalid matrix row count, expected %d+ rows, got %s", MATRIX_ELEMENT_COUNT_MIN, s);
+ gb_string_free(s);
+ }
+
+ if (column_count < MATRIX_ELEMENT_COUNT_MIN && generic_column == nullptr) {
+ gbString s = expr_to_string(column.expr);
+ error(column.expr, "Invalid matrix column count, expected %d+ rows, got %s", MATRIX_ELEMENT_COUNT_MIN, s);
+ gb_string_free(s);
+ }
+
+ if (row_count*column_count > MATRIX_ELEMENT_COUNT_MAX) {
+ i64 element_count = row_count*column_count;
+ error(column.expr, "Matrix types are limited to a maximum of %d elements, got %lld", MATRIX_ELEMENT_COUNT_MAX, cast(long long)element_count);
+ }
+
+ if (!is_type_valid_for_matrix_elems(elem)) {
+ gbString s = type_to_string(elem);
+ error(column.expr, "Matrix elements types are limited to integers, floats, and complex, got %s", s);
+ gb_string_free(s);
+ }
+
+ *type = alloc_type_matrix(elem, row_count, column_count, generic_row, generic_column);
+
+ return;
+}
+
+
Type *make_soa_struct_internal(CheckerContext *ctx, Ast *array_typ_expr, Ast *elem_expr, Type *elem, i64 count, Type *generic_type, StructSoaKind soa_kind) {
Type *bt_elem = base_type(elem);
@@ -2785,6 +2840,13 @@ bool check_type_internal(CheckerContext *ctx, Ast *e, Type **type, Type *named_t
return true;
}
case_end;
+
+
+ case_ast_node(mt, MatrixType, e);
+ check_matrix_type(ctx, type, e);
+ set_base_type(named_type, *type);
+ return true;
+ case_end;
}
*type = t_invalid;
diff --git a/src/checker.cpp b/src/checker.cpp
index b1b148a84..8db9e1bd6 100644
--- a/src/checker.cpp
+++ b/src/checker.cpp
@@ -1668,6 +1668,10 @@ void add_type_info_type_internal(CheckerContext *c, Type *t) {
add_type_info_type_internal(c, bt->RelativeSlice.slice_type);
add_type_info_type_internal(c, bt->RelativeSlice.base_integer);
break;
+
+ case Type_Matrix:
+ add_type_info_type_internal(c, bt->Matrix.elem);
+ break;
default:
GB_PANIC("Unhandled type: %*.s %d", LIT(type_strings[bt->kind]), bt->kind);
@@ -1879,6 +1883,10 @@ void add_min_dep_type_info(Checker *c, Type *t) {
add_min_dep_type_info(c, bt->RelativeSlice.slice_type);
add_min_dep_type_info(c, bt->RelativeSlice.base_integer);
break;
+
+ case Type_Matrix:
+ add_min_dep_type_info(c, bt->Matrix.elem);
+ break;
default:
GB_PANIC("Unhandled type: %*.s", LIT(type_strings[bt->kind]));
@@ -2023,6 +2031,7 @@ void generate_minimum_dependency_set(Checker *c, Entity *start) {
String bounds_check_entities[] = {
// Bounds checking related procedures
str_lit("bounds_check_error"),
+ str_lit("matrix_bounds_check_error"),
str_lit("slice_expr_error_hi"),
str_lit("slice_expr_error_lo_hi"),
str_lit("multi_pointer_slice_expr_error"),
@@ -2467,6 +2476,7 @@ void init_core_type_info(Checker *c) {
t_type_info_simd_vector = find_core_type(c, str_lit("Type_Info_Simd_Vector"));
t_type_info_relative_pointer = find_core_type(c, str_lit("Type_Info_Relative_Pointer"));
t_type_info_relative_slice = find_core_type(c, str_lit("Type_Info_Relative_Slice"));
+ t_type_info_matrix = find_core_type(c, str_lit("Type_Info_Matrix"));
t_type_info_named_ptr = alloc_type_pointer(t_type_info_named);
t_type_info_integer_ptr = alloc_type_pointer(t_type_info_integer);
@@ -2494,6 +2504,7 @@ void init_core_type_info(Checker *c) {
t_type_info_simd_vector_ptr = alloc_type_pointer(t_type_info_simd_vector);
t_type_info_relative_pointer_ptr = alloc_type_pointer(t_type_info_relative_pointer);
t_type_info_relative_slice_ptr = alloc_type_pointer(t_type_info_relative_slice);
+ t_type_info_matrix_ptr = alloc_type_pointer(t_type_info_matrix);
}
void init_mem_allocator(Checker *c) {
diff --git a/src/checker_builtin_procs.hpp b/src/checker_builtin_procs.hpp
index e9eb76b0b..3ab85f31b 100644
--- a/src/checker_builtin_procs.hpp
+++ b/src/checker_builtin_procs.hpp
@@ -34,6 +34,11 @@ enum BuiltinProcId {
BuiltinProc_soa_zip,
BuiltinProc_soa_unzip,
+
+ BuiltinProc_transpose,
+ BuiltinProc_outer_product,
+ BuiltinProc_hadamard_product,
+ BuiltinProc_matrix_flatten,
BuiltinProc_DIRECTIVE, // NOTE(bill): This is used for specialized hash-prefixed procedures
@@ -194,6 +199,7 @@ BuiltinProc__type_simple_boolean_begin,
BuiltinProc_type_is_simple_compare, // easily compared using memcmp
BuiltinProc_type_is_dereferenceable,
BuiltinProc_type_is_valid_map_key,
+ BuiltinProc_type_is_valid_matrix_elements,
BuiltinProc_type_is_named,
BuiltinProc_type_is_pointer,
@@ -210,6 +216,7 @@ BuiltinProc__type_simple_boolean_begin,
BuiltinProc_type_is_bit_field_value,
BuiltinProc_type_is_bit_set,
BuiltinProc_type_is_simd_vector,
+ BuiltinProc_type_is_matrix,
BuiltinProc_type_is_specialized_polymorphic_record,
BuiltinProc_type_is_unspecialized_polymorphic_record,
@@ -277,6 +284,11 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_COUNT] = {
{STR_LIT("soa_zip"), 1, true, Expr_Expr, BuiltinProcPkg_builtin},
{STR_LIT("soa_unzip"), 1, false, Expr_Expr, BuiltinProcPkg_builtin},
+
+ {STR_LIT("transpose"), 1, false, Expr_Expr, BuiltinProcPkg_builtin},
+ {STR_LIT("outer_product"), 2, false, Expr_Expr, BuiltinProcPkg_builtin},
+ {STR_LIT("hadamard_product"), 2, false, Expr_Expr, BuiltinProcPkg_builtin},
+ {STR_LIT("matrix_flatten"), 1, false, Expr_Expr, BuiltinProcPkg_builtin},
{STR_LIT(""), 0, true, Expr_Expr, BuiltinProcPkg_builtin}, // DIRECTIVE
@@ -437,6 +449,7 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_COUNT] = {
{STR_LIT("type_is_simple_compare"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_dereferenceable"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_valid_map_key"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
+ {STR_LIT("type_is_valid_matrix_elements"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_named"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_pointer"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
@@ -453,6 +466,7 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_COUNT] = {
{STR_LIT("type_is_bit_field_value"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_bit_set"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_simd_vector"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
+ {STR_LIT("type_is_matrix"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_specialized_polymorphic_record"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
{STR_LIT("type_is_unspecialized_polymorphic_record"), 1, false, Expr_Expr, BuiltinProcPkg_intrinsics},
diff --git a/src/llvm_abi.cpp b/src/llvm_abi.cpp
index 8d3d5542f..9e7f4b290 100644
--- a/src/llvm_abi.cpp
+++ b/src/llvm_abi.cpp
@@ -153,7 +153,18 @@ void lb_add_function_type_attributes(LLVMValueRef fn, lbFunctionType *ft, ProcCa
// TODO(bill): Clean up this logic
if (!is_arch_wasm()) {
cc_kind = lb_calling_convention_map[calling_convention];
- }
+ }
+ // if (build_context.metrics.arch == TargetArch_amd64) {
+ // if (build_context.metrics.os == TargetOs_windows) {
+ // if (cc_kind == lbCallingConvention_C) {
+ // cc_kind = lbCallingConvention_Win64;
+ // }
+ // } else {
+ // if (cc_kind == lbCallingConvention_C) {
+ // cc_kind = lbCallingConvention_X86_64_SysV;
+ // }
+ // }
+ // }
LLVMSetFunctionCallConv(fn, cc_kind);
if (calling_convention == ProcCC_Odin) {
unsigned context_index = offset+arg_count;
diff --git a/src/llvm_backend.cpp b/src/llvm_backend.cpp
index a72ddc646..4d1245c98 100644
--- a/src/llvm_backend.cpp
+++ b/src/llvm_backend.cpp
@@ -21,12 +21,6 @@
#include "llvm_backend_stmt.cpp"
#include "llvm_backend_proc.cpp"
-#if LLVM_VERSION_MAJOR < 11
-#error "LLVM Version 11 is the minimum required"
-#elif LLVM_VERSION_MAJOR == 12 && !(LLVM_VERSION_MINOR > 0 || LLVM_VERSION_PATCH > 0)
-#error "If LLVM Version 12.x.y is wanted, at least LLVM 12.0.1 is required"
-#endif
-
void lb_add_foreign_library_path(lbModule *m, Entity *e) {
if (e == nullptr) {
@@ -1135,13 +1129,46 @@ void lb_generate_code(lbGenerator *gen) {
auto *min_dep_set = &info->minimum_dependency_set;
- LLVMInitializeAllTargetInfos();
- LLVMInitializeAllTargets();
- LLVMInitializeAllTargetMCs();
- LLVMInitializeAllAsmPrinters();
- LLVMInitializeAllAsmParsers();
- LLVMInitializeAllDisassemblers();
- LLVMInitializeNativeTarget();
+ switch (build_context.metrics.arch) {
+ case TargetArch_amd64:
+ case TargetArch_386:
+ LLVMInitializeX86TargetInfo();
+ LLVMInitializeX86Target();
+ LLVMInitializeX86TargetMC();
+ LLVMInitializeX86AsmPrinter();
+ LLVMInitializeX86AsmParser();
+ LLVMInitializeX86Disassembler();
+ break;
+ case TargetArch_arm64:
+ LLVMInitializeAArch64TargetInfo();
+ LLVMInitializeAArch64Target();
+ LLVMInitializeAArch64TargetMC();
+ LLVMInitializeAArch64AsmPrinter();
+ LLVMInitializeAArch64AsmParser();
+ LLVMInitializeAArch64Disassembler();
+ break;
+ case TargetArch_wasm32:
+ LLVMInitializeWebAssemblyTargetInfo();
+ LLVMInitializeWebAssemblyTarget();
+ LLVMInitializeWebAssemblyTargetMC();
+ LLVMInitializeWebAssemblyAsmPrinter();
+ LLVMInitializeWebAssemblyAsmParser();
+ LLVMInitializeWebAssemblyDisassembler();
+ break;
+ default:
+ LLVMInitializeAllTargetInfos();
+ LLVMInitializeAllTargets();
+ LLVMInitializeAllTargetMCs();
+ LLVMInitializeAllAsmPrinters();
+ LLVMInitializeAllAsmParsers();
+ LLVMInitializeAllDisassemblers();
+ break;
+ }
+
+
+ if (build_context.microarch == "native") {
+ LLVMInitializeNativeTarget();
+ }
char const *target_triple = alloc_cstring(permanent_allocator(), build_context.metrics.target_triplet);
for_array(i, gen->modules.entries) {
@@ -1174,6 +1201,16 @@ void lb_generate_code(lbGenerator *gen) {
if (gb_strcmp(llvm_cpu, host_cpu_name) == 0) {
llvm_features = LLVMGetHostCPUFeatures();
}
+ } else if (build_context.metrics.arch == TargetArch_amd64) {
+ // NOTE(bill): x86-64-v2 is more than enough for everyone
+ //
+ // x86-64: CMOV, CMPXCHG8B, FPU, FXSR, MMX, FXSR, SCE, SSE, SSE2
+ // x86-64-v2: (close to Nehalem) CMPXCHG16B, LAHF-SAHF, POPCNT, SSE3, SSE4.1, SSE4.2, SSSE3
+ // x86-64-v3: (close to Haswell) AVX, AVX2, BMI1, BMI2, F16C, FMA, LZCNT, MOVBE, XSAVE
+ // x86-64-v4: AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL
+ if (ODIN_LLVM_MINIMUM_VERSION_12) {
+ llvm_cpu = "x86-64-v2";
+ }
}
// GB_ASSERT_MSG(LLVMTargetHasAsmBackend(target));
@@ -1640,6 +1677,7 @@ void lb_generate_code(lbGenerator *gen) {
code_gen_file_type = LLVMAssemblyFile;
}
+
for_array(j, gen->modules.entries) {
lbModule *m = gen->modules.entries[j].value;
if (LLVMVerifyModule(m->mod, LLVMReturnStatusAction, &llvm_error)) {
@@ -1684,7 +1722,6 @@ void lb_generate_code(lbGenerator *gen) {
}
}
-
TIME_SECTION("LLVM Add Foreign Library Paths");
for_array(j, gen->modules.entries) {
diff --git a/src/llvm_backend.hpp b/src/llvm_backend.hpp
index ffb81f0e4..9aa9920f2 100644
--- a/src/llvm_backend.hpp
+++ b/src/llvm_backend.hpp
@@ -30,6 +30,18 @@
#include <llvm-c/Transforms/Vectorize.h>
#endif
+#if LLVM_VERSION_MAJOR < 11
+#error "LLVM Version 11 is the minimum required"
+#elif LLVM_VERSION_MAJOR == 12 && !(LLVM_VERSION_MINOR > 0 || LLVM_VERSION_PATCH > 0)
+#error "If LLVM Version 12.x.y is wanted, at least LLVM 12.0.1 is required"
+#endif
+
+#if LLVM_VERSION_MAJOR > 12 || (LLVM_VERSION_MAJOR == 12 && LLVM_VERSION_MINOR >= 0 && LLVM_VERSION_PATCH > 0)
+#define ODIN_LLVM_MINIMUM_VERSION_12 1
+#else
+#define ODIN_LLVM_MINIMUM_VERSION_12 0
+#endif
+
struct lbProcedure;
struct lbValue {
@@ -333,6 +345,11 @@ lbValue lb_emit_array_ep(lbProcedure *p, lbValue s, lbValue index);
lbValue lb_emit_deep_field_gep(lbProcedure *p, lbValue e, Selection sel);
lbValue lb_emit_deep_field_ev(lbProcedure *p, lbValue e, Selection sel);
+lbValue lb_emit_matrix_ep(lbProcedure *p, lbValue s, lbValue row, lbValue column);
+lbValue lb_emit_matrix_epi(lbProcedure *p, lbValue s, isize row, isize column);
+lbValue lb_emit_matrix_ev(lbProcedure *p, lbValue s, isize row, isize column);
+
+
lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type);
lbValue lb_emit_byte_swap(lbProcedure *p, lbValue value, Type *end_type);
void lb_emit_defer_stmts(lbProcedure *p, lbDeferExitKind kind, lbBlock *block);
@@ -388,6 +405,8 @@ lbValue lb_soa_struct_len(lbProcedure *p, lbValue value);
void lb_emit_increment(lbProcedure *p, lbValue addr);
lbValue lb_emit_select(lbProcedure *p, lbValue cond, lbValue x, lbValue y);
+lbValue lb_emit_mul_add(lbProcedure *p, lbValue a, lbValue b, lbValue c, Type *t);
+
void lb_fill_slice(lbProcedure *p, lbAddr const &slice, lbValue base_elem, lbValue len);
lbValue lb_type_info(lbModule *m, Type *type);
@@ -465,7 +484,7 @@ LLVMTypeRef lb_type_padding_filler(lbModule *m, i64 padding, i64 padding_align);
-enum lbCallingConventionKind {
+enum lbCallingConventionKind : unsigned {
lbCallingConvention_C = 0,
lbCallingConvention_Fast = 8,
lbCallingConvention_Cold = 9,
@@ -510,6 +529,8 @@ enum lbCallingConventionKind {
lbCallingConvention_AMDGPU_LS = 95,
lbCallingConvention_AMDGPU_ES = 96,
lbCallingConvention_AArch64_VectorCall = 97,
+ lbCallingConvention_AArch64_SVE_VectorCall = 98,
+ lbCallingConvention_WASM_EmscriptenInvoke = 99,
lbCallingConvention_MaxID = 1023,
};
diff --git a/src/llvm_backend_const.cpp b/src/llvm_backend_const.cpp
index bcf2905ba..e3e43a31e 100644
--- a/src/llvm_backend_const.cpp
+++ b/src/llvm_backend_const.cpp
@@ -512,6 +512,31 @@ lbValue lb_const_value(lbModule *m, Type *type, ExactValue value, bool allow_loc
res.value = llvm_const_array(lb_type(m, elem), elems, cast(unsigned)count);
return res;
+ } else if (is_type_matrix(type) &&
+ value.kind != ExactValue_Invalid &&
+ value.kind != ExactValue_Compound) {
+ i64 row = type->Matrix.row_count;
+ i64 column = type->Matrix.column_count;
+ GB_ASSERT(row == column);
+
+ Type *elem = type->Matrix.elem;
+
+ lbValue single_elem = lb_const_value(m, elem, value, allow_local);
+ single_elem.value = llvm_const_cast(single_elem.value, lb_type(m, elem));
+
+ i64 total_elem_count = matrix_type_total_internal_elems(type);
+ LLVMValueRef *elems = gb_alloc_array(permanent_allocator(), LLVMValueRef, cast(isize)total_elem_count);
+ for (i64 i = 0; i < row; i++) {
+ elems[matrix_indices_to_offset(type, i, i)] = single_elem.value;
+ }
+ for (i64 i = 0; i < total_elem_count; i++) {
+ if (elems[i] == nullptr) {
+ elems[i] = LLVMConstNull(lb_type(m, elem));
+ }
+ }
+
+ res.value = LLVMConstArray(lb_type(m, elem), elems, cast(unsigned)total_elem_count);
+ return res;
}
switch (value.kind) {
@@ -956,6 +981,82 @@ lbValue lb_const_value(lbModule *m, Type *type, ExactValue value, bool allow_loc
res.value = LLVMConstInt(lb_type(m, original_type), bits, false);
return res;
+ } else if (is_type_matrix(type)) {
+ ast_node(cl, CompoundLit, value.value_compound);
+ Type *elem_type = type->Matrix.elem;
+ isize elem_count = cl->elems.count;
+ if (elem_count == 0 || !elem_type_can_be_constant(elem_type)) {
+ return lb_const_nil(m, original_type);
+ }
+
+ i64 max_count = type->Matrix.row_count*type->Matrix.column_count;
+ i64 total_count = matrix_type_total_internal_elems(type);
+
+ LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, cast(isize)total_count);
+ if (cl->elems[0]->kind == Ast_FieldValue) {
+ for_array(j, cl->elems) {
+ Ast *elem = cl->elems[j];
+ ast_node(fv, FieldValue, elem);
+ if (is_ast_range(fv->field)) {
+ ast_node(ie, BinaryExpr, fv->field);
+ TypeAndValue lo_tav = ie->left->tav;
+ TypeAndValue hi_tav = ie->right->tav;
+ GB_ASSERT(lo_tav.mode == Addressing_Constant);
+ GB_ASSERT(hi_tav.mode == Addressing_Constant);
+
+ TokenKind op = ie->op.kind;
+ i64 lo = exact_value_to_i64(lo_tav.value);
+ i64 hi = exact_value_to_i64(hi_tav.value);
+ if (op != Token_RangeHalf) {
+ hi += 1;
+ }
+ TypeAndValue tav = fv->value->tav;
+ LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
+ for (i64 k = lo; k < hi; k++) {
+ i64 offset = matrix_index_to_offset(type, k);
+ GB_ASSERT(values[offset] == nullptr);
+ values[offset] = val;
+ }
+ } else {
+ TypeAndValue index_tav = fv->field->tav;
+ GB_ASSERT(index_tav.mode == Addressing_Constant);
+ i64 index = exact_value_to_i64(index_tav.value);
+ TypeAndValue tav = fv->value->tav;
+ LLVMValueRef val = lb_const_value(m, elem_type, tav.value, allow_local).value;
+ i64 offset = matrix_index_to_offset(type, index);
+ GB_ASSERT(values[offset] == nullptr);
+ values[offset] = val;
+ }
+ }
+
+ for (i64 i = 0; i < total_count; i++) {
+ if (values[i] == nullptr) {
+ values[i] = LLVMConstNull(lb_type(m, elem_type));
+ }
+ }
+
+ res.value = lb_build_constant_array_values(m, type, elem_type, cast(isize)total_count, values, allow_local);
+ return res;
+ } else {
+ GB_ASSERT_MSG(elem_count == max_count, "%td != %td", elem_count, max_count);
+
+ LLVMValueRef *values = gb_alloc_array(temporary_allocator(), LLVMValueRef, cast(isize)total_count);
+
+ for_array(i, cl->elems) {
+ TypeAndValue tav = cl->elems[i]->tav;
+ GB_ASSERT(tav.mode != Addressing_Invalid);
+ i64 offset = matrix_index_to_offset(type, i);
+ values[offset] = lb_const_value(m, elem_type, tav.value, allow_local).value;
+ }
+ for (isize i = 0; i < total_count; i++) {
+ if (values[i] == nullptr) {
+ values[i] = LLVMConstNull(lb_type(m, elem_type));
+ }
+ }
+
+ res.value = lb_build_constant_array_values(m, type, elem_type, cast(isize)total_count, values, allow_local);
+ return res;
+ }
} else {
return lb_const_nil(m, original_type);
}
diff --git a/src/llvm_backend_expr.cpp b/src/llvm_backend_expr.cpp
index 6737c97bc..c9827ae3a 100644
--- a/src/llvm_backend_expr.cpp
+++ b/src/llvm_backend_expr.cpp
@@ -331,7 +331,7 @@ bool lb_try_direct_vector_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbVal
z = LLVMBuildFRem(p->builder, x, y, "");
break;
default:
- GB_PANIC("Unsupported vector operation");
+ GB_PANIC("Unsupported vector operation %.*s", LIT(token_strings[op]));
break;
}
@@ -476,11 +476,545 @@ lbValue lb_emit_arith_array(lbProcedure *p, TokenKind op, lbValue lhs, lbValue r
}
}
+bool lb_is_matrix_simdable(Type *t) {
+ Type *mt = base_type(t);
+ GB_ASSERT(mt->kind == Type_Matrix);
+
+ Type *elem = core_type(mt->Matrix.elem);
+ if (is_type_complex(elem)) {
+ return false;
+ }
+
+ if (is_type_different_to_arch_endianness(elem)) {
+ return false;
+ }
+
+ switch (build_context.metrics.arch) {
+ case TargetArch_amd64:
+ case TargetArch_arm64:
+ // possible
+ break;
+ case TargetArch_386:
+ case TargetArch_wasm32:
+ // nope
+ return false;
+ }
+
+ if (elem->kind == Type_Basic) {
+ switch (elem->Basic.kind) {
+ case Basic_f16:
+ case Basic_f16le:
+ case Basic_f16be:
+ switch (build_context.metrics.arch) {
+ case TargetArch_amd64:
+ return false;
+ case TargetArch_arm64:
+ // TODO(bill): determine when this is fine
+ return true;
+ case TargetArch_386:
+ case TargetArch_wasm32:
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+LLVMValueRef lb_matrix_to_vector(lbProcedure *p, lbValue matrix) {
+ Type *mt = base_type(matrix.type);
+ GB_ASSERT(mt->kind == Type_Matrix);
+ LLVMTypeRef elem_type = lb_type(p->module, mt->Matrix.elem);
+
+ unsigned total_count = cast(unsigned)matrix_type_total_internal_elems(mt);
+ LLVMTypeRef total_matrix_type = LLVMVectorType(elem_type, total_count);
+
+#if 1
+ LLVMValueRef ptr = lb_address_from_load_or_generate_local(p, matrix).value;
+ LLVMValueRef matrix_vector_ptr = LLVMBuildPointerCast(p->builder, ptr, LLVMPointerType(total_matrix_type, 0), "");
+ LLVMValueRef matrix_vector = LLVMBuildLoad(p->builder, matrix_vector_ptr, "");
+ LLVMSetAlignment(matrix_vector, cast(unsigned)type_align_of(mt));
+ return matrix_vector;
+#else
+ LLVMValueRef matrix_vector = LLVMBuildBitCast(p->builder, matrix.value, total_matrix_type, "");
+ return matrix_vector;
+#endif
+}
+
+LLVMValueRef lb_matrix_trimmed_vector_mask(lbProcedure *p, Type *mt) {
+ mt = base_type(mt);
+ GB_ASSERT(mt->kind == Type_Matrix);
+
+ unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
+ unsigned row_count = cast(unsigned)mt->Matrix.row_count;
+ unsigned column_count = cast(unsigned)mt->Matrix.column_count;
+ unsigned mask_elems_index = 0;
+ auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), row_count*column_count);
+ for (unsigned j = 0; j < column_count; j++) {
+ for (unsigned i = 0; i < row_count; i++) {
+ unsigned offset = stride*j + i;
+ mask_elems[mask_elems_index++] = lb_const_int(p->module, t_u32, offset).value;
+ }
+ }
+
+ LLVMValueRef mask = LLVMConstVector(mask_elems.data, cast(unsigned)mask_elems.count);
+ return mask;
+}
+
+LLVMValueRef lb_matrix_to_trimmed_vector(lbProcedure *p, lbValue m) {
+ LLVMValueRef vector = lb_matrix_to_vector(p, m);
+
+ Type *mt = base_type(m.type);
+ GB_ASSERT(mt->kind == Type_Matrix);
+
+ unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
+ unsigned row_count = cast(unsigned)mt->Matrix.row_count;
+ if (stride == row_count) {
+ return vector;
+ }
+
+ LLVMValueRef mask = lb_matrix_trimmed_vector_mask(p, mt);
+ LLVMValueRef trimmed_vector = LLVMBuildShuffleVector(p->builder, vector, LLVMGetUndef(LLVMTypeOf(vector)), mask, "");
+ return trimmed_vector;
+}
+
+
+lbValue lb_emit_matrix_tranpose(lbProcedure *p, lbValue m, Type *type) {
+ if (is_type_array(m.type)) {
+ // no-op
+ m.type = type;
+ return m;
+ }
+ Type *mt = base_type(m.type);
+ GB_ASSERT(mt->kind == Type_Matrix);
+
+ if (lb_is_matrix_simdable(mt)) {
+ unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
+ unsigned row_count = cast(unsigned)mt->Matrix.row_count;
+ unsigned column_count = cast(unsigned)mt->Matrix.column_count;
+
+ auto rows = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
+ auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
+
+ LLVMValueRef vector = lb_matrix_to_vector(p, m);
+ for (unsigned i = 0; i < row_count; i++) {
+ for (unsigned j = 0; j < column_count; j++) {
+ unsigned offset = stride*j + i;
+ mask_elems[j] = lb_const_int(p->module, t_u32, offset).value;
+ }
+
+ // transpose mask
+ LLVMValueRef mask = LLVMConstVector(mask_elems.data, column_count);
+ LLVMValueRef row = LLVMBuildShuffleVector(p->builder, vector, LLVMGetUndef(LLVMTypeOf(vector)), mask, "");
+ rows[i] = row;
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+ for_array(i, rows) {
+ LLVMValueRef row = rows[i];
+ lbValue dst_row_ptr = lb_emit_matrix_epi(p, res.addr, 0, i);
+ LLVMValueRef ptr = dst_row_ptr.value;
+ ptr = LLVMBuildPointerCast(p->builder, ptr, LLVMPointerType(LLVMTypeOf(row), 0), "");
+ LLVMBuildStore(p->builder, row, ptr);
+ }
+
+ return lb_addr_load(p, res);
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ i64 row_count = mt->Matrix.row_count;
+ i64 column_count = mt->Matrix.column_count;
+ for (i64 j = 0; j < column_count; j++) {
+ for (i64 i = 0; i < row_count; i++) {
+ lbValue src = lb_emit_matrix_ev(p, m, i, j);
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, j, i);
+ lb_emit_store(p, dst, src);
+ }
+ }
+ return lb_addr_load(p, res);
+}
+
+lbValue lb_matrix_cast_vector_to_type(lbProcedure *p, LLVMValueRef vector, Type *type) {
+ lbAddr res = lb_add_local_generated(p, type, true);
+ LLVMValueRef res_ptr = res.addr.value;
+ unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(LLVMTypeOf(vector)));
+ LLVMSetAlignment(res_ptr, alignment);
+
+ res_ptr = LLVMBuildPointerCast(p->builder, res_ptr, LLVMPointerType(LLVMTypeOf(vector), 0), "");
+ LLVMBuildStore(p->builder, vector, res_ptr);
+
+ return lb_addr_load(p, res);
+}
+
+lbValue lb_emit_matrix_flatten(lbProcedure *p, lbValue m, Type *type) {
+ if (is_type_array(m.type)) {
+ // no-op
+ m.type = type;
+ return m;
+ }
+ Type *mt = base_type(m.type);
+ GB_ASSERT(mt->kind == Type_Matrix);
+
+ if (lb_is_matrix_simdable(mt)) {
+ LLVMValueRef vector = lb_matrix_to_trimmed_vector(p, m);
+ return lb_matrix_cast_vector_to_type(p, vector, type);
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ i64 row_count = mt->Matrix.row_count;
+ i64 column_count = mt->Matrix.column_count;
+ for (i64 j = 0; j < column_count; j++) {
+ for (i64 i = 0; i < row_count; i++) {
+ lbValue src = lb_emit_matrix_ev(p, m, i, j);
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
+ lb_emit_store(p, dst, src);
+ }
+ }
+ return lb_addr_load(p, res);
+}
+
+
+lbValue lb_emit_outer_product(lbProcedure *p, lbValue a, lbValue b, Type *type) {
+ Type *mt = base_type(type);
+ Type *at = base_type(a.type);
+ Type *bt = base_type(b.type);
+ GB_ASSERT(mt->kind == Type_Matrix);
+ GB_ASSERT(at->kind == Type_Array);
+ GB_ASSERT(bt->kind == Type_Array);
+
+
+ i64 row_count = mt->Matrix.row_count;
+ i64 column_count = mt->Matrix.column_count;
+
+ GB_ASSERT(row_count == at->Array.count);
+ GB_ASSERT(column_count == bt->Array.count);
+
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ for (i64 j = 0; j < column_count; j++) {
+ for (i64 i = 0; i < row_count; i++) {
+ lbValue x = lb_emit_struct_ev(p, a, cast(i32)i);
+ lbValue y = lb_emit_struct_ev(p, b, cast(i32)j);
+ lbValue src = lb_emit_arith(p, Token_Mul, x, y, mt->Matrix.elem);
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
+ lb_emit_store(p, dst, src);
+ }
+ }
+ return lb_addr_load(p, res);
+
+}
+
+lbValue lb_emit_matrix_mul(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
+ // TODO(bill): Handle edge case for f16 types on x86(-64) platforms
+
+ Type *xt = base_type(lhs.type);
+ Type *yt = base_type(rhs.type);
+
+ GB_ASSERT(is_type_matrix(type));
+ GB_ASSERT(is_type_matrix(xt));
+ GB_ASSERT(is_type_matrix(yt));
+ GB_ASSERT(xt->Matrix.column_count == yt->Matrix.row_count);
+ GB_ASSERT(are_types_identical(xt->Matrix.elem, yt->Matrix.elem));
+
+ Type *elem = xt->Matrix.elem;
+
+ unsigned outer_rows = cast(unsigned)xt->Matrix.row_count;
+ unsigned inner = cast(unsigned)xt->Matrix.column_count;
+ unsigned outer_columns = cast(unsigned)yt->Matrix.column_count;
+
+ if (lb_is_matrix_simdable(xt)) {
+ unsigned x_stride = cast(unsigned)matrix_type_stride_in_elems(xt);
+ unsigned y_stride = cast(unsigned)matrix_type_stride_in_elems(yt);
+
+ auto x_rows = slice_make<LLVMValueRef>(permanent_allocator(), outer_rows);
+ auto y_columns = slice_make<LLVMValueRef>(permanent_allocator(), outer_columns);
+
+ LLVMValueRef x_vector = lb_matrix_to_vector(p, lhs);
+ LLVMValueRef y_vector = lb_matrix_to_vector(p, rhs);
+
+ auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), inner);
+ for (unsigned i = 0; i < outer_rows; i++) {
+ for (unsigned j = 0; j < inner; j++) {
+ unsigned offset = x_stride*j + i;
+ mask_elems[j] = lb_const_int(p->module, t_u32, offset).value;
+ }
+
+ // transpose mask
+ LLVMValueRef mask = LLVMConstVector(mask_elems.data, inner);
+ LLVMValueRef row = LLVMBuildShuffleVector(p->builder, x_vector, LLVMGetUndef(LLVMTypeOf(x_vector)), mask, "");
+ x_rows[i] = row;
+ }
+
+ for (unsigned i = 0; i < outer_columns; i++) {
+ LLVMValueRef mask = llvm_mask_iota(p->module, y_stride*i, inner);
+ LLVMValueRef column = LLVMBuildShuffleVector(p->builder, y_vector, LLVMGetUndef(LLVMTypeOf(y_vector)), mask, "");
+ y_columns[i] = column;
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+ for_array(i, x_rows) {
+ LLVMValueRef x_row = x_rows[i];
+ for_array(j, y_columns) {
+ LLVMValueRef y_column = y_columns[j];
+ LLVMValueRef elem = llvm_vector_dot(p, x_row, y_column);
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
+ LLVMBuildStore(p->builder, elem, dst.value);
+ }
+ }
+ return lb_addr_load(p, res);
+ }
+
+ {
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ auto inners = slice_make<lbValue[2]>(permanent_allocator(), inner);
+
+ for (unsigned j = 0; j < outer_columns; j++) {
+ for (unsigned i = 0; i < outer_rows; i++) {
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
+ for (unsigned k = 0; k < inner; k++) {
+ inners[k][0] = lb_emit_matrix_ev(p, lhs, i, k);
+ inners[k][1] = lb_emit_matrix_ev(p, rhs, k, j);
+ }
+
+ lbValue sum = lb_const_nil(p->module, elem);
+ for (unsigned k = 0; k < inner; k++) {
+ lbValue a = inners[k][0];
+ lbValue b = inners[k][1];
+ sum = lb_emit_mul_add(p, a, b, sum, elem);
+ }
+ lb_emit_store(p, dst, sum);
+ }
+ }
+
+ return lb_addr_load(p, res);
+ }
+}
+
+lbValue lb_emit_matrix_mul_vector(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
+ // TODO(bill): Handle edge case for f16 types on x86(-64) platforms
+
+ Type *mt = base_type(lhs.type);
+ Type *vt = base_type(rhs.type);
+
+ GB_ASSERT(is_type_matrix(mt));
+ GB_ASSERT(is_type_array_like(vt));
+
+ i64 vector_count = get_array_type_count(vt);
+
+ GB_ASSERT(mt->Matrix.column_count == vector_count);
+ GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
+
+ Type *elem = mt->Matrix.elem;
+
+ if (lb_is_matrix_simdable(mt)) {
+ unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
+
+ unsigned row_count = cast(unsigned)mt->Matrix.row_count;
+ unsigned column_count = cast(unsigned)mt->Matrix.column_count;
+ auto m_columns = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
+ auto v_rows = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
+
+ LLVMValueRef matrix_vector = lb_matrix_to_vector(p, lhs);
+
+ for (unsigned column_index = 0; column_index < column_count; column_index++) {
+ LLVMValueRef mask = llvm_mask_iota(p->module, stride*column_index, row_count);
+ LLVMValueRef column = LLVMBuildShuffleVector(p->builder, matrix_vector, LLVMGetUndef(LLVMTypeOf(matrix_vector)), mask, "");
+ m_columns[column_index] = column;
+ }
+
+ for (unsigned row_index = 0; row_index < column_count; row_index++) {
+ LLVMValueRef value = lb_emit_struct_ev(p, rhs, row_index).value;
+ LLVMValueRef row = llvm_vector_broadcast(p, value, row_count);
+ v_rows[row_index] = row;
+ }
+
+ GB_ASSERT(column_count > 0);
+
+ LLVMValueRef vector = nullptr;
+ for (i64 i = 0; i < column_count; i++) {
+ if (i == 0) {
+ vector = llvm_vector_mul(p, m_columns[i], v_rows[i]);
+ } else {
+ vector = llvm_vector_mul_add(p, m_columns[i], v_rows[i], vector);
+ }
+ }
+
+ return lb_matrix_cast_vector_to_type(p, vector, type);
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ for (i64 i = 0; i < mt->Matrix.row_count; i++) {
+ for (i64 j = 0; j < mt->Matrix.column_count; j++) {
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, i, 0);
+ lbValue d0 = lb_emit_load(p, dst);
+
+ lbValue a = lb_emit_matrix_ev(p, lhs, i, j);
+ lbValue b = lb_emit_struct_ev(p, rhs, cast(i32)j);
+ lbValue c = lb_emit_mul_add(p, a, b, d0, elem);
+ lb_emit_store(p, dst, c);
+ }
+ }
+
+ return lb_addr_load(p, res);
+}
+
+lbValue lb_emit_vector_mul_matrix(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
+ // TODO(bill): Handle edge case for f16 types on x86(-64) platforms
+
+ Type *mt = base_type(rhs.type);
+ Type *vt = base_type(lhs.type);
+
+ GB_ASSERT(is_type_matrix(mt));
+ GB_ASSERT(is_type_array_like(vt));
+
+ i64 vector_count = get_array_type_count(vt);
+
+ GB_ASSERT(vector_count == mt->Matrix.row_count);
+ GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
+
+ Type *elem = mt->Matrix.elem;
+
+ if (lb_is_matrix_simdable(mt)) {
+ unsigned stride = cast(unsigned)matrix_type_stride_in_elems(mt);
+
+ unsigned row_count = cast(unsigned)mt->Matrix.row_count;
+ unsigned column_count = cast(unsigned)mt->Matrix.column_count; gb_unused(column_count);
+ auto m_columns = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
+ auto v_rows = slice_make<LLVMValueRef>(permanent_allocator(), row_count);
+
+ LLVMValueRef matrix_vector = lb_matrix_to_vector(p, rhs);
+
+ auto mask_elems = slice_make<LLVMValueRef>(permanent_allocator(), column_count);
+ for (unsigned row_index = 0; row_index < row_count; row_index++) {
+ for (unsigned column_index = 0; column_index < column_count; column_index++) {
+ unsigned offset = row_index + column_index*stride;
+ mask_elems[column_index] = lb_const_int(p->module, t_u32, offset).value;
+ }
+
+ // transpose mask
+ LLVMValueRef mask = LLVMConstVector(mask_elems.data, column_count);
+ LLVMValueRef column = LLVMBuildShuffleVector(p->builder, matrix_vector, LLVMGetUndef(LLVMTypeOf(matrix_vector)), mask, "");
+ m_columns[row_index] = column;
+ }
+
+ for (unsigned column_index = 0; column_index < row_count; column_index++) {
+ LLVMValueRef value = lb_emit_struct_ev(p, lhs, column_index).value;
+ LLVMValueRef row = llvm_vector_broadcast(p, value, column_count);
+ v_rows[column_index] = row;
+ }
+
+ GB_ASSERT(row_count > 0);
+
+ LLVMValueRef vector = nullptr;
+ for (i64 i = 0; i < row_count; i++) {
+ if (i == 0) {
+ vector = llvm_vector_mul(p, v_rows[i], m_columns[i]);
+ } else {
+ vector = llvm_vector_mul_add(p, v_rows[i], m_columns[i], vector);
+ }
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+ LLVMValueRef res_ptr = res.addr.value;
+ unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(LLVMTypeOf(vector)));
+ LLVMSetAlignment(res_ptr, alignment);
+
+ res_ptr = LLVMBuildPointerCast(p->builder, res_ptr, LLVMPointerType(LLVMTypeOf(vector), 0), "");
+ LLVMBuildStore(p->builder, vector, res_ptr);
+
+ return lb_addr_load(p, res);
+ }
+
+ lbAddr res = lb_add_local_generated(p, type, true);
+
+ for (i64 j = 0; j < mt->Matrix.column_count; j++) {
+ for (i64 k = 0; k < mt->Matrix.row_count; k++) {
+ lbValue dst = lb_emit_matrix_epi(p, res.addr, 0, j);
+ lbValue d0 = lb_emit_load(p, dst);
+
+ lbValue a = lb_emit_struct_ev(p, lhs, cast(i32)k);
+ lbValue b = lb_emit_matrix_ev(p, rhs, k, j);
+ lbValue c = lb_emit_mul_add(p, a, b, d0, elem);
+ lb_emit_store(p, dst, c);
+ }
+ }
+
+ return lb_addr_load(p, res);
+}
+
+
+
+
+lbValue lb_emit_arith_matrix(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type, bool component_wise=false) {
+ GB_ASSERT(is_type_matrix(lhs.type) || is_type_matrix(rhs.type));
+
+
+ if (op == Token_Mul && !component_wise) {
+ Type *xt = base_type(lhs.type);
+ Type *yt = base_type(rhs.type);
+
+ if (xt->kind == Type_Matrix) {
+ if (yt->kind == Type_Matrix) {
+ return lb_emit_matrix_mul(p, lhs, rhs, type);
+ } else if (is_type_array_like(yt)) {
+ return lb_emit_matrix_mul_vector(p, lhs, rhs, type);
+ }
+ } else if (is_type_array_like(xt)) {
+ GB_ASSERT(yt->kind == Type_Matrix);
+ return lb_emit_vector_mul_matrix(p, lhs, rhs, type);
+ }
+
+ } else {
+ if (is_type_matrix(lhs.type)) {
+ rhs = lb_emit_conv(p, rhs, lhs.type);
+ } else {
+ lhs = lb_emit_conv(p, lhs, rhs.type);
+ }
+
+ Type *xt = base_type(lhs.type);
+ Type *yt = base_type(rhs.type);
+
+ GB_ASSERT_MSG(are_types_identical(xt, yt), "%s %.*s %s", type_to_string(lhs.type), LIT(token_strings[op]), type_to_string(rhs.type));
+ GB_ASSERT(xt->kind == Type_Matrix);
+ // element-wise arithmetic
+ // pretend it is an array
+ lbValue array_lhs = lhs;
+ lbValue array_rhs = rhs;
+ Type *array_type = alloc_type_array(xt->Matrix.elem, matrix_type_total_internal_elems(xt));
+ GB_ASSERT(type_size_of(array_type) == type_size_of(xt));
+
+ array_lhs.type = array_type;
+ array_rhs.type = array_type;
+
+ if (token_is_comparison(op)) {
+ lbValue res = lb_emit_comp(p, op, array_lhs, array_rhs);
+ return lb_emit_conv(p, res, type);
+ } else {
+ lbValue array = lb_emit_arith(p, op, array_lhs, array_rhs, array_type);
+ array.type = type;
+ return array;
+ }
+
+ }
+
+ GB_PANIC("TODO: lb_emit_arith_matrix");
+
+ return {};
+}
+
lbValue lb_emit_arith(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
if (is_type_array_like(lhs.type) || is_type_array_like(rhs.type)) {
return lb_emit_arith_array(p, op, lhs, rhs, type);
+ } else if (is_type_matrix(lhs.type) || is_type_matrix(rhs.type)) {
+ return lb_emit_arith_matrix(p, op, lhs, rhs, type);
} else if (is_type_complex(type)) {
lhs = lb_emit_conv(p, lhs, type);
rhs = lb_emit_conv(p, rhs, type);
@@ -749,6 +1283,13 @@ lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) {
ast_node(be, BinaryExpr, expr);
TypeAndValue tv = type_and_value_of_expr(expr);
+
+ if (is_type_matrix(be->left->tav.type) || is_type_matrix(be->right->tav.type)) {
+ lbValue left = lb_build_expr(p, be->left);
+ lbValue right = lb_build_expr(p, be->right);
+ return lb_emit_arith_matrix(p, be->op.kind, left, right, default_type(tv.type));
+ }
+
switch (be->op.kind) {
case Token_Add:
@@ -1417,6 +1958,62 @@ lbValue lb_emit_conv(lbProcedure *p, lbValue value, Type *t) {
}
return lb_addr_load(p, v);
}
+
+ if (is_type_matrix(dst) && !is_type_matrix(src)) {
+ GB_ASSERT_MSG(dst->Matrix.row_count == dst->Matrix.column_count, "%s <- %s", type_to_string(dst), type_to_string(src));
+
+ Type *elem = base_array_type(dst);
+ lbValue e = lb_emit_conv(p, value, elem);
+ lbAddr v = lb_add_local_generated(p, t, false);
+ for (i64 i = 0; i < dst->Matrix.row_count; i++) {
+ isize j = cast(isize)i;
+ lbValue ptr = lb_emit_matrix_epi(p, v.addr, j, j);
+ lb_emit_store(p, ptr, e);
+ }
+
+
+ return lb_addr_load(p, v);
+ }
+
+ if (is_type_matrix(dst) && is_type_matrix(src)) {
+ GB_ASSERT(dst->kind == Type_Matrix);
+ GB_ASSERT(src->kind == Type_Matrix);
+ lbAddr v = lb_add_local_generated(p, t, true);
+
+ if (is_matrix_square(dst) && is_matrix_square(dst)) {
+ for (i64 j = 0; j < dst->Matrix.column_count; j++) {
+ for (i64 i = 0; i < dst->Matrix.row_count; i++) {
+ if (i < src->Matrix.row_count && j < src->Matrix.column_count) {
+ lbValue d = lb_emit_matrix_epi(p, v.addr, i, j);
+ lbValue s = lb_emit_matrix_ev(p, value, i, j);
+ lb_emit_store(p, d, s);
+ } else if (i == j) {
+ lbValue d = lb_emit_matrix_epi(p, v.addr, i, j);
+ lbValue s = lb_const_value(p->module, dst->Matrix.elem, exact_value_i64(1), true);
+ lb_emit_store(p, d, s);
+ }
+ }
+ }
+ } else {
+ i64 dst_count = dst->Matrix.row_count*dst->Matrix.column_count;
+ i64 src_count = src->Matrix.row_count*src->Matrix.column_count;
+ GB_ASSERT(dst_count == src_count);
+
+ for (i64 j = 0; j < src->Matrix.column_count; j++) {
+ for (i64 i = 0; i < src->Matrix.row_count; i++) {
+ lbValue s = lb_emit_matrix_ev(p, value, i, j);
+ i64 index = i + j*src->Matrix.row_count;
+ i64 dst_i = index%dst->Matrix.row_count;
+ i64 dst_j = index/dst->Matrix.row_count;
+ lbValue d = lb_emit_matrix_epi(p, v.addr, dst_i, dst_j);
+ lb_emit_store(p, d, s);
+ }
+ }
+ }
+ return lb_addr_load(p, v);
+ }
+
+
if (is_type_any(dst)) {
if (is_type_untyped_nil(src)) {
@@ -2481,6 +3078,10 @@ lbValue lb_build_expr(lbProcedure *p, Ast *expr) {
case_ast_node(ie, IndexExpr, expr);
return lb_addr_load(p, lb_build_addr(p, expr));
case_end;
+
+ case_ast_node(ie, MatrixIndexExpr, expr);
+ return lb_addr_load(p, lb_build_addr(p, expr));
+ case_end;
case_ast_node(ia, InlineAsmExpr, expr);
Type *t = type_of_expr(expr);
@@ -2976,6 +3577,25 @@ lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
lbValue v = lb_emit_ptr_offset(p, elem, index);
return lb_addr(v);
}
+
+ case Type_Matrix: {
+ lbValue matrix = {};
+ matrix = lb_build_addr_ptr(p, ie->expr);
+ if (deref) {
+ matrix = lb_emit_load(p, matrix);
+ }
+ lbValue index = lb_build_expr(p, ie->index);
+ index = lb_emit_conv(p, index, t_int);
+ lbValue elem = lb_emit_matrix_ep(p, matrix, lb_const_int(p->module, t_int, 0), index);
+ elem = lb_emit_conv(p, elem, alloc_type_pointer(type_of_expr(expr)));
+
+ auto index_tv = type_and_value_of_expr(ie->index);
+ if (index_tv.mode != Addressing_Constant) {
+ lbValue len = lb_const_int(p->module, t_int, t->Matrix.column_count);
+ lb_emit_bounds_check(p, ast_token(ie->index), index, len);
+ }
+ return lb_addr(elem);
+ }
case Type_Basic: { // Basic_string
@@ -2998,6 +3618,35 @@ lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
}
}
case_end;
+
+ case_ast_node(ie, MatrixIndexExpr, expr);
+ Type *t = base_type(type_of_expr(ie->expr));
+
+ bool deref = is_type_pointer(t);
+ t = base_type(type_deref(t));
+
+ lbValue m = {};
+ m = lb_build_addr_ptr(p, ie->expr);
+ if (deref) {
+ m = lb_emit_load(p, m);
+ }
+ lbValue row_index = lb_build_expr(p, ie->row_index);
+ lbValue column_index = lb_build_expr(p, ie->column_index);
+ row_index = lb_emit_conv(p, row_index, t_int);
+ column_index = lb_emit_conv(p, column_index, t_int);
+ lbValue elem = lb_emit_matrix_ep(p, m, row_index, column_index);
+
+ auto row_index_tv = type_and_value_of_expr(ie->row_index);
+ auto column_index_tv = type_and_value_of_expr(ie->column_index);
+ if (row_index_tv.mode != Addressing_Constant || column_index_tv.mode != Addressing_Constant) {
+ lbValue row_count = lb_const_int(p->module, t_int, t->Matrix.row_count);
+ lbValue column_count = lb_const_int(p->module, t_int, t->Matrix.column_count);
+ lb_emit_matrix_bounds_check(p, ast_token(ie->row_index), row_index, column_index, row_count, column_count);
+ }
+ return lb_addr(elem);
+
+
+ case_end;
case_ast_node(se, SliceExpr, expr);
@@ -3246,6 +3895,7 @@ lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
case Type_Slice: et = bt->Slice.elem; break;
case Type_BitSet: et = bt->BitSet.elem; break;
case Type_SimdVector: et = bt->SimdVector.elem; break;
+ case Type_Matrix: et = bt->Matrix.elem; break;
}
String proc_name = {};
@@ -3777,7 +4427,104 @@ lbAddr lb_build_addr(lbProcedure *p, Ast *expr) {
}
break;
}
+
+ case Type_Matrix: {
+ if (cl->elems.count > 0) {
+ lb_addr_store(p, v, lb_const_value(p->module, type, exact_value_compound(expr)));
+ auto temp_data = array_make<lbCompoundLitElemTempData>(temporary_allocator(), 0, cl->elems.count);
+
+ // NOTE(bill): Separate value, gep, store into their own chunks
+ for_array(i, cl->elems) {
+ Ast *elem = cl->elems[i];
+
+ if (elem->kind == Ast_FieldValue) {
+ ast_node(fv, FieldValue, elem);
+ if (lb_is_elem_const(fv->value, et)) {
+ continue;
+ }
+ if (is_ast_range(fv->field)) {
+ ast_node(ie, BinaryExpr, fv->field);
+ TypeAndValue lo_tav = ie->left->tav;
+ TypeAndValue hi_tav = ie->right->tav;
+ GB_ASSERT(lo_tav.mode == Addressing_Constant);
+ GB_ASSERT(hi_tav.mode == Addressing_Constant);
+
+ TokenKind op = ie->op.kind;
+ i64 lo = exact_value_to_i64(lo_tav.value);
+ i64 hi = exact_value_to_i64(hi_tav.value);
+ if (op != Token_RangeHalf) {
+ hi += 1;
+ }
+
+ lbValue value = lb_build_expr(p, fv->value);
+
+ for (i64 k = lo; k < hi; k++) {
+ lbCompoundLitElemTempData data = {};
+ data.value = value;
+
+ data.elem_index = cast(i32)matrix_index_to_offset(bt, k);
+ array_add(&temp_data, data);
+ }
+
+ } else {
+ auto tav = fv->field->tav;
+ GB_ASSERT(tav.mode == Addressing_Constant);
+ i64 index = exact_value_to_i64(tav.value);
+
+ lbValue value = lb_build_expr(p, fv->value);
+ lbCompoundLitElemTempData data = {};
+ data.value = lb_emit_conv(p, value, et);
+ data.expr = fv->value;
+
+ data.elem_index = cast(i32)matrix_index_to_offset(bt, index);
+ array_add(&temp_data, data);
+ }
+
+ } else {
+ if (lb_is_elem_const(elem, et)) {
+ continue;
+ }
+ lbCompoundLitElemTempData data = {};
+ data.expr = elem;
+ data.elem_index = cast(i32)matrix_index_to_offset(bt, i);
+ array_add(&temp_data, data);
+ }
+ }
+
+ for_array(i, temp_data) {
+ temp_data[i].gep = lb_emit_array_epi(p, lb_addr_get_ptr(p, v), temp_data[i].elem_index);
+ }
+
+ for_array(i, temp_data) {
+ lbValue field_expr = temp_data[i].value;
+ Ast *expr = temp_data[i].expr;
+
+ auto prev_hint = lb_set_copy_elision_hint(p, lb_addr(temp_data[i].gep), expr);
+
+ if (field_expr.value == nullptr) {
+ field_expr = lb_build_expr(p, expr);
+ }
+ Type *t = field_expr.type;
+ GB_ASSERT(t->kind != Type_Tuple);
+ lbValue ev = lb_emit_conv(p, field_expr, et);
+
+ if (!p->copy_elision_hint.used) {
+ temp_data[i].value = ev;
+ }
+
+ lb_reset_copy_elision_hint(p, prev_hint);
+ }
+
+ for_array(i, temp_data) {
+ if (temp_data[i].value.value != nullptr) {
+ lb_emit_store(p, temp_data[i].gep, temp_data[i].value);
+ }
+ }
+ }
+ break;
+ }
+
}
return v;
diff --git a/src/llvm_backend_general.cpp b/src/llvm_backend_general.cpp
index 094275429..b1c1f924b 100644
--- a/src/llvm_backend_general.cpp
+++ b/src/llvm_backend_general.cpp
@@ -419,6 +419,36 @@ void lb_emit_bounds_check(lbProcedure *p, Token token, lbValue index, lbValue le
lb_emit_runtime_call(p, "bounds_check_error", args);
}
+void lb_emit_matrix_bounds_check(lbProcedure *p, Token token, lbValue row_index, lbValue column_index, lbValue row_count, lbValue column_count) {
+ if (build_context.no_bounds_check) {
+ return;
+ }
+ if ((p->state_flags & StateFlag_no_bounds_check) != 0) {
+ return;
+ }
+
+ row_index = lb_emit_conv(p, row_index, t_int);
+ column_index = lb_emit_conv(p, column_index, t_int);
+ row_count = lb_emit_conv(p, row_count, t_int);
+ column_count = lb_emit_conv(p, column_count, t_int);
+
+ lbValue file = lb_find_or_add_entity_string(p->module, get_file_path_string(token.pos.file_id));
+ lbValue line = lb_const_int(p->module, t_i32, token.pos.line);
+ lbValue column = lb_const_int(p->module, t_i32, token.pos.column);
+
+ auto args = array_make<lbValue>(permanent_allocator(), 7);
+ args[0] = file;
+ args[1] = line;
+ args[2] = column;
+ args[3] = row_index;
+ args[4] = column_index;
+ args[5] = row_count;
+ args[6] = column_count;
+
+ lb_emit_runtime_call(p, "matrix_bounds_check_error", args);
+}
+
+
void lb_emit_multi_pointer_slice_bounds_check(lbProcedure *p, Token token, lbValue low, lbValue high) {
if (build_context.no_bounds_check) {
return;
@@ -482,8 +512,7 @@ void lb_emit_slice_bounds_check(lbProcedure *p, Token token, lbValue low, lbValu
}
}
-bool lb_try_update_alignment(lbValue ptr, unsigned alignment) {
- LLVMValueRef addr_ptr = ptr.value;
+bool lb_try_update_alignment(LLVMValueRef addr_ptr, unsigned alignment) {
if (LLVMIsAGlobalValue(addr_ptr) || LLVMIsAAllocaInst(addr_ptr) || LLVMIsALoadInst(addr_ptr)) {
if (LLVMGetAlignment(addr_ptr) < alignment) {
if (LLVMIsAAllocaInst(addr_ptr) || LLVMIsAGlobalValue(addr_ptr)) {
@@ -495,6 +524,11 @@ bool lb_try_update_alignment(lbValue ptr, unsigned alignment) {
return false;
}
+bool lb_try_update_alignment(lbValue ptr, unsigned alignment) {
+ return lb_try_update_alignment(ptr.value, alignment);
+}
+
+
bool lb_try_vector_cast(lbModule *m, lbValue ptr, LLVMTypeRef *vector_type_) {
Type *array_type = base_type(type_deref(ptr.type));
GB_ASSERT(is_type_array_like(array_type));
@@ -1930,6 +1964,24 @@ LLVMTypeRef lb_type_internal(lbModule *m, Type *type) {
fields[1] = base_integer;
return LLVMStructTypeInContext(ctx, fields, field_count, false);
}
+
+ case Type_Matrix:
+ {
+ i64 size = type_size_of(type);
+ i64 elem_size = type_size_of(type->Matrix.elem);
+ GB_ASSERT(elem_size > 0);
+ i64 elem_count = size/elem_size;
+ GB_ASSERT_MSG(elem_count > 0, "%s", type_to_string(type));
+
+ m->internal_type_level -= 1;
+
+ LLVMTypeRef elem = lb_type(m, type->Matrix.elem);
+ LLVMTypeRef t = LLVMArrayType(elem, cast(unsigned)elem_count);
+
+ m->internal_type_level += 1;
+ return t;
+ }
+
}
GB_PANIC("Invalid type %s", type_to_string(type));
@@ -2013,7 +2065,7 @@ LLVMAttributeRef lb_create_enum_attribute_with_type(LLVMContextRef ctx, char con
unsigned kind = 0;
String s = make_string_c(name);
- #if (LLVM_VERSION_MAJOR > 12 || (LLVM_VERSION_MAJOR == 12 && (LLVM_VERSION_MINOR > 0 || LLVM_VERSION_PATCH >= 1)))
+ #if ODIN_LLVM_MINIMUM_VERSION_12
kind = LLVMGetEnumAttributeKindForName(name, s.len);
GB_ASSERT_MSG(kind != 0, "unknown attribute: %s", name);
return LLVMCreateTypeAttribute(ctx, kind, type);
@@ -2593,8 +2645,10 @@ lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e, bool zero_init, i32 p
LLVMTypeRef llvm_type = lb_type(p->module, type);
LLVMValueRef ptr = LLVMBuildAlloca(p->builder, llvm_type, name);
- // unsigned alignment = 16; // TODO(bill): Make this configurable
- unsigned alignment = cast(unsigned)lb_alignof(llvm_type);
+ unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(llvm_type));
+ if (is_type_matrix(type)) {
+ alignment *= 2; // NOTE(bill): Just in case
+ }
LLVMSetAlignment(ptr, alignment);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);
diff --git a/src/llvm_backend_proc.cpp b/src/llvm_backend_proc.cpp
index a36762afb..15689da36 100644
--- a/src/llvm_backend_proc.cpp
+++ b/src/llvm_backend_proc.cpp
@@ -127,16 +127,7 @@ lbProcedure *lb_create_procedure(lbModule *m, Entity *entity, bool ignore_body)
lb_ensure_abi_function_type(m, p);
lb_add_function_type_attributes(p->value, p->abi_function_type, p->abi_function_type->calling_convention);
- if (false) {
- lbCallingConventionKind cc_kind = lbCallingConvention_C;
- // TODO(bill): Clean up this logic
- if (!is_arch_wasm()) {
- cc_kind = lb_calling_convention_map[pt->Proc.calling_convention];
- }
- LLVMSetFunctionCallConv(p->value, cc_kind);
- }
-
-
+
if (pt->Proc.diverging) {
lb_add_attribute_to_proc(m, p->value, "noreturn");
}
@@ -784,6 +775,57 @@ lbValue lb_emit_runtime_call(lbProcedure *p, char const *c_name, Array<lbValue>
return lb_emit_call(p, proc, args);
}
+lbValue lb_emit_conjugate(lbProcedure *p, lbValue val, Type *type) {
+ lbValue res = {};
+ Type *t = val.type;
+ if (is_type_complex(t)) {
+ res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
+ lbValue real = lb_emit_struct_ev(p, val, 0);
+ lbValue imag = lb_emit_struct_ev(p, val, 1);
+ imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag);
+ } else if (is_type_quaternion(t)) {
+ // @QuaternionLayout
+ res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, false));
+ lbValue real = lb_emit_struct_ev(p, val, 3);
+ lbValue imag = lb_emit_struct_ev(p, val, 0);
+ lbValue jmag = lb_emit_struct_ev(p, val, 1);
+ lbValue kmag = lb_emit_struct_ev(p, val, 2);
+ imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
+ jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type);
+ kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag);
+ lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag);
+ } else if (is_type_array_like(t)) {
+ res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
+ Type *elem_type = base_array_type(t);
+ i64 count = get_array_type_count(t);
+ for (i64 i = 0; i < count; i++) {
+ lbValue dst = lb_emit_array_epi(p, res, i);
+ lbValue elem = lb_emit_struct_ev(p, val, cast(i32)i);
+ elem = lb_emit_conjugate(p, elem, elem_type);
+ lb_emit_store(p, dst, elem);
+ }
+ } else if (is_type_matrix(t)) {
+ Type *mt = base_type(t);
+ GB_ASSERT(mt->kind == Type_Matrix);
+ Type *elem_type = mt->Matrix.elem;
+ res = lb_addr_get_ptr(p, lb_add_local_generated(p, type, true));
+ for (i64 j = 0; j < mt->Matrix.column_count; j++) {
+ for (i64 i = 0; i < mt->Matrix.row_count; i++) {
+ lbValue dst = lb_emit_matrix_epi(p, res, i, j);
+ lbValue elem = lb_emit_matrix_ev(p, val, i, j);
+ elem = lb_emit_conjugate(p, elem, elem_type);
+ lb_emit_store(p, dst, elem);
+ }
+ }
+ }
+ return lb_emit_load(p, res);
+}
+
lbValue lb_emit_call(lbProcedure *p, lbValue value, Array<lbValue> const &args, ProcInlining inlining, bool use_copy_elision_hint) {
lbModule *m = p->module;
@@ -1176,31 +1218,7 @@ lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv,
case BuiltinProc_conj: {
lbValue val = lb_build_expr(p, ce->args[0]);
- lbValue res = {};
- Type *t = val.type;
- if (is_type_complex(t)) {
- res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
- lbValue real = lb_emit_struct_ev(p, val, 0);
- lbValue imag = lb_emit_struct_ev(p, val, 1);
- imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 0), real);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 1), imag);
- } else if (is_type_quaternion(t)) {
- // @QuaternionLayout
- res = lb_addr_get_ptr(p, lb_add_local_generated(p, tv.type, false));
- lbValue real = lb_emit_struct_ev(p, val, 3);
- lbValue imag = lb_emit_struct_ev(p, val, 0);
- lbValue jmag = lb_emit_struct_ev(p, val, 1);
- lbValue kmag = lb_emit_struct_ev(p, val, 2);
- imag = lb_emit_unary_arith(p, Token_Sub, imag, imag.type);
- jmag = lb_emit_unary_arith(p, Token_Sub, jmag, jmag.type);
- kmag = lb_emit_unary_arith(p, Token_Sub, kmag, kmag.type);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 3), real);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 0), imag);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 1), jmag);
- lb_emit_store(p, lb_emit_struct_ep(p, res, 2), kmag);
- }
- return lb_emit_load(p, res);
+ return lb_emit_conjugate(p, val, tv.type);
}
case BuiltinProc_expand_to_tuple: {
@@ -1316,7 +1334,36 @@ lbValue lb_build_builtin_proc(lbProcedure *p, Ast *expr, TypeAndValue const &tv,
return lb_soa_zip(p, ce, tv);
case BuiltinProc_soa_unzip:
return lb_soa_unzip(p, ce, tv);
-
+
+ case BuiltinProc_transpose:
+ {
+ lbValue m = lb_build_expr(p, ce->args[0]);
+ return lb_emit_matrix_tranpose(p, m, tv.type);
+ }
+
+ case BuiltinProc_outer_product:
+ {
+ lbValue a = lb_build_expr(p, ce->args[0]);
+ lbValue b = lb_build_expr(p, ce->args[1]);
+ return lb_emit_outer_product(p, a, b, tv.type);
+ }
+ case BuiltinProc_hadamard_product:
+ {
+ lbValue a = lb_build_expr(p, ce->args[0]);
+ lbValue b = lb_build_expr(p, ce->args[1]);
+ if (is_type_array(tv.type)) {
+ return lb_emit_arith(p, Token_Mul, a, b, tv.type);
+ }
+ GB_ASSERT(is_type_matrix(tv.type));
+ return lb_emit_arith_matrix(p, Token_Mul, a, b, tv.type, true);
+ }
+
+ case BuiltinProc_matrix_flatten:
+ {
+ lbValue m = lb_build_expr(p, ce->args[0]);
+ return lb_emit_matrix_flatten(p, m, tv.type);
+ }
+
// "Intrinsics"
case BuiltinProc_alloca:
diff --git a/src/llvm_backend_type.cpp b/src/llvm_backend_type.cpp
index e90bb6f16..decb57702 100644
--- a/src/llvm_backend_type.cpp
+++ b/src/llvm_backend_type.cpp
@@ -42,6 +42,7 @@ lbValue lb_typeid(lbModule *m, Type *type) {
case Type_Pointer: kind = Typeid_Pointer; break;
case Type_MultiPointer: kind = Typeid_Multi_Pointer; break;
case Type_Array: kind = Typeid_Array; break;
+ case Type_Matrix: kind = Typeid_Matrix; break;
case Type_EnumeratedArray: kind = Typeid_Enumerated_Array; break;
case Type_Slice: kind = Typeid_Slice; break;
case Type_DynamicArray: kind = Typeid_Dynamic_Array; break;
@@ -868,7 +869,25 @@ void lb_setup_type_info_data(lbProcedure *p) { // NOTE(bill): Setup type_info da
lb_emit_store(p, tag, res);
}
break;
+ case Type_Matrix:
+ {
+ tag = lb_const_ptr_cast(m, variant_ptr, t_type_info_matrix_ptr);
+ i64 ez = type_size_of(t->Matrix.elem);
+
+ LLVMValueRef vals[5] = {
+ lb_get_type_info_ptr(m, t->Matrix.elem).value,
+ lb_const_int(m, t_int, ez).value,
+ lb_const_int(m, t_int, matrix_type_stride_in_elems(t)).value,
+ lb_const_int(m, t_int, t->Matrix.row_count).value,
+ lb_const_int(m, t_int, t->Matrix.column_count).value,
+ };
+ lbValue res = {};
+ res.type = type_deref(tag.type);
+ res.value = llvm_const_named_struct(m, res.type, vals, gb_count_of(vals));
+ lb_emit_store(p, tag, res);
+ }
+ break;
}
diff --git a/src/llvm_backend_utility.cpp b/src/llvm_backend_utility.cpp
index 948180f30..e2249171c 100644
--- a/src/llvm_backend_utility.cpp
+++ b/src/llvm_backend_utility.cpp
@@ -1221,6 +1221,109 @@ lbValue lb_emit_ptr_offset(lbProcedure *p, lbValue ptr, lbValue index) {
return res;
}
+lbValue lb_emit_matrix_epi(lbProcedure *p, lbValue s, isize row, isize column) {
+ Type *t = s.type;
+ GB_ASSERT(is_type_pointer(t));
+ Type *mt = base_type(type_deref(t));
+
+ Type *ptr = base_array_type(mt);
+
+ if (column == 0) {
+ GB_ASSERT_MSG(is_type_matrix(mt) || is_type_array_like(mt), "%s", type_to_string(mt));
+
+ LLVMValueRef indices[2] = {
+ LLVMConstInt(lb_type(p->module, t_int), 0, false),
+ LLVMConstInt(lb_type(p->module, t_int), cast(unsigned)row, false),
+ };
+
+ lbValue res = {};
+ if (lb_is_const(s)) {
+ res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
+ } else {
+ res.value = LLVMBuildGEP(p->builder, s.value, indices, gb_count_of(indices), "");
+ }
+
+ Type *ptr = base_array_type(mt);
+ res.type = alloc_type_pointer(ptr);
+ return res;
+ } else if (row == 0 && is_type_array_like(mt)) {
+ LLVMValueRef indices[2] = {
+ LLVMConstInt(lb_type(p->module, t_int), 0, false),
+ LLVMConstInt(lb_type(p->module, t_int), cast(unsigned)column, false),
+ };
+
+ lbValue res = {};
+ if (lb_is_const(s)) {
+ res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
+ } else {
+ res.value = LLVMBuildGEP(p->builder, s.value, indices, gb_count_of(indices), "");
+ }
+
+ Type *ptr = base_array_type(mt);
+ res.type = alloc_type_pointer(ptr);
+ return res;
+ }
+
+
+ GB_ASSERT_MSG(is_type_matrix(mt), "%s", type_to_string(mt));
+
+ isize offset = matrix_indices_to_offset(mt, row, column);
+
+ LLVMValueRef indices[2] = {
+ LLVMConstInt(lb_type(p->module, t_int), 0, false),
+ LLVMConstInt(lb_type(p->module, t_int), cast(unsigned)offset, false),
+ };
+
+ lbValue res = {};
+ if (lb_is_const(s)) {
+ res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
+ } else {
+ res.value = LLVMBuildGEP(p->builder, s.value, indices, gb_count_of(indices), "");
+ }
+ res.type = alloc_type_pointer(ptr);
+ return res;
+}
+
+lbValue lb_emit_matrix_ep(lbProcedure *p, lbValue s, lbValue row, lbValue column) {
+ Type *t = s.type;
+ GB_ASSERT(is_type_pointer(t));
+ Type *mt = base_type(type_deref(t));
+ GB_ASSERT_MSG(is_type_matrix(mt), "%s", type_to_string(mt));
+
+ Type *ptr = base_array_type(mt);
+
+ LLVMValueRef stride_elems = lb_const_int(p->module, t_int, matrix_type_stride_in_elems(mt)).value;
+
+ row = lb_emit_conv(p, row, t_int);
+ column = lb_emit_conv(p, column, t_int);
+
+ LLVMValueRef index = LLVMBuildAdd(p->builder, row.value, LLVMBuildMul(p->builder, column.value, stride_elems, ""), "");
+
+ LLVMValueRef indices[2] = {
+ LLVMConstInt(lb_type(p->module, t_int), 0, false),
+ index,
+ };
+
+ lbValue res = {};
+ if (lb_is_const(s)) {
+ res.value = LLVMConstGEP(s.value, indices, gb_count_of(indices));
+ } else {
+ res.value = LLVMBuildGEP(p->builder, s.value, indices, gb_count_of(indices), "");
+ }
+ res.type = alloc_type_pointer(ptr);
+ return res;
+}
+
+
+lbValue lb_emit_matrix_ev(lbProcedure *p, lbValue s, isize row, isize column) {
+ Type *st = base_type(s.type);
+ GB_ASSERT_MSG(is_type_matrix(st), "%s", type_to_string(st));
+
+ lbValue value = lb_address_from_load_or_generate_local(p, s);
+ lbValue ptr = lb_emit_matrix_epi(p, value, row, column);
+ return lb_emit_load(p, ptr);
+}
+
void lb_fill_slice(lbProcedure *p, lbAddr const &slice, lbValue base_elem, lbValue len) {
Type *t = lb_addr_type(slice);
@@ -1380,6 +1483,198 @@ lbValue lb_soa_struct_cap(lbProcedure *p, lbValue value) {
return lb_emit_struct_ev(p, value, cast(i32)n);
}
+lbValue lb_emit_mul_add(lbProcedure *p, lbValue a, lbValue b, lbValue c, Type *t) {
+ lbModule *m = p->module;
+
+ a = lb_emit_conv(p, a, t);
+ b = lb_emit_conv(p, b, t);
+ c = lb_emit_conv(p, c, t);
+
+ bool is_possible = !is_type_different_to_arch_endianness(t) && is_type_float(t);
+
+ if (is_possible) {
+ switch (build_context.metrics.arch) {
+ case TargetArch_amd64:
+ if (type_size_of(t) == 2) {
+ is_possible = false;
+ }
+ break;
+ case TargetArch_arm64:
+ // possible
+ break;
+ case TargetArch_386:
+ case TargetArch_wasm32:
+ is_possible = false;
+ break;
+ }
+ }
+
+ if (is_possible) {
+ char const *name = "llvm.fma";
+ unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
+ GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
+
+ LLVMTypeRef types[1] = {};
+ types[0] = lb_type(m, t);
+
+ LLVMValueRef ip = LLVMGetIntrinsicDeclaration(m->mod, id, types, gb_count_of(types));
+ LLVMValueRef values[3] = {};
+ values[0] = a.value;
+ values[1] = b.value;
+ values[2] = c.value;
+ LLVMValueRef call = LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
+ return {call, t};
+ } else {
+ lbValue x = lb_emit_arith(p, Token_Mul, a, b, t);
+ lbValue y = lb_emit_arith(p, Token_Add, x, c, t);
+ return y;
+ }
+}
+
+LLVMValueRef llvm_mask_iota(lbModule *m, unsigned start, unsigned count) {
+ auto iota = slice_make<LLVMValueRef>(temporary_allocator(), count);
+ for (unsigned i = 0; i < count; i++) {
+ iota[i] = lb_const_int(m, t_u32, start+i).value;
+ }
+ return LLVMConstVector(iota.data, count);
+}
+
+LLVMValueRef llvm_mask_zero(lbModule *m, unsigned count) {
+ return LLVMConstNull(LLVMVectorType(lb_type(m, t_u32), count));
+}
+
+LLVMValueRef llvm_vector_broadcast(lbProcedure *p, LLVMValueRef value, unsigned count) {
+ GB_ASSERT(count > 0);
+ if (LLVMIsConstant(value)) {
+ LLVMValueRef single = LLVMConstVector(&value, 1);
+ if (count == 1) {
+ return single;
+ }
+ LLVMValueRef mask = llvm_mask_zero(p->module, count);
+ return LLVMConstShuffleVector(single, LLVMGetUndef(LLVMTypeOf(single)), mask);
+ }
+
+ LLVMTypeRef single_type = LLVMVectorType(LLVMTypeOf(value), 1);
+ LLVMValueRef single = LLVMBuildBitCast(p->builder, value, single_type, "");
+ if (count == 1) {
+ return single;
+ }
+ LLVMValueRef mask = llvm_mask_zero(p->module, count);
+ return LLVMBuildShuffleVector(p->builder, single, LLVMGetUndef(LLVMTypeOf(single)), mask, "");
+}
+
+LLVMValueRef llvm_vector_reduce_add(lbProcedure *p, LLVMValueRef value) {
+ LLVMTypeRef type = LLVMTypeOf(value);
+ GB_ASSERT(LLVMGetTypeKind(type) == LLVMVectorTypeKind);
+ LLVMTypeRef elem = LLVMGetElementType(type);
+
+ char const *name = nullptr;
+ i32 value_offset = 0;
+ i32 value_count = 0;
+
+ switch (LLVMGetTypeKind(elem)) {
+ case LLVMHalfTypeKind:
+ case LLVMFloatTypeKind:
+ case LLVMDoubleTypeKind:
+ name = "llvm.vector.reduce.fadd";
+ value_offset = 0;
+ value_count = 2;
+ break;
+ case LLVMIntegerTypeKind:
+ name = "llvm.vector.reduce.add";
+ value_offset = 1;
+ value_count = 1;
+ break;
+ default:
+ GB_PANIC("invalid vector type %s", LLVMPrintTypeToString(type));
+ break;
+ }
+
+ unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
+ GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
+
+ LLVMTypeRef types[1] = {};
+ types[0] = type;
+
+ LLVMValueRef ip = LLVMGetIntrinsicDeclaration(p->module->mod, id, types, gb_count_of(types));
+ LLVMValueRef values[2] = {};
+ values[0] = LLVMConstNull(elem);
+ values[1] = value;
+ LLVMValueRef call = LLVMBuildCall(p->builder, ip, values+value_offset, value_count, "");
+ return call;
+}
+
+LLVMValueRef llvm_vector_add(lbProcedure *p, LLVMValueRef a, LLVMValueRef b) {
+ GB_ASSERT(LLVMTypeOf(a) == LLVMTypeOf(b));
+
+ LLVMTypeRef elem = LLVMGetElementType(LLVMTypeOf(a));
+
+ if (LLVMGetTypeKind(elem) == LLVMIntegerTypeKind) {
+ return LLVMBuildAdd(p->builder, a, b, "");
+ }
+ return LLVMBuildFAdd(p->builder, a, b, "");
+}
+
+LLVMValueRef llvm_vector_mul(lbProcedure *p, LLVMValueRef a, LLVMValueRef b) {
+ GB_ASSERT(LLVMTypeOf(a) == LLVMTypeOf(b));
+
+ LLVMTypeRef elem = LLVMGetElementType(LLVMTypeOf(a));
+
+ if (LLVMGetTypeKind(elem) == LLVMIntegerTypeKind) {
+ return LLVMBuildMul(p->builder, a, b, "");
+ }
+ return LLVMBuildFMul(p->builder, a, b, "");
+}
+
+
+LLVMValueRef llvm_vector_dot(lbProcedure *p, LLVMValueRef a, LLVMValueRef b) {
+ return llvm_vector_reduce_add(p, llvm_vector_mul(p, a, b));
+}
+
+LLVMValueRef llvm_vector_mul_add(lbProcedure *p, LLVMValueRef a, LLVMValueRef b, LLVMValueRef c) {
+ lbModule *m = p->module;
+
+ LLVMTypeRef t = LLVMTypeOf(a);
+ GB_ASSERT(t == LLVMTypeOf(b));
+ GB_ASSERT(t == LLVMTypeOf(c));
+ GB_ASSERT(LLVMGetTypeKind(t) == LLVMVectorTypeKind);
+
+ LLVMTypeRef elem = LLVMGetElementType(t);
+
+ bool is_possible = false;
+
+ switch (LLVMGetTypeKind(elem)) {
+ case LLVMHalfTypeKind:
+ is_possible = true;
+ break;
+ case LLVMFloatTypeKind:
+ case LLVMDoubleTypeKind:
+ is_possible = true;
+ break;
+ }
+
+ if (is_possible) {
+ char const *name = "llvm.fmuladd";
+ unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
+ GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
+
+ LLVMTypeRef types[1] = {};
+ types[0] = t;
+
+ LLVMValueRef ip = LLVMGetIntrinsicDeclaration(m->mod, id, types, gb_count_of(types));
+ LLVMValueRef values[3] = {};
+ values[0] = a;
+ values[1] = b;
+ values[2] = c;
+ LLVMValueRef call = LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
+ return call;
+ } else {
+ LLVMValueRef x = llvm_vector_mul(p, a, b);
+ LLVMValueRef y = llvm_vector_add(p, x, c);
+ return y;
+ }
+}
+
LLVMValueRef llvm_get_inline_asm(LLVMTypeRef func_type, String const &str, String const &clobbers, bool has_side_effects=true, bool is_align_stack=false, LLVMInlineAsmDialect dialect=LLVMInlineAsmDialectATT) {
return LLVMGetInlineAsm(func_type,
cast(char *)str.text, cast(size_t)str.len,
@@ -1391,4 +1686,3 @@ LLVMValueRef llvm_get_inline_asm(LLVMTypeRef func_type, String const &str, Strin
#endif
);
}
-
diff --git a/src/parser.cpp b/src/parser.cpp
index 7de26893e..12888a52d 100644
--- a/src/parser.cpp
+++ b/src/parser.cpp
@@ -159,6 +159,11 @@ Ast *clone_ast(Ast *node) {
n->IndexExpr.expr = clone_ast(n->IndexExpr.expr);
n->IndexExpr.index = clone_ast(n->IndexExpr.index);
break;
+ case Ast_MatrixIndexExpr:
+ n->MatrixIndexExpr.expr = clone_ast(n->MatrixIndexExpr.expr);
+ n->MatrixIndexExpr.row_index = clone_ast(n->MatrixIndexExpr.row_index);
+ n->MatrixIndexExpr.column_index = clone_ast(n->MatrixIndexExpr.column_index);
+ break;
case Ast_DerefExpr:
n->DerefExpr.expr = clone_ast(n->DerefExpr.expr);
break;
@@ -371,6 +376,11 @@ Ast *clone_ast(Ast *node) {
n->MapType.key = clone_ast(n->MapType.key);
n->MapType.value = clone_ast(n->MapType.value);
break;
+ case Ast_MatrixType:
+ n->MatrixType.row_count = clone_ast(n->MatrixType.row_count);
+ n->MatrixType.column_count = clone_ast(n->MatrixType.column_count);
+ n->MatrixType.elem = clone_ast(n->MatrixType.elem);
+ break;
}
return n;
@@ -574,6 +584,15 @@ Ast *ast_deref_expr(AstFile *f, Ast *expr, Token op) {
}
+Ast *ast_matrix_index_expr(AstFile *f, Ast *expr, Token open, Token close, Token interval, Ast *row, Ast *column) {
+ Ast *result = alloc_ast_node(f, Ast_MatrixIndexExpr);
+ result->MatrixIndexExpr.expr = expr;
+ result->MatrixIndexExpr.row_index = row;
+ result->MatrixIndexExpr.column_index = column;
+ result->MatrixIndexExpr.open = open;
+ result->MatrixIndexExpr.close = close;
+ return result;
+}
Ast *ast_ident(AstFile *f, Token token) {
@@ -1066,6 +1085,14 @@ Ast *ast_map_type(AstFile *f, Token token, Ast *key, Ast *value) {
return result;
}
+Ast *ast_matrix_type(AstFile *f, Token token, Ast *row_count, Ast *column_count, Ast *elem) {
+ Ast *result = alloc_ast_node(f, Ast_MatrixType);
+ result->MatrixType.token = token;
+ result->MatrixType.row_count = row_count;
+ result->MatrixType.column_count = column_count;
+ result->MatrixType.elem = elem;
+ return result;
+}
Ast *ast_foreign_block_decl(AstFile *f, Token token, Ast *foreign_library, Ast *body,
CommentGroup *docs) {
@@ -2214,6 +2241,7 @@ Ast *parse_operand(AstFile *f, bool lhs) {
count_expr = parse_expr(f, false);
f->expr_level--;
}
+
expect_token(f, Token_CloseBracket);
return ast_array_type(f, token, count_expr, parse_type(f));
} break;
@@ -2231,6 +2259,23 @@ Ast *parse_operand(AstFile *f, bool lhs) {
return ast_map_type(f, token, key, value);
} break;
+
+ case Token_matrix: {
+ Token token = expect_token(f, Token_matrix);
+ Ast *row_count = nullptr;
+ Ast *column_count = nullptr;
+ Ast *type = nullptr;
+ Token open, close;
+
+ open = expect_token_after(f, Token_OpenBracket, "matrix");
+ row_count = parse_expr(f, true);
+ expect_token(f, Token_Comma);
+ column_count = parse_expr(f, true);
+ close = expect_token(f, Token_CloseBracket);
+ type = parse_type(f);
+
+ return ast_matrix_type(f, token, row_count, column_count, type);
+ } break;
case Token_struct: {
Token token = expect_token(f, Token_struct);
@@ -2524,6 +2569,7 @@ bool is_literal_type(Ast *node) {
case Ast_DynamicArrayType:
case Ast_MapType:
case Ast_BitSetType:
+ case Ast_MatrixType:
case Ast_CallExpr:
return true;
case Ast_MultiPointerType:
@@ -2679,6 +2725,7 @@ Ast *parse_atom_expr(AstFile *f, Ast *operand, bool lhs) {
case Token_RangeHalf:
syntax_error(f->curr_token, "Expected a colon, not a range");
/* fallthrough */
+ case Token_Comma: // matrix index
case Token_Colon:
interval = advance_token(f);
is_interval = true;
@@ -2694,7 +2741,14 @@ Ast *parse_atom_expr(AstFile *f, Ast *operand, bool lhs) {
close = expect_token(f, Token_CloseBracket);
if (is_interval) {
- operand = ast_slice_expr(f, operand, open, close, interval, indices[0], indices[1]);
+ if (interval.kind == Token_Comma) {
+ if (indices[0] == nullptr || indices[1] == nullptr) {
+ syntax_error(open, "Matrix index expressions require both row and column indices");
+ }
+ operand = ast_matrix_index_expr(f, operand, open, close, interval, indices[0], indices[1]);
+ } else {
+ operand = ast_slice_expr(f, operand, open, close, interval, indices[0], indices[1]);
+ }
} else {
operand = ast_index_expr(f, operand, indices[0], open, close);
}
diff --git a/src/parser.hpp b/src/parser.hpp
index 8acc3f419..418d035c4 100644
--- a/src/parser.hpp
+++ b/src/parser.hpp
@@ -407,6 +407,7 @@ AST_KIND(_ExprBegin, "", bool) \
bool is_align_stack; \
InlineAsmDialectKind dialect; \
}) \
+ AST_KIND(MatrixIndexExpr, "matrix index expression", struct { Ast *expr, *row_index, *column_index; Token open, close; }) \
AST_KIND(_ExprEnd, "", bool) \
AST_KIND(_StmtBegin, "", bool) \
AST_KIND(BadStmt, "bad statement", struct { Token begin, end; }) \
@@ -657,6 +658,12 @@ AST_KIND(_TypeBegin, "", bool) \
Ast *key; \
Ast *value; \
}) \
+ AST_KIND(MatrixType, "matrix type", struct { \
+ Token token; \
+ Ast *row_count; \
+ Ast *column_count; \
+ Ast *elem; \
+ }) \
AST_KIND(_TypeEnd, "", bool)
enum AstKind {
diff --git a/src/parser_pos.cpp b/src/parser_pos.cpp
index 22d12621d..6ef0db215 100644
--- a/src/parser_pos.cpp
+++ b/src/parser_pos.cpp
@@ -35,6 +35,7 @@ Token ast_token(Ast *node) {
}
return node->ImplicitSelectorExpr.token;
case Ast_IndexExpr: return node->IndexExpr.open;
+ case Ast_MatrixIndexExpr: return node->MatrixIndexExpr.open;
case Ast_SliceExpr: return node->SliceExpr.open;
case Ast_Ellipsis: return node->Ellipsis.token;
case Ast_FieldValue: return node->FieldValue.eq;
@@ -103,6 +104,7 @@ Token ast_token(Ast *node) {
case Ast_EnumType: return node->EnumType.token;
case Ast_BitSetType: return node->BitSetType.token;
case Ast_MapType: return node->MapType.token;
+ case Ast_MatrixType: return node->MatrixType.token;
}
return empty_token;
@@ -168,6 +170,7 @@ Token ast_end_token(Ast *node) {
}
return node->ImplicitSelectorExpr.token;
case Ast_IndexExpr: return node->IndexExpr.close;
+ case Ast_MatrixIndexExpr: return node->MatrixIndexExpr.close;
case Ast_SliceExpr: return node->SliceExpr.close;
case Ast_Ellipsis:
if (node->Ellipsis.expr) {
@@ -345,6 +348,7 @@ Token ast_end_token(Ast *node) {
}
return ast_end_token(node->BitSetType.elem);
case Ast_MapType: return ast_end_token(node->MapType.value);
+ case Ast_MatrixType: return ast_end_token(node->MatrixType.elem);
}
return empty_token;
diff --git a/src/tokenizer.cpp b/src/tokenizer.cpp
index c7627d09c..10b4494d7 100644
--- a/src/tokenizer.cpp
+++ b/src/tokenizer.cpp
@@ -117,6 +117,7 @@ TOKEN_KIND(Token__KeywordBegin, ""), \
TOKEN_KIND(Token_or_else, "or_else"), \
TOKEN_KIND(Token_or_return, "or_return"), \
TOKEN_KIND(Token_asm, "asm"), \
+ TOKEN_KIND(Token_matrix, "matrix"), \
TOKEN_KIND(Token__KeywordEnd, ""), \
TOKEN_KIND(Token_Count, "")
diff --git a/src/types.cpp b/src/types.cpp
index a808b54fb..bfedb5381 100644
--- a/src/types.cpp
+++ b/src/types.cpp
@@ -270,6 +270,14 @@ struct TypeProc {
TYPE_KIND(RelativeSlice, struct { \
Type *slice_type; \
Type *base_integer; \
+ }) \
+ TYPE_KIND(Matrix, struct { \
+ Type *elem; \
+ i64 row_count; \
+ i64 column_count; \
+ Type *generic_row_count; \
+ Type *generic_column_count; \
+ i64 stride_in_bytes; \
})
@@ -341,6 +349,7 @@ enum Typeid_Kind : u8 {
Typeid_Simd_Vector,
Typeid_Relative_Pointer,
Typeid_Relative_Slice,
+ Typeid_Matrix,
};
// IMPORTANT NOTE(bill): This must match the same as the in core.odin
@@ -349,6 +358,13 @@ enum TypeInfoFlag : u32 {
TypeInfoFlag_Simple_Compare = 1<<1,
};
+
+enum : int {
+ MATRIX_ELEMENT_COUNT_MIN = 1,
+ MATRIX_ELEMENT_COUNT_MAX = 16,
+};
+
+
bool is_type_comparable(Type *t);
bool is_type_simple_compare(Type *t);
@@ -622,6 +638,7 @@ gb_global Type *t_type_info_bit_set = nullptr;
gb_global Type *t_type_info_simd_vector = nullptr;
gb_global Type *t_type_info_relative_pointer = nullptr;
gb_global Type *t_type_info_relative_slice = nullptr;
+gb_global Type *t_type_info_matrix = nullptr;
gb_global Type *t_type_info_named_ptr = nullptr;
gb_global Type *t_type_info_integer_ptr = nullptr;
@@ -649,6 +666,7 @@ gb_global Type *t_type_info_bit_set_ptr = nullptr;
gb_global Type *t_type_info_simd_vector_ptr = nullptr;
gb_global Type *t_type_info_relative_pointer_ptr = nullptr;
gb_global Type *t_type_info_relative_slice_ptr = nullptr;
+gb_global Type *t_type_info_matrix_ptr = nullptr;
gb_global Type *t_allocator = nullptr;
gb_global Type *t_allocator_ptr = nullptr;
@@ -667,11 +685,13 @@ gb_global Type *t_hasher_proc = nullptr;
gb_global RecursiveMutex g_type_mutex;
+struct TypePath;
-i64 type_size_of (Type *t);
-i64 type_align_of (Type *t);
-i64 type_offset_of (Type *t, i32 index);
-gbString type_to_string (Type *type);
+i64 type_size_of (Type *t);
+i64 type_align_of (Type *t);
+i64 type_offset_of (Type *t, i32 index);
+gbString type_to_string (Type *type);
+i64 type_size_of_internal(Type *t, TypePath *path);
void init_map_internal_types(Type *type);
Type * bit_set_to_int(Type *t);
bool are_types_identical(Type *x, Type *y);
@@ -680,6 +700,74 @@ bool is_type_pointer(Type *t);
bool is_type_slice(Type *t);
bool is_type_integer(Type *t);
bool type_set_offsets(Type *t);
+Type *base_type(Type *t);
+
+i64 type_size_of_internal(Type *t, TypePath *path);
+i64 type_align_of_internal(Type *t, TypePath *path);
+
+
+// IMPORTANT TODO(bill): SHould this TypePath code be removed since type cycle checking is handled much earlier on?
+
+struct TypePath {
+ Array<Entity *> path; // Entity_TypeName;
+ bool failure;
+};
+
+
+void type_path_init(TypePath *tp) {
+ tp->path.allocator = heap_allocator();
+}
+
+void type_path_free(TypePath *tp) {
+ array_free(&tp->path);
+}
+
+void type_path_print_illegal_cycle(TypePath *tp, isize start_index) {
+ GB_ASSERT(tp != nullptr);
+
+ GB_ASSERT(start_index < tp->path.count);
+ Entity *e = tp->path[start_index];
+ GB_ASSERT(e != nullptr);
+ error(e->token, "Illegal type declaration cycle of `%.*s`", LIT(e->token.string));
+ // NOTE(bill): Print cycle, if it's deep enough
+ for (isize j = start_index; j < tp->path.count; j++) {
+ Entity *e = tp->path[j];
+ error(e->token, "\t%.*s refers to", LIT(e->token.string));
+ }
+ // NOTE(bill): This will only print if the path count > 1
+ error(e->token, "\t%.*s", LIT(e->token.string));
+ tp->failure = true;
+ e->type->failure = true;
+ base_type(e->type)->failure = true;
+}
+
+bool type_path_push(TypePath *tp, Type *t) {
+ GB_ASSERT(tp != nullptr);
+ if (t->kind != Type_Named) {
+ return false;
+ }
+ Entity *e = t->Named.type_name;
+
+ for (isize i = 0; i < tp->path.count; i++) {
+ Entity *p = tp->path[i];
+ if (p == e) {
+ type_path_print_illegal_cycle(tp, i);
+ }
+ }
+
+ array_add(&tp->path, e);
+ return true;
+}
+
+void type_path_pop(TypePath *tp) {
+ if (tp != nullptr && tp->path.count > 0) {
+ array_pop(&tp->path);
+ }
+}
+
+
+#define FAILURE_SIZE 0
+#define FAILURE_ALIGNMENT 0
void init_type_mutex(void) {
mutex_init(&g_type_mutex);
@@ -804,6 +892,24 @@ Type *alloc_type_array(Type *elem, i64 count, Type *generic_count = nullptr) {
return t;
}
+Type *alloc_type_matrix(Type *elem, i64 row_count, i64 column_count, Type *generic_row_count = nullptr, Type *generic_column_count = nullptr) {
+ if (generic_row_count != nullptr || generic_column_count != nullptr) {
+ Type *t = alloc_type(Type_Matrix);
+ t->Matrix.elem = elem;
+ t->Matrix.row_count = row_count;
+ t->Matrix.column_count = column_count;
+ t->Matrix.generic_row_count = generic_row_count;
+ t->Matrix.generic_column_count = generic_column_count;
+ return t;
+ }
+ Type *t = alloc_type(Type_Matrix);
+ t->Matrix.elem = elem;
+ t->Matrix.row_count = row_count;
+ t->Matrix.column_count = column_count;
+ return t;
+}
+
+
Type *alloc_type_enumerated_array(Type *elem, Type *index, ExactValue const *min_value, ExactValue const *max_value, TokenKind op) {
Type *t = alloc_type(Type_EnumeratedArray);
t->EnumeratedArray.elem = elem;
@@ -1208,6 +1314,132 @@ bool is_type_enumerated_array(Type *t) {
t = base_type(t);
return t->kind == Type_EnumeratedArray;
}
+bool is_type_matrix(Type *t) {
+ t = base_type(t);
+ return t->kind == Type_Matrix;
+}
+
+i64 matrix_align_of(Type *t, struct TypePath *tp) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+
+ Type *elem = t->Matrix.elem;
+ i64 row_count = gb_max(t->Matrix.row_count, 1);
+
+ bool pop = type_path_push(tp, elem);
+ if (tp->failure) {
+ return FAILURE_ALIGNMENT;
+ }
+
+ i64 elem_align = type_align_of_internal(elem, tp);
+ if (pop) type_path_pop(tp);
+
+ i64 elem_size = type_size_of(elem);
+
+
+ // NOTE(bill, 2021-10-25): The alignment strategy here is to have zero padding
+ // It would be better for performance to pad each column so that each column
+ // could be maximally aligned but as a compromise, having no padding will be
+ // beneficial to third libraries that assume no padding
+
+ i64 total_expected_size = row_count*t->Matrix.column_count*elem_size;
+ // i64 min_alignment = prev_pow2(elem_align * row_count);
+ i64 min_alignment = prev_pow2(total_expected_size);
+ while ((total_expected_size % min_alignment) != 0) {
+ min_alignment >>= 1;
+ }
+ GB_ASSERT(min_alignment >= elem_align);
+
+ i64 align = gb_min(min_alignment, build_context.max_align);
+ return align;
+}
+
+
+i64 matrix_type_stride_in_bytes(Type *t, struct TypePath *tp) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+ if (t->Matrix.stride_in_bytes != 0) {
+ return t->Matrix.stride_in_bytes;
+ } else if (t->Matrix.row_count == 0) {
+ return 0;
+ }
+
+ i64 elem_size;
+ if (tp != nullptr) {
+ elem_size = type_size_of_internal(t->Matrix.elem, tp);
+ } else {
+ elem_size = type_size_of(t->Matrix.elem);
+ }
+
+ i64 stride_in_bytes = 0;
+
+ // NOTE(bill, 2021-10-25): The alignment strategy here is to have zero padding
+ // It would be better for performance to pad each column so that each column
+ // could be maximally aligned but as a compromise, having no padding will be
+ // beneficial to third libraries that assume no padding
+ i64 row_count = t->Matrix.row_count;
+ stride_in_bytes = elem_size*row_count;
+
+ t->Matrix.stride_in_bytes = stride_in_bytes;
+ return stride_in_bytes;
+}
+
+i64 matrix_type_stride_in_elems(Type *t) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+ i64 stride = matrix_type_stride_in_bytes(t, nullptr);
+ return stride/gb_max(1, type_size_of(t->Matrix.elem));
+}
+
+
+i64 matrix_type_total_internal_elems(Type *t) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+ i64 size = type_size_of(t);
+ i64 elem_size = type_size_of(t->Matrix.elem);
+ return size/gb_max(elem_size, 1);
+}
+
+i64 matrix_indices_to_offset(Type *t, i64 row_index, i64 column_index) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+ GB_ASSERT(0 <= row_index && row_index < t->Matrix.row_count);
+ GB_ASSERT(0 <= column_index && column_index < t->Matrix.column_count);
+ i64 stride_elems = matrix_type_stride_in_elems(t);
+ return stride_elems*column_index + row_index;
+}
+i64 matrix_index_to_offset(Type *t, i64 index) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+
+ i64 row_index = index%t->Matrix.row_count;
+ i64 column_index = index/t->Matrix.row_count;
+ return matrix_indices_to_offset(t, row_index, column_index);
+}
+
+
+
+bool is_matrix_square(Type *t) {
+ t = base_type(t);
+ GB_ASSERT(t->kind == Type_Matrix);
+ return t->Matrix.row_count == t->Matrix.column_count;
+}
+
+bool is_type_valid_for_matrix_elems(Type *t) {
+ t = base_type(t);
+ if (is_type_integer(t)) {
+ return true;
+ } else if (is_type_float(t)) {
+ return true;
+ } else if (is_type_complex(t)) {
+ return true;
+ }
+ if (t->kind == Type_Generic) {
+ return true;
+ }
+ return false;
+}
+
bool is_type_dynamic_array(Type *t) {
t = base_type(t);
return t->kind == Type_DynamicArray;
@@ -1241,6 +1473,8 @@ Type *base_array_type(Type *t) {
return bt->EnumeratedArray.elem;
} else if (is_type_simd_vector(bt)) {
return bt->SimdVector.elem;
+ } else if (is_type_matrix(bt)) {
+ return bt->Matrix.elem;
}
return t;
}
@@ -1315,11 +1549,16 @@ i64 get_array_type_count(Type *t) {
Type *core_array_type(Type *t) {
for (;;) {
t = base_array_type(t);
- if (t->kind != Type_Array && t->kind != Type_EnumeratedArray && t->kind != Type_SimdVector) {
+ switch (t->kind) {
+ case Type_Array:
+ case Type_EnumeratedArray:
+ case Type_SimdVector:
+ case Type_Matrix:
break;
+ default:
+ return t;
}
}
- return t;
}
@@ -1651,6 +1890,8 @@ bool is_type_indexable(Type *t) {
return true;
case Type_RelativeSlice:
return true;
+ case Type_Matrix:
+ return true;
}
return false;
}
@@ -1668,6 +1909,8 @@ bool is_type_sliceable(Type *t) {
return false;
case Type_RelativeSlice:
return true;
+ case Type_Matrix:
+ return false;
}
return false;
}
@@ -1934,6 +2177,8 @@ bool is_type_comparable(Type *t) {
return is_type_comparable(t->Array.elem);
case Type_Proc:
return true;
+ case Type_Matrix:
+ return is_type_comparable(t->Matrix.elem);
case Type_BitSet:
return true;
@@ -1995,6 +2240,9 @@ bool is_type_simple_compare(Type *t) {
case Type_Proc:
case Type_BitSet:
return true;
+
+ case Type_Matrix:
+ return is_type_simple_compare(t->Matrix.elem);
case Type_Struct:
for_array(i, t->Struct.fields) {
@@ -2107,6 +2355,14 @@ bool are_types_identical(Type *x, Type *y) {
return (x->Array.count == y->Array.count) && are_types_identical(x->Array.elem, y->Array.elem);
}
break;
+
+ case Type_Matrix:
+ if (y->kind == Type_Matrix) {
+ return x->Matrix.row_count == y->Matrix.row_count &&
+ x->Matrix.column_count == y->Matrix.column_count &&
+ are_types_identical(x->Matrix.elem, y->Matrix.elem);
+ }
+ break;
case Type_DynamicArray:
if (y->kind == Type_DynamicArray) {
@@ -2812,71 +3068,6 @@ Slice<i32> struct_fields_index_by_increasing_offset(gbAllocator allocator, Type
-
-// IMPORTANT TODO(bill): SHould this TypePath code be removed since type cycle checking is handled much earlier on?
-
-struct TypePath {
- Array<Entity *> path; // Entity_TypeName;
- bool failure;
-};
-
-
-void type_path_init(TypePath *tp) {
- tp->path.allocator = heap_allocator();
-}
-
-void type_path_free(TypePath *tp) {
- array_free(&tp->path);
-}
-
-void type_path_print_illegal_cycle(TypePath *tp, isize start_index) {
- GB_ASSERT(tp != nullptr);
-
- GB_ASSERT(start_index < tp->path.count);
- Entity *e = tp->path[start_index];
- GB_ASSERT(e != nullptr);
- error(e->token, "Illegal type declaration cycle of `%.*s`", LIT(e->token.string));
- // NOTE(bill): Print cycle, if it's deep enough
- for (isize j = start_index; j < tp->path.count; j++) {
- Entity *e = tp->path[j];
- error(e->token, "\t%.*s refers to", LIT(e->token.string));
- }
- // NOTE(bill): This will only print if the path count > 1
- error(e->token, "\t%.*s", LIT(e->token.string));
- tp->failure = true;
- e->type->failure = true;
- base_type(e->type)->failure = true;
-}
-
-bool type_path_push(TypePath *tp, Type *t) {
- GB_ASSERT(tp != nullptr);
- if (t->kind != Type_Named) {
- return false;
- }
- Entity *e = t->Named.type_name;
-
- for (isize i = 0; i < tp->path.count; i++) {
- Entity *p = tp->path[i];
- if (p == e) {
- type_path_print_illegal_cycle(tp, i);
- }
- }
-
- array_add(&tp->path, e);
- return true;
-}
-
-void type_path_pop(TypePath *tp) {
- if (tp != nullptr && tp->path.count > 0) {
- array_pop(&tp->path);
- }
-}
-
-
-#define FAILURE_SIZE 0
-#define FAILURE_ALIGNMENT 0
-
-
i64 type_size_of_internal (Type *t, TypePath *path);
i64 type_align_of_internal(Type *t, TypePath *path);
i64 type_size_of(Type *t);
@@ -2982,7 +3173,7 @@ i64 type_align_of_internal(Type *t, TypePath *path) {
if (path->failure) {
return FAILURE_ALIGNMENT;
}
- i64 align = type_align_of_internal(t->Array.elem, path);
+ i64 align = type_align_of_internal(elem, path);
if (pop) type_path_pop(path);
return align;
}
@@ -2993,7 +3184,7 @@ i64 type_align_of_internal(Type *t, TypePath *path) {
if (path->failure) {
return FAILURE_ALIGNMENT;
}
- i64 align = type_align_of_internal(t->EnumeratedArray.elem, path);
+ i64 align = type_align_of_internal(elem, path);
if (pop) type_path_pop(path);
return align;
}
@@ -3102,6 +3293,9 @@ i64 type_align_of_internal(Type *t, TypePath *path) {
// IMPORTANT TODO(bill): Figure out the alignment of vector types
return gb_clamp(next_pow2(type_size_of_internal(t, path)), 1, build_context.max_align);
}
+
+ case Type_Matrix:
+ return matrix_align_of(t, path);
case Type_RelativePointer:
return type_align_of_internal(t->RelativePointer.base_integer, path);
@@ -3369,6 +3563,17 @@ i64 type_size_of_internal(Type *t, TypePath *path) {
Type *elem = t->SimdVector.elem;
return count * type_size_of_internal(elem, path);
}
+
+ case Type_Matrix: {
+ bool pop = type_path_push(path, t->Matrix.elem);
+ if (path->failure) {
+ return FAILURE_SIZE;
+ }
+ i64 stride_in_bytes = matrix_type_stride_in_bytes(t, path);
+ if (pop) type_path_pop(path);
+
+ return stride_in_bytes * t->Matrix.column_count;
+ }
case Type_RelativePointer:
return type_size_of_internal(t->RelativePointer.base_integer, path);
@@ -3830,6 +4035,11 @@ gbString write_type_to_string(gbString str, Type *type) {
str = gb_string_append_fmt(str, ") ");
str = write_type_to_string(str, type->RelativeSlice.slice_type);
break;
+
+ case Type_Matrix:
+ str = gb_string_appendc(str, gb_bprintf("matrix[%d, %d]", cast(int)type->Matrix.row_count, cast(int)type->Matrix.column_count));
+ str = write_type_to_string(str, type->Matrix.elem);
+ break;
}
return str;