1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
package runtime
import "base:intrinsics"
DEFAULT_ARENA_GROWING_MINIMUM_BLOCK_SIZE :: uint(DEFAULT_TEMP_ALLOCATOR_BACKING_SIZE)
Memory_Block :: struct {
prev: ^Memory_Block,
allocator: Allocator,
base: [^]byte,
used: uint,
capacity: uint,
}
// NOTE: This is a growing arena that is only used for the default temp allocator.
// For your own growing arena needs, prefer `Arena` from `core:mem/virtual`.
Arena :: struct {
backing_allocator: Allocator,
curr_block: ^Memory_Block,
total_used: uint,
total_capacity: uint,
minimum_block_size: uint,
temp_count: uint,
}
@(private, require_results)
safe_add :: #force_inline proc "contextless" (x, y: uint) -> (uint, bool) {
z, did_overflow := intrinsics.overflow_add(x, y)
return z, !did_overflow
}
@(require_results)
memory_block_alloc :: proc(allocator: Allocator, capacity: uint, alignment: uint, loc := #caller_location) -> (block: ^Memory_Block, err: Allocator_Error) {
total_size := uint(capacity + max(alignment, size_of(Memory_Block)))
base_offset := uintptr(max(alignment, size_of(Memory_Block)))
min_alignment: int = max(16, align_of(Memory_Block), int(alignment))
data := mem_alloc(int(total_size), min_alignment, allocator, loc) or_return
block = (^Memory_Block)(raw_data(data))
end := uintptr(raw_data(data)[len(data):])
block.allocator = allocator
block.base = ([^]byte)(uintptr(block) + base_offset)
block.capacity = uint(end - uintptr(block.base))
// Should be zeroed
assert(block.used == 0)
assert(block.prev == nil)
return
}
memory_block_dealloc :: proc(block_to_free: ^Memory_Block, loc := #caller_location) {
if block_to_free != nil {
allocator := block_to_free.allocator
mem_free(block_to_free, allocator, loc)
}
}
@(require_results)
alloc_from_memory_block :: proc(block: ^Memory_Block, min_size, alignment: uint) -> (data: []byte, err: Allocator_Error) {
calc_alignment_offset :: proc "contextless" (block: ^Memory_Block, alignment: uintptr) -> uint {
alignment_offset := uint(0)
ptr := uintptr(block.base[block.used:])
mask := alignment-1
if ptr & mask != 0 {
alignment_offset = uint(alignment - (ptr & mask))
}
return alignment_offset
}
if block == nil {
return nil, .Out_Of_Memory
}
alignment_offset := calc_alignment_offset(block, uintptr(alignment))
size, size_ok := safe_add(min_size, alignment_offset)
if !size_ok {
err = .Out_Of_Memory
return
}
if to_be_used, ok := safe_add(block.used, size); !ok || to_be_used > block.capacity {
err = .Out_Of_Memory
return
}
data = block.base[block.used+alignment_offset:][:min_size]
block.used += size
return
}
@(require_results)
arena_alloc :: proc(arena: ^Arena, size, alignment: uint, loc := #caller_location) -> (data: []byte, err: Allocator_Error) {
align_forward_uint :: proc "contextless" (ptr, align: uint) -> uint {
p := ptr
modulo := p & (align-1)
if modulo != 0 {
p += align - modulo
}
return p
}
assert(alignment & (alignment-1) == 0, "non-power of two alignment", loc)
size := size
if size == 0 {
return
}
prev_used := 0 if arena.curr_block == nil else arena.curr_block.used
data, err = alloc_from_memory_block(arena.curr_block, size, alignment)
if err == .Out_Of_Memory {
if arena.minimum_block_size == 0 {
arena.minimum_block_size = DEFAULT_ARENA_GROWING_MINIMUM_BLOCK_SIZE
}
needed := align_forward_uint(size, alignment)
block_size := max(needed, arena.minimum_block_size)
if arena.backing_allocator.procedure == nil {
arena.backing_allocator = default_allocator()
}
new_block := memory_block_alloc(arena.backing_allocator, block_size, alignment, loc) or_return
new_block.prev = arena.curr_block
arena.curr_block = new_block
arena.total_capacity += new_block.capacity
prev_used = 0
data, err = alloc_from_memory_block(arena.curr_block, size, alignment)
}
arena.total_used += arena.curr_block.used - prev_used
return
}
// `arena_init` will initialize the arena with a usable block.
// This procedure is not necessary to use the Arena as the default zero as `arena_alloc` will set things up if necessary
@(require_results)
arena_init :: proc(arena: ^Arena, size: uint, backing_allocator: Allocator, loc := #caller_location) -> Allocator_Error {
arena^ = {}
arena.backing_allocator = backing_allocator
arena.minimum_block_size = max(size, 1<<12) // minimum block size of 4 KiB
new_block := memory_block_alloc(arena.backing_allocator, arena.minimum_block_size, 0, loc) or_return
arena.curr_block = new_block
arena.total_capacity += new_block.capacity
return nil
}
arena_free_last_memory_block :: proc(arena: ^Arena, loc := #caller_location) {
if free_block := arena.curr_block; free_block != nil {
arena.curr_block = free_block.prev
arena.total_capacity -= free_block.capacity
memory_block_dealloc(free_block, loc)
}
}
// `arena_free_all` will free all but the first memory block, and then reset the memory block
arena_free_all :: proc(arena: ^Arena, loc := #caller_location) {
for arena.curr_block != nil && arena.curr_block.prev != nil {
arena_free_last_memory_block(arena, loc)
}
if arena.curr_block != nil {
intrinsics.mem_zero(arena.curr_block.base, arena.curr_block.used)
arena.curr_block.used = 0
}
arena.total_used = 0
}
arena_destroy :: proc(arena: ^Arena, loc := #caller_location) {
for arena.curr_block != nil {
free_block := arena.curr_block
arena.curr_block = free_block.prev
arena.total_capacity -= free_block.capacity
memory_block_dealloc(free_block, loc)
}
arena.total_used = 0
arena.total_capacity = 0
}
arena_allocator :: proc(arena: ^Arena) -> Allocator {
return Allocator{arena_allocator_proc, arena}
}
arena_allocator_proc :: proc(allocator_data: rawptr, mode: Allocator_Mode,
size, alignment: int,
old_memory: rawptr, old_size: int,
location := #caller_location) -> (data: []byte, err: Allocator_Error) {
arena := (^Arena)(allocator_data)
size, alignment := uint(size), uint(alignment)
old_size := uint(old_size)
switch mode {
case .Alloc, .Alloc_Non_Zeroed:
return arena_alloc(arena, size, alignment, location)
case .Free:
err = .Mode_Not_Implemented
case .Free_All:
arena_free_all(arena, location)
case .Resize, .Resize_Non_Zeroed:
old_data := ([^]byte)(old_memory)
switch {
case old_data == nil:
return arena_alloc(arena, size, alignment, location)
case size == old_size:
// return old memory
data = old_data[:size]
return
case size == 0:
err = .Mode_Not_Implemented
return
case uintptr(old_data) & uintptr(alignment-1) == 0:
if size < old_size {
// shrink data in-place
data = old_data[:size]
return
}
if block := arena.curr_block; block != nil {
start := uint(uintptr(old_memory)) - uint(uintptr(block.base))
old_end := start + old_size
new_end := start + size
if start < old_end && old_end == block.used && new_end <= block.capacity {
// grow data in-place, adjusting next allocation
block.used = uint(new_end)
data = block.base[start:new_end]
return
}
}
}
new_memory := arena_alloc(arena, size, alignment, location) or_return
if new_memory == nil {
return
}
copy(new_memory, old_data[:old_size])
return new_memory, nil
case .Query_Features:
set := (^Allocator_Mode_Set)(old_memory)
if set != nil {
set^ = {.Alloc, .Alloc_Non_Zeroed, .Free_All, .Resize, .Query_Features}
}
case .Query_Info:
err = .Mode_Not_Implemented
}
return
}
Arena_Temp :: struct {
arena: ^Arena,
block: ^Memory_Block,
used: uint,
}
@(require_results)
arena_temp_begin :: proc(arena: ^Arena, loc := #caller_location) -> (temp: Arena_Temp) {
assert(arena != nil, "nil arena", loc)
temp.arena = arena
temp.block = arena.curr_block
if arena.curr_block != nil {
temp.used = arena.curr_block.used
}
arena.temp_count += 1
return
}
arena_temp_end :: proc(temp: Arena_Temp, loc := #caller_location) {
if temp.arena == nil {
assert(temp.block == nil)
assert(temp.used == 0)
return
}
arena := temp.arena
if temp.block != nil {
memory_block_found := false
for block := arena.curr_block; block != nil; block = block.prev {
if block == temp.block {
memory_block_found = true
break
}
}
if !memory_block_found {
assert(arena.curr_block == temp.block, "memory block stored within Arena_Temp not owned by Arena", loc)
}
for arena.curr_block != temp.block {
arena_free_last_memory_block(arena)
}
if block := arena.curr_block; block != nil {
assert(block.used >= temp.used, "out of order use of arena_temp_end", loc)
amount_to_zero := block.used-temp.used
intrinsics.mem_zero(block.base[temp.used:], amount_to_zero)
block.used = temp.used
arena.total_used -= amount_to_zero
}
}
assert(arena.temp_count > 0, "double-use of arena_temp_end", loc)
arena.temp_count -= 1
}
// Ignore the use of a `arena_temp_begin` entirely
arena_temp_ignore :: proc(temp: Arena_Temp, loc := #caller_location) {
assert(temp.arena != nil, "nil arena", loc)
arena := temp.arena
assert(arena.temp_count > 0, "double-use of arena_temp_end", loc)
arena.temp_count -= 1
}
arena_check_temp :: proc(arena: ^Arena, loc := #caller_location) {
assert(arena.temp_count == 0, "Arena_Temp not been ended", loc)
}
|