1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
|
package runtime
import "base:intrinsics"
_ :: intrinsics
// High performance, cache-friendly, open-addressed Robin Hood hashing hash map
// data structure with various optimizations for Odin.
//
// Copyright 2022 (c) Dale Weiler
//
// The core of the hash map data structure is the Raw_Map struct which is a
// type-erased representation of the map. This type-erased representation is
// used in two ways: static and dynamic. When static type information is known,
// the procedures suffixed with _static should be used instead of _dynamic. The
// static procedures are optimized since they have type information. Hashing of
// keys, comparison of keys, and data lookup are all optimized. When type
// information is not known, the procedures suffixed with _dynamic should be
// used. The representation of the map is the same for both static and dynamic,
// and procedures of each can be mixed and matched. The purpose of the dynamic
// representation is to enable reflection and runtime manipulation of the map.
// The dynamic procedures all take an additional Map_Info structure parameter
// which carries runtime values describing the size, alignment, and offset of
// various traits of a given key and value type pair. The Map_Info value can
// be created by calling map_info(K, V) with the key and value typeids.
//
// This map implementation makes extensive use of uintptr for representing
// sizes, lengths, capacities, masks, pointers, offsets, and addresses to avoid
// expensive sign extension and masking that would be generated if types were
// casted all over. The only place regular ints show up is in the cap() and
// len() implementations.
//
// To make this map cache-friendly it uses a novel strategy to ensure keys and
// values of the map are always cache-line aligned and that no single key or
// value of any type ever straddles a cache-line. This cache efficiency makes
// for quick lookups because the linear-probe always addresses data in a cache
// friendly way. This is enabled through the use of a special meta-type called
// a Map_Cell which packs as many values of a given type into a local array adding
// internal padding to round to MAP_CACHE_LINE_SIZE. One other benefit to storing
// the internal data in this manner is false sharing no longer occurs when using
// a map, enabling efficient concurrent access of the map data structure with
// minimal locking if desired.
// With Robin Hood hashing a maximum load factor of 75% is ideal.
MAP_LOAD_FACTOR :: 75
// Minimum log2 capacity.
MAP_MIN_LOG2_CAPACITY :: 3 // 8 elements
// Has to be less than 100% though.
#assert(MAP_LOAD_FACTOR < 100)
// This is safe to change. The log2 size of a cache-line. At minimum it has to
// be six though. Higher cache line sizes are permitted.
MAP_CACHE_LINE_LOG2 :: 6
// The size of a cache-line.
MAP_CACHE_LINE_SIZE :: 1 << MAP_CACHE_LINE_LOG2
// The minimum cache-line size allowed by this implementation is 64 bytes since
// we need 6 bits in the base pointer to store the integer log2 capacity, which
// at maximum is 63. Odin uses signed integers to represent length and capacity,
// so only 63 bits are needed in the maximum case.
#assert(MAP_CACHE_LINE_SIZE >= 64)
// Map_Cell type that packs multiple T in such a way to ensure that each T stays
// aligned by align_of(T) and such that align_of(Map_Cell(T)) % MAP_CACHE_LINE_SIZE == 0
//
// This means a value of type T will never straddle a cache-line.
//
// When multiple Ts can fit in a single cache-line the data array will have more
// than one element. When it cannot, the data array will have one element and
// an array of Map_Cell(T) will be padded to stay a multiple of MAP_CACHE_LINE_SIZE.
//
// We rely on the type system to do all the arithmetic and padding for us here.
//
// The usual array[index] indexing for []T backed by a []Map_Cell(T) becomes a bit
// more involved as there now may be internal padding. The indexing now becomes
//
// N :: len(Map_Cell(T){}.data)
// i := index / N
// j := index % N
// cell[i].data[j]
//
// However, since len(Map_Cell(T){}.data) is a compile-time constant, there are some
// optimizations we can do to eliminate the need for any divisions as N will
// be bounded by [1, 64).
//
// In the optimal case, len(Map_Cell(T){}.data) = 1 so the cell array can be treated
// as a regular array of T, which is the case for hashes.
Map_Cell :: struct($T: typeid) #align(MAP_CACHE_LINE_SIZE) {
data: [MAP_CACHE_LINE_SIZE / size_of(T) when 0 < size_of(T) && size_of(T) < MAP_CACHE_LINE_SIZE else 1]T,
}
// So we can operate on a cell data structure at runtime without any type
// information, we have a simple table that stores some traits about the cell.
//
// 32-bytes on 64-bit
// 16-bytes on 32-bit
Map_Cell_Info :: struct {
size_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
align_of_type: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
size_of_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
elements_per_cell: uintptr, // 8-bytes on 64-bit, 4-bytes on 32-bits
}
// map_cell_info :: proc "contextless" ($T: typeid) -> ^Map_Cell_Info {...}
map_cell_info :: intrinsics.type_map_cell_info
// Same as the above procedure but at runtime with the cell Map_Cell_Info value.
@(require_results)
map_cell_index_dynamic :: #force_inline proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, index: uintptr) -> uintptr {
// Micro-optimize the common cases to save on integer division.
elements_per_cell := uintptr(info.elements_per_cell)
size_of_cell := uintptr(info.size_of_cell)
switch elements_per_cell {
case 1:
return base + (index * size_of_cell)
case 2:
cell_index := index >> 1
data_index := index & 1
size_of_type := uintptr(info.size_of_type)
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
case:
cell_index := index / elements_per_cell
data_index := index % elements_per_cell
size_of_type := uintptr(info.size_of_type)
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
}
}
// Same as above procedure but with compile-time constant index.
@(require_results)
map_cell_index_dynamic_const :: proc "contextless" (base: uintptr, #no_alias info: ^Map_Cell_Info, $INDEX: uintptr) -> uintptr {
elements_per_cell := uintptr(info.elements_per_cell)
size_of_cell := uintptr(info.size_of_cell)
size_of_type := uintptr(info.size_of_type)
cell_index := INDEX / elements_per_cell
data_index := INDEX % elements_per_cell
return base + (cell_index * size_of_cell) + (data_index * size_of_type)
}
// We always round the capacity to a power of two so this becomes [16]Foo, which
// works out to [4]Cell(Foo).
//
// The following compile-time procedure indexes such a [N]Cell(T) structure as
// if it were a flat array accounting for the internal padding introduced by the
// Cell structure.
@(require_results)
map_cell_index_static :: #force_inline proc "contextless" (cells: [^]Map_Cell($T), index: uintptr) -> ^T #no_bounds_check {
N :: size_of(Map_Cell(T){}.data) / size_of(T) when size_of(T) > 0 else 1
#assert(N <= MAP_CACHE_LINE_SIZE)
when size_of(Map_Cell(T)) == size_of([N]T) {
// No padding case, can treat as a regular array of []T.
return &([^]T)(cells)[index]
} else when (N & (N - 1)) == 0 && N <= 8*size_of(uintptr) {
// Likely case, N is a power of two because T is a power of two.
// Unique case, no need to index data here since only one element.
when N == 1 {
return &cells[index].data[0]
}
// Compute the integer log 2 of N, this is the shift amount to index the
// correct cell. Odin's intrinsics.count_leading_zeros does not produce a
// constant, hence this approach. We only need to check up to N = 64.
SHIFT :: 1 when N == 2 else
2 when N == 4 else
3 when N == 8 else
4 when N == 16 else
5 when N == 32 else 6
#assert(SHIFT <= MAP_CACHE_LINE_LOG2)
return &cells[index >> SHIFT].data[index & (N - 1)]
} else {
// Least likely (and worst case), we pay for a division operation but we
// assume the compiler does not actually generate a division. N will be in the
// range [1, CACHE_LINE_SIZE) and not a power of two.
return &cells[index / N].data[index % N]
}
}
// len() for map
@(require_results)
map_len :: #force_inline proc "contextless" (m: Raw_Map) -> int {
return int(m.len)
}
// cap() for map
@(require_results)
map_cap :: #force_inline proc "contextless" (m: Raw_Map) -> int {
// The data uintptr stores the capacity in the lower six bits which gives the
// a maximum value of 2^6-1, or 63. We store the integer log2 of capacity
// since our capacity is always a power of two. We only need 63 bits as Odin
// represents length and capacity as a signed integer.
return 0 if m.data == 0 else 1 << map_log2_cap(m)
}
// Query the load factor of the map. This is not actually configurable, but
// some math is needed to compute it. Compute it as a fixed point percentage to
// avoid floating point operations. This division can be optimized out by
// multiplying by the multiplicative inverse of 100.
@(require_results)
map_load_factor :: #force_inline proc "contextless" (log2_capacity: uintptr) -> uintptr {
return ((uintptr(1) << log2_capacity) * MAP_LOAD_FACTOR) / 100
}
@(require_results)
map_resize_threshold :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return map_load_factor(map_log2_cap(m))
}
// The data stores the log2 capacity in the lower six bits. This is primarily
// used in the implementation rather than map_cap since the check for data = 0
// isn't necessary in the implementation. cap() on the otherhand needs to work
// when called on an empty map.
@(require_results)
map_log2_cap :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return m.data & (64 - 1)
}
// Canonicalize the data by removing the tagged capacity stored in the lower six
// bits of the data uintptr.
@(require_results)
map_data :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return m.data &~ uintptr(64 - 1)
}
Map_Hash :: uintptr
TOMBSTONE_MASK :: 1<<(size_of(Map_Hash)*8 - 1)
// Procedure to check if a slot is empty for a given hash. This is represented
// by the zero value to make the zero value useful. This is a procedure just
// for prose reasons.
@(require_results)
map_hash_is_empty :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
return hash == 0
}
@(require_results)
map_hash_is_deleted :: #force_no_inline proc "contextless" (hash: Map_Hash) -> bool {
// The MSB indicates a tombstone
return hash & TOMBSTONE_MASK != 0
}
@(require_results)
map_hash_is_valid :: #force_inline proc "contextless" (hash: Map_Hash) -> bool {
// The MSB indicates a tombstone
return (hash != 0) & (hash & TOMBSTONE_MASK == 0)
}
@(require_results)
map_seed :: #force_inline proc "contextless" (m: Raw_Map) -> uintptr {
return map_seed_from_map_data(map_data(m))
}
// splitmix for uintptr
@(require_results)
map_seed_from_map_data :: #force_inline proc "contextless" (data: uintptr) -> uintptr {
when size_of(uintptr) == size_of(u64) {
mix := data + 0x9e3779b97f4a7c15
mix = (mix ~ (mix >> 30)) * 0xbf58476d1ce4e5b9
mix = (mix ~ (mix >> 27)) * 0x94d049bb133111eb
return mix ~ (mix >> 31)
} else {
mix := data + 0x9e3779b9
mix = (mix ~ (mix >> 16)) * 0x21f0aaad
mix = (mix ~ (mix >> 15)) * 0x735a2d97
return mix ~ (mix >> 15)
}
}
// Computes the desired position in the array. This is just index % capacity,
// but a procedure as there's some math involved here to recover the capacity.
@(require_results)
map_desired_position :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash) -> uintptr {
// We do not use map_cap since we know the capacity will not be zero here.
capacity := uintptr(1) << map_log2_cap(m)
return uintptr(hash & Map_Hash(capacity - 1))
}
@(require_results)
map_probe_distance :: #force_inline proc "contextless" (m: Raw_Map, hash: Map_Hash, slot: uintptr) -> uintptr {
// We do not use map_cap since we know the capacity will not be zero here.
capacity := uintptr(1) << map_log2_cap(m)
return (slot + capacity - map_desired_position(m, hash)) & (capacity - 1)
}
// When working with the type-erased structure at runtime we need information
// about the map to make working with it possible. This info structure stores
// that.
//
// `Map_Info` and `Map_Cell_Info` are read only data structures and cannot be
// modified after creation
//
// 32-bytes on 64-bit
// 16-bytes on 32-bit
Map_Info :: struct {
ks: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
vs: ^Map_Cell_Info, // 8-bytes on 64-bit, 4-bytes on 32-bit
key_hasher: proc "contextless" (key: rawptr, seed: Map_Hash) -> Map_Hash, // 8-bytes on 64-bit, 4-bytes on 32-bit
key_equal: proc "contextless" (lhs, rhs: rawptr) -> bool, // 8-bytes on 64-bit, 4-bytes on 32-bit
}
// The Map_Info structure is basically a pseudo-table of information for a given K and V pair.
// map_info :: proc "contextless" ($T: typeid/map[$K]$V) -> ^Map_Info {...}
map_info :: intrinsics.type_map_info
@(require_results)
map_kvh_data_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (ks: uintptr, vs: uintptr, hs: [^]Map_Hash, sk: uintptr, sv: uintptr) {
INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
capacity := uintptr(1) << map_log2_cap(m)
ks = map_data(m)
vs = map_cell_index_dynamic(ks, info.ks, capacity) // Skip past ks to get start of vs
hs_ := map_cell_index_dynamic(vs, info.vs, capacity) // Skip past vs to get start of hs
sk = map_cell_index_dynamic(hs_, INFO_HS, capacity) // Skip past hs to get start of sk
// Need to skip past two elements in the scratch key space to get to the start
// of the scratch value space, of which there's only two elements as well.
sv = map_cell_index_dynamic_const(sk, info.ks, 2)
hs = ([^]Map_Hash)(hs_)
return
}
@(require_results)
map_kvh_data_values_dynamic :: proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info) -> (vs: uintptr) {
capacity := uintptr(1) << map_log2_cap(m)
return map_cell_index_dynamic(map_data(m), info.ks, capacity) // Skip past ks to get start of vs
}
@(require_results)
map_total_allocation_size :: #force_inline proc "contextless" (capacity: uintptr, info: ^Map_Info) -> uintptr {
round :: #force_inline proc "contextless" (value: uintptr) -> uintptr {
CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
return (value + CACHE_MASK) &~ CACHE_MASK
}
INFO_HS := intrinsics.type_map_cell_info(Map_Hash)
size := uintptr(0)
size = round(map_cell_index_dynamic(size, info.ks, capacity))
size = round(map_cell_index_dynamic(size, info.vs, capacity))
size = round(map_cell_index_dynamic(size, INFO_HS, capacity))
size = round(map_cell_index_dynamic(size, info.ks, 2)) // Two additional ks for scratch storage
size = round(map_cell_index_dynamic(size, info.vs, 2)) // Two additional vs for scratch storage
return size
}
@(require_results)
map_total_allocation_size_from_value :: #force_inline proc "contextless" (m: $M/map[$K]$V) -> uintptr {
return map_total_allocation_size(uintptr(cap(m)), map_info(M))
}
// The only procedure which needs access to the context is the one which allocates the map.
@(require_results)
map_alloc_dynamic :: proc "odin" (info: ^Map_Info, log2_capacity: uintptr, allocator := context.allocator, loc := #caller_location) -> (result: Raw_Map, err: Allocator_Error) {
result.allocator = allocator // set the allocator always
if log2_capacity == 0 {
return
}
if log2_capacity >= 64 {
// Overflowed, would be caused by log2_capacity > 64
return {}, .Out_Of_Memory
}
capacity := uintptr(1) << max(log2_capacity, MAP_MIN_LOG2_CAPACITY)
CACHE_MASK :: MAP_CACHE_LINE_SIZE - 1
size := map_total_allocation_size(capacity, info)
data := mem_alloc_non_zeroed(int(size), MAP_CACHE_LINE_SIZE, allocator, loc) or_return
data_ptr := uintptr(raw_data(data))
if data_ptr == 0 {
err = .Out_Of_Memory
return
}
if intrinsics.expect(data_ptr & CACHE_MASK != 0, false) {
panic("allocation not aligned to a cache line", loc)
} else {
result.data = data_ptr | log2_capacity // Tagged pointer representation for capacity.
result.len = 0
map_clear_dynamic(&result, info)
}
return
}
// This procedure has to stack allocate storage to store local keys during the
// Robin Hood hashing technique where elements are swapped in the backing
// arrays to reduce variance. This swapping can only be done with memcpy since
// there is no type information.
//
// This procedure returns the address of the just inserted value, and will
// return 'nil' if there was no room to insert the entry
@(require_results)
map_insert_hash_dynamic_with_key :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (key: uintptr, result: uintptr) {
h := h
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, sk, sv := map_kvh_data_dynamic(m^, info)
// Avoid redundant loads of these values
size_of_k := info.ks.size_of_type
size_of_v := info.vs.size_of_type
k := map_cell_index_dynamic(sk, info.ks, 0)
v := map_cell_index_dynamic(sv, info.vs, 0)
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(ik), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(iv), size_of_v)
// Temporary k and v dynamic storage for swap below
tk := map_cell_index_dynamic(sk, info.ks, 1)
tv := map_cell_index_dynamic(sv, info.vs, 1)
swap_loop: for {
if distance > mask {
// Failed to find an empty slot and prevent infinite loop
panic("unable to insert into a map")
}
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
k_dst := map_cell_index_dynamic(ks, info.ks, pos)
v_dst := map_cell_index_dynamic(vs, info.vs, pos)
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
if result == 0 {
key = k_dst
result = v_dst
}
return
}
if map_hash_is_deleted(element_hash) {
break swap_loop
}
if probe_distance := map_probe_distance(m^, element_hash, pos); distance > probe_distance {
kp := map_cell_index_dynamic(ks, info.ks, pos)
vp := map_cell_index_dynamic(vs, info.vs, pos)
if result == 0 {
key = kp
result = vp
}
intrinsics.mem_copy_non_overlapping(rawptr(tk), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(kp), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(kp), rawptr(tk), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(tv), rawptr(v), size_of_v)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(vp), size_of_v)
intrinsics.mem_copy_non_overlapping(rawptr(vp), rawptr(tv), size_of_v)
th := h
h = hs[pos]
hs[pos] = th
distance = probe_distance
}
pos = (pos + 1) & mask
distance += 1
}
// backward shift loop
hs[pos] = 0
look_ahead: uintptr = 1
for {
la_pos := (pos + look_ahead) & mask
element_hash := hs[la_pos]
if map_hash_is_deleted(element_hash) {
look_ahead += 1
hs[la_pos] = 0
continue
}
k_dst := map_cell_index_dynamic(ks, info.ks, pos)
v_dst := map_cell_index_dynamic(vs, info.vs, pos)
if map_hash_is_empty(element_hash) {
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
if result == 0 {
key = k_dst
result = v_dst
}
return
}
k_src := map_cell_index_dynamic(ks, info.ks, la_pos)
v_src := map_cell_index_dynamic(vs, info.vs, la_pos)
probe_distance := map_probe_distance(m^, element_hash, la_pos)
if probe_distance < look_ahead {
// probed can be made ideal while placing saved (ending condition)
if result == 0 {
key = k_dst
result = v_dst
}
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
// This will be an ideal move
pos = (la_pos - probe_distance) & mask
look_ahead -= probe_distance
// shift until we hit ideal/empty
for probe_distance != 0 {
k_dst = map_cell_index_dynamic(ks, info.ks, pos)
v_dst = map_cell_index_dynamic(vs, info.vs, pos)
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
hs[pos] = element_hash
hs[la_pos] = 0
pos = (pos + 1) & mask
la_pos = (la_pos + 1) & mask
look_ahead = (la_pos - pos) & mask
element_hash = hs[la_pos]
if map_hash_is_empty(element_hash) {
return
}
probe_distance = map_probe_distance(m^, element_hash, la_pos)
if probe_distance == 0 {
return
}
// can be ideal?
if probe_distance < look_ahead {
pos = (la_pos - probe_distance) & mask
}
k_src = map_cell_index_dynamic(ks, info.ks, la_pos)
v_src = map_cell_index_dynamic(vs, info.vs, la_pos)
}
return
} else if distance < probe_distance - look_ahead {
// shift back probed
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v_src), size_of_v)
hs[pos] = element_hash
hs[la_pos] = 0
} else {
// place saved, save probed
if result == 0 {
key = k_dst
result = v_dst
}
intrinsics.mem_copy_non_overlapping(rawptr(k_dst), rawptr(k), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v_dst), rawptr(v), size_of_v)
hs[pos] = h
intrinsics.mem_copy_non_overlapping(rawptr(k), rawptr(k_src), size_of_k)
intrinsics.mem_copy_non_overlapping(rawptr(v), rawptr(v_src), size_of_v)
h = hs[la_pos]
hs[la_pos] = 0
distance = probe_distance - look_ahead
}
pos = (pos + 1) & mask
distance += 1
}
}
@(require_results)
map_insert_hash_dynamic :: #force_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, ik: uintptr, iv: uintptr) -> (result: uintptr) {
_, result = map_insert_hash_dynamic_with_key(m, info, h, ik, iv)
return
}
@(require_results)
map_grow_dynamic :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
log2_capacity := map_log2_cap(m^)
new_capacity := uintptr(1) << max(log2_capacity + 1, MAP_MIN_LOG2_CAPACITY)
return map_reserve_dynamic(m, info, new_capacity, loc)
}
@(require_results)
map_reserve_dynamic :: #force_no_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uintptr, loc := #caller_location) -> Allocator_Error {
@(require_results)
ceil_log2 :: #force_inline proc "contextless" (x: uintptr) -> uintptr {
z := intrinsics.count_leading_zeros(x)
if z > 0 && x & (x-1) != 0 {
z -= 1
}
return size_of(uintptr)*8 - 1 - z
}
if m.allocator.procedure == nil {
m.allocator = context.allocator
}
new_capacity := new_capacity
old_capacity := uintptr(map_cap(m^))
if old_capacity >= new_capacity {
return nil
}
// ceiling nearest power of two
log2_new_capacity := ceil_log2(new_capacity)
log2_min_cap := max(MAP_MIN_LOG2_CAPACITY, log2_new_capacity)
if m.data == 0 {
m^ = map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
return nil
}
resized := map_alloc_dynamic(info, log2_min_cap, m.allocator, loc) or_return
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
// Cache these loads to avoid hitting them in the for loop.
n := m.len
for i in 0..<old_capacity {
hash := hs[i]
if map_hash_is_empty(hash) {
continue
}
if map_hash_is_deleted(hash) {
continue
}
k := map_cell_index_dynamic(ks, info.ks, i)
v := map_cell_index_dynamic(vs, info.vs, i)
hash = info.key_hasher(rawptr(k), map_seed(resized))
_ = map_insert_hash_dynamic(&resized, info, hash, k, v)
// Only need to do this comparison on each actually added pair, so do not
// fold it into the for loop comparator as a micro-optimization.
n -= 1
if n == 0 {
break
}
}
map_free_dynamic(m^, info, loc) or_return
m.data = resized.data
return nil
}
@(require_results)
map_shrink_dynamic :: #force_no_inline proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (did_shrink: bool, err: Allocator_Error) {
if m.allocator.procedure == nil {
m.allocator = context.allocator
}
// Cannot shrink the capacity if the number of items in the map would exceed
// one minus the current log2 capacity's resize threshold. That is the shrunk
// map needs to be within the max load factor.
log2_capacity := map_log2_cap(m^)
if uintptr(m.len) >= map_load_factor(log2_capacity - 1) {
return false, nil
}
shrunk := map_alloc_dynamic(info, log2_capacity - 1, m.allocator) or_return
capacity := uintptr(1) << log2_capacity
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
n := m.len
for i in 0..<capacity {
hash := hs[i]
if map_hash_is_empty(hash) {
continue
}
if map_hash_is_deleted(hash) {
continue
}
k := map_cell_index_dynamic(ks, info.ks, i)
v := map_cell_index_dynamic(vs, info.vs, i)
hash = info.key_hasher(rawptr(k), map_seed(shrunk))
_ = map_insert_hash_dynamic(&shrunk, info, hash, k, v)
// Only need to do this comparison on each actually added pair, so do not
// fold it into the for loop comparator as a micro-optimization.
n -= 1
if n == 0 {
break
}
}
map_free_dynamic(m^, info, loc) or_return
m.data = shrunk.data
return true, nil
}
@(require_results)
map_free_dynamic :: #force_no_inline proc "odin" (m: Raw_Map, info: ^Map_Info, loc := #caller_location) -> Allocator_Error {
ptr := rawptr(map_data(m))
size := int(map_total_allocation_size(uintptr(map_cap(m)), info))
err := mem_free_with_size(ptr, size, m.allocator, loc)
#partial switch err {
case .None, .Mode_Not_Implemented:
return nil
}
return err
}
@(require_results)
map_lookup_dynamic :: #force_no_inline proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (index: uintptr, ok: bool) {
if map_len(m) == 0 {
return 0, false
}
h := info.key_hasher(rawptr(k), map_seed(m))
p := map_desired_position(m, h)
d := uintptr(0)
c := (uintptr(1) << map_log2_cap(m)) - 1
ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
for {
element_hash := hs[p]
if map_hash_is_empty(element_hash) {
return 0, false
} else if d > map_probe_distance(m, element_hash, p) {
return 0, false
} else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
return p, true
}
p = (p + 1) & c
d += 1
}
}
@(require_results)
map_exists_dynamic :: #force_no_inline proc "contextless" (m: Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (ok: bool) {
if map_len(m) == 0 {
return false
}
h := info.key_hasher(rawptr(k), map_seed(m))
p := map_desired_position(m, h)
d := uintptr(0)
c := (uintptr(1) << map_log2_cap(m)) - 1
ks, _, hs, _, _ := map_kvh_data_dynamic(m, info)
for {
element_hash := hs[p]
if map_hash_is_empty(element_hash) {
return false
} else if d > map_probe_distance(m, element_hash, p) {
return false
} else if element_hash == h && info.key_equal(rawptr(k), rawptr(map_cell_index_dynamic(ks, info.ks, p))) {
return true
}
p = (p + 1) & c
d += 1
}
}
@(require_results)
map_erase_dynamic :: #force_no_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, k: uintptr) -> (old_k, old_v: uintptr, ok: bool) {
index := map_lookup_dynamic(m^, info, k) or_return
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
hs[index] |= TOMBSTONE_MASK
old_k = map_cell_index_dynamic(ks, info.ks, index)
old_v = map_cell_index_dynamic(vs, info.vs, index)
m.len -= 1
ok = true
mask := (uintptr(1)<<map_log2_cap(m^)) - 1
curr_index := uintptr(index)
next_index := (curr_index + 1) & mask
// if the next element is empty or has zero probe distance, then any lookup
// will always fail on the next, so we can clear both of them
hash := hs[next_index]
if map_hash_is_empty(hash) || map_probe_distance(m^, hash, next_index) == 0 {
hs[curr_index] = 0
} else {
hs[curr_index] |= TOMBSTONE_MASK
}
return
}
map_clear_dynamic :: #force_inline proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info) {
if m.data == 0 {
return
}
_, _, hs, _, _ := map_kvh_data_dynamic(m^, info)
intrinsics.mem_zero(rawptr(hs), map_cap(m^) * size_of(Map_Hash))
m.len = 0
}
@(require_results)
map_kvh_data_static :: #force_inline proc "contextless" (m: $T/map[$K]$V) -> (ks: [^]Map_Cell(K), vs: [^]Map_Cell(V), hs: [^]Map_Hash) {
capacity := uintptr(cap(m))
ks = ([^]Map_Cell(K))(map_data(transmute(Raw_Map)m))
vs = ([^]Map_Cell(V))(map_cell_index_static(ks, capacity))
hs = ([^]Map_Hash)(map_cell_index_static(vs, capacity))
return
}
@(require_results)
map_get :: proc "contextless" (m: $T/map[$K]$V, key: K) -> (stored_key: K, stored_value: V, ok: bool) {
rm := transmute(Raw_Map)m
if rm.len == 0 {
return
}
info := intrinsics.type_map_info(T)
key := key
h := info.key_hasher(&key, map_seed(rm))
pos := map_desired_position(rm, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(rm)) - 1
ks, vs, hs := map_kvh_data_static(m)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return
} else if distance > map_probe_distance(rm, element_hash, pos) {
return
} else if element_hash == h {
element_key := map_cell_index_static(ks, pos)
if info.key_equal(&key, rawptr(element_key)) {
element_value := map_cell_index_static(vs, pos)
stored_key = (^K)(element_key)^
stored_value = (^V)(element_value)^
ok = true
return
}
}
pos = (pos + 1) & mask
distance += 1
}
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_get :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (ptr: rawptr) {
if m.len == 0 {
return nil
}
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return nil
} else if distance > map_probe_distance(m^, element_hash, pos) {
return nil
} else if element_hash == h && info.key_equal(key, rawptr(map_cell_index_dynamic(ks, info.ks, pos))) {
return rawptr(map_cell_index_dynamic(vs, info.vs, pos))
}
pos = (pos + 1) & mask
distance += 1
}
}
__dynamic_map_get_key_and_value :: proc "contextless" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, h: Map_Hash, key: rawptr) -> (key_ptr, value_ptr: rawptr) {
if m.len == 0 {
return nil, nil
}
pos := map_desired_position(m^, h)
distance := uintptr(0)
mask := (uintptr(1) << map_log2_cap(m^)) - 1
ks, vs, hs, _, _ := map_kvh_data_dynamic(m^, info)
for {
element_hash := hs[pos]
if map_hash_is_empty(element_hash) {
return nil, nil
} else if distance > map_probe_distance(m^, element_hash, pos) {
return nil, nil
} else if element_hash == h {
other_key := rawptr(map_cell_index_dynamic(ks, info.ks, pos))
if info.key_equal(key, other_key) {
key_ptr = other_key
value_ptr = rawptr(map_cell_index_dynamic(vs, info.vs, pos))
return
}
}
pos = (pos + 1) & mask
distance += 1
}
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_check_grow :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, loc := #caller_location) -> (err: Allocator_Error, has_grown: bool) {
if m.len >= map_resize_threshold(m^) {
return map_grow_dynamic(m, info, loc), true
}
return nil, false
}
__dynamic_map_set_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> rawptr {
return __dynamic_map_set(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
}
// IMPORTANT: USED WITHIN THE COMPILER
__dynamic_map_set :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> rawptr {
if found := __dynamic_map_get(m, info, hash, key); found != nil {
intrinsics.mem_copy_non_overlapping(found, value, info.vs.size_of_type)
return found
}
hash := hash
err, has_grown := __dynamic_map_check_grow(m, info, loc)
if err != nil {
return nil
}
if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
if result != 0 {
m.len += 1
}
return rawptr(result)
}
__dynamic_map_set_extra_without_hash :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key, value: rawptr, loc := #caller_location) -> (prev_key_ptr, value_ptr: rawptr) {
return __dynamic_map_set_extra(m, info, info.key_hasher(key, map_seed(m^)), key, value, loc)
}
__dynamic_map_set_extra :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, hash: Map_Hash, key, value: rawptr, loc := #caller_location) -> (prev_key_ptr, value_ptr: rawptr) {
if prev_key_ptr, value_ptr = __dynamic_map_get_key_and_value(m, info, hash, key); value_ptr != nil {
intrinsics.mem_copy_non_overlapping(value_ptr, value, info.vs.size_of_type)
return
}
hash := hash
err, has_grown := __dynamic_map_check_grow(m, info, loc)
if err != nil {
return nil, nil
}
if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
result := map_insert_hash_dynamic(m, info, hash, uintptr(key), uintptr(value))
if result != 0 {
m.len += 1
}
return nil, rawptr(result)
}
__dynamic_map_entry :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, key: rawptr, zero: rawptr, loc := #caller_location) -> (key_ptr: rawptr, value_ptr: rawptr, just_inserted: bool, err: Allocator_Error) {
hash := info.key_hasher(key, map_seed(m^))
if key_ptr, value_ptr = __dynamic_map_get_key_and_value(m, info, hash, key); value_ptr != nil {
return
}
has_grown: bool
if err, has_grown = __dynamic_map_check_grow(m, info, loc); err != nil {
return
} else if has_grown {
hash = info.key_hasher(key, map_seed(m^))
}
kp, vp := map_insert_hash_dynamic_with_key(m, info, hash, uintptr(key), uintptr(zero))
key_ptr = rawptr(kp)
value_ptr = rawptr(vp)
m.len += 1
just_inserted = true
return
}
// IMPORTANT: USED WITHIN THE COMPILER
@(private)
__dynamic_map_reserve :: proc "odin" (#no_alias m: ^Raw_Map, #no_alias info: ^Map_Info, new_capacity: uint, loc := #caller_location) -> Allocator_Error {
return map_reserve_dynamic(m, info, uintptr(new_capacity), loc)
}
// NOTE: the default hashing algorithm derives from fnv64a, with some minor modifications to work for `map` type:
//
// * Convert a `0` result to `1`
// * "empty entry"
// * Prevent the top bit from being set
// * "deleted entry"
//
// Both of these modification are necessary for the implementation of the `map`
INITIAL_HASH_SEED :: 0xcbf29ce484222325
HASH_MASK :: 1 << (8*size_of(uintptr) - 1) -1
default_hasher :: #force_inline proc "contextless" (data: rawptr, seed: uintptr, N: int) -> uintptr {
h := u64(seed) + INITIAL_HASH_SEED
p := ([^]byte)(data)
for _ in 0..<N {
h = (h ~ u64(p[0])) * 0x100000001b3
p = p[1:]
}
h &= HASH_MASK
return uintptr(h) | uintptr(uintptr(h) == 0)
}
default_hasher_string :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
str := (^[]byte)(data)
return default_hasher(raw_data(str^), seed, len(str))
}
default_hasher_cstring :: proc "contextless" (data: rawptr, seed: uintptr) -> uintptr {
h := u64(seed) + INITIAL_HASH_SEED
if ptr := (^[^]byte)(data)^; ptr != nil {
for ptr[0] != 0 {
h = (h ~ u64(ptr[0])) * 0x100000001b3
ptr = ptr[1:]
}
}
h &= HASH_MASK
return uintptr(h) | uintptr(uintptr(h) == 0)
}
default_hasher_f64 :: proc "contextless" (f: f64, seed: uintptr) -> uintptr {
f := f
buf: [size_of(f)]u8
if f == 0 {
return default_hasher(&buf, seed, size_of(buf))
}
if f != f {
// TODO(bill): What should the logic be for NaNs?
return default_hasher(&f, seed, size_of(f))
}
return default_hasher(&f, seed, size_of(f))
}
default_hasher_complex128 :: proc "contextless" (x, y: f64, seed: uintptr) -> uintptr {
seed := seed
seed = default_hasher_f64(x, seed)
seed = default_hasher_f64(y, seed)
return seed
}
default_hasher_quaternion256 :: proc "contextless" (x, y, z, w: f64, seed: uintptr) -> uintptr {
seed := seed
seed = default_hasher_f64(x, seed)
seed = default_hasher_f64(y, seed)
seed = default_hasher_f64(z, seed)
seed = default_hasher_f64(w, seed)
return seed
}
|