aboutsummaryrefslogtreecommitdiff
path: root/base/runtime/wasm_allocator.odin
blob: 6bca0b3d6bae2b2f611f03930ddbfaad801bac4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
//+build wasm32, wasm64p32
package runtime

import "base:intrinsics"

/*
Port of emmalloc, modified for use in Odin.

Invariants:
	- Per-allocation header overhead is 8 bytes, smallest allocated payload
	  amount is 8 bytes, and a multiple of 4 bytes.
	- Acquired memory blocks are subdivided into disjoint regions that lie
	  next to each other.
	- A region is either in used or free.
	  Used regions may be adjacent, and a used and unused region
	  may be adjacent, but not two unused ones - they would be
	  merged.
	- Memory allocation takes constant time, unless the alloc needs to wasm_memory_grow()
	  or memory is very close to being exhausted.
	- Free and used regions are managed inside "root regions", which are slabs
	  of memory acquired via wasm_memory_grow().
	- Memory retrieved using wasm_memory_grow() can not be given back to the OS.
	  Therefore, frees are internal to the allocator.

Copyright (c) 2010-2014 Emscripten authors, see AUTHORS file.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

WASM_Allocator :: struct #no_copy {
	// The minimum alignment of allocations.
	alignment: uint,
	// A region that contains as payload a single forward linked list of pointers to
	// root regions of each disjoint region blocks.
	list_of_all_regions: ^Root_Region,
	// For each of the buckets, maintain a linked list head node. The head node for each
	// free region is a sentinel node that does not actually represent any free space, but
	// the sentinel is used to avoid awkward testing against (if node == freeRegionHeadNode)
	// when adding and removing elements from the linked list, i.e. we are guaranteed that
	// the sentinel node is always fixed and there, and the actual free region list elements
	// start at free_region_buckets[i].next each.
	free_region_buckets: [NUM_FREE_BUCKETS]Region,
	// A bitmask that tracks the population status for each of the 64 distinct memory regions:
	// a zero at bit position i means that the free list bucket i is empty. This bitmask is
	// used to avoid redundant scanning of the 64 different free region buckets: instead by
	// looking at the bitmask we can find in constant time an index to a free region bucket
	// that contains free memory of desired size.
	free_region_buckets_used: BUCKET_BITMASK_T,
	// Because wasm memory can only be allocated in pages of 64k at a time, we keep any
	// spilled/unused bytes that are left from the allocated pages here, first using this
	// when bytes are needed.
	spill: []byte,
	// Mutex for thread safety, only used if the target feature "atomics" is enabled.
	mu: Mutex_State,
}

// Not required to be called, called on first allocation otherwise.
wasm_allocator_init :: proc(a: ^WASM_Allocator, alignment: uint = 8) {
	assert(is_power_of_two(alignment), "alignment must be a power of two")
	assert(alignment > 4, "alignment must be more than 4")

	a.alignment = alignment

	for i in 0..<NUM_FREE_BUCKETS {
		a.free_region_buckets[i].next = &a.free_region_buckets[i]
		a.free_region_buckets[i].prev = a.free_region_buckets[i].next
	}

	if !claim_more_memory(a, 3*size_of(Region)) {
		panic("wasm_allocator: initial memory could not be allocated")
	}
}

global_default_wasm_allocator_data: WASM_Allocator

default_wasm_allocator :: proc() -> Allocator {
	return wasm_allocator(&global_default_wasm_allocator_data)
}

wasm_allocator :: proc(a: ^WASM_Allocator) -> Allocator {
	return {
		data      = a,
		procedure = wasm_allocator_proc,
	}
}

wasm_allocator_proc :: proc(a: rawptr, mode: Allocator_Mode, size, alignment: int, old_memory: rawptr, old_size: int, loc := #caller_location) -> ([]byte, Allocator_Error) {
	a := (^WASM_Allocator)(a)
	if a == nil {
		a = &global_default_wasm_allocator_data
	}

	if a.alignment == 0 {
		wasm_allocator_init(a)
	}

	switch mode {
	case .Alloc:
		ptr := aligned_alloc(a, uint(alignment), uint(size), loc)
		if ptr == nil {
			return nil, .Out_Of_Memory
		}
		intrinsics.mem_zero(ptr, size)
		return ([^]byte)(ptr)[:size], nil

	case .Alloc_Non_Zeroed:
		ptr := aligned_alloc(a, uint(alignment), uint(size), loc)
		if ptr == nil {
			return nil, .Out_Of_Memory
		}
		return ([^]byte)(ptr)[:size], nil

	case .Resize:
		ptr := aligned_realloc(a, old_memory, uint(alignment), uint(size), loc)
		if ptr == nil {
			return nil, .Out_Of_Memory
		}

		bytes := ([^]byte)(ptr)[:size]

		if size > old_size {
			new_region := raw_data(bytes[old_size:])
			intrinsics.mem_zero(new_region, size - old_size)
		}

		return bytes, nil

	case .Resize_Non_Zeroed:
		ptr := aligned_realloc(a, old_memory, uint(alignment), uint(size), loc)
		if ptr == nil {
			return nil, .Out_Of_Memory
		}
		return ([^]byte)(ptr)[:size], nil

	case .Free:
		free(a, old_memory, loc)
		return nil, nil

	case .Free_All, .Query_Info:
		return nil, .Mode_Not_Implemented

	case .Query_Features:
		set := (^Allocator_Mode_Set)(old_memory)
		if set != nil {
			set^ = {.Alloc, .Alloc_Non_Zeroed, .Free, .Resize, .Resize_Non_Zeroed, .Query_Features }
		}
		return nil, nil
	}

	unreachable()
}

// Returns the allocated size of the allocator (both free and used).
// If `nil` is given, the global allocator is used.
wasm_allocator_size :: proc(a: ^WASM_Allocator = nil) -> (size: uint) {
	a := a
	if a == nil {
		a = &global_default_wasm_allocator_data
	}

	lock(a)
	defer unlock(a)

	root := a.list_of_all_regions
	for root != nil {
		size += uint(uintptr(root.end_ptr) - uintptr(root))
		root = root.next
	}

	size += len(a.spill)

	return
}

// Returns the amount of free memory on the allocator.
// If `nil` is given, the global allocator is used.
wasm_allocator_free_space :: proc(a: ^WASM_Allocator = nil) -> (free: uint) {
	a := a
	if a == nil {
		a = &global_default_wasm_allocator_data
	}

	lock(a)
	defer unlock(a)

	bucket_index: u64 = 0
	bucket_mask := a.free_region_buckets_used

	for bucket_mask != 0 {
		index_add := intrinsics.count_trailing_zeros(bucket_mask)
		bucket_index += index_add
		bucket_mask >>= index_add
		for free_region := a.free_region_buckets[bucket_index].next; free_region != &a.free_region_buckets[bucket_index]; free_region = free_region.next {
			free += free_region.size - REGION_HEADER_SIZE
		}
		bucket_index += 1
		bucket_mask >>= 1
	}

	free += len(a.spill)

	return
}

@(private="file")
NUM_FREE_BUCKETS :: 64
@(private="file")
BUCKET_BITMASK_T :: u64

// Dynamic memory is subdivided into regions, in the format

// <size:u32> ..... <size:u32> | <size:u32> ..... <size:u32> | <size:u32> ..... <size:u32> | .....

// That is, at the bottom and top end of each memory region, the size of that region is stored. That allows traversing the
// memory regions backwards and forwards. Because each allocation must be at least a multiple of 4 bytes, the lowest two bits of
// each size field is unused. Free regions are distinguished by used regions by having the FREE_REGION_FLAG bit present
// in the size field. I.e. for free regions, the size field is odd, and for used regions, the size field reads even.
@(private="file")
FREE_REGION_FLAG :: 0x1

// Attempts to alloc more than this many bytes would cause an overflow when calculating the size of a region,
// therefore allocations larger than this are short-circuited immediately on entry.
@(private="file")
MAX_ALLOC_SIZE :: 0xFFFFFFC7

// A free region has the following structure:
// <size:uint> <prevptr> <nextptr> ... <size:uint>

@(private="file")
Region :: struct {
	size: uint,
	prev, next: ^Region,
	_at_the_end_of_this_struct_size: uint,
}

// Each memory block starts with a Root_Region at the beginning.
// The Root_Region specifies the size of the region block, and forms a linked
// list of all Root_Regions in the program, starting with `list_of_all_regions`
// below.
@(private="file")
Root_Region :: struct {
	size:    u32,
	next:    ^Root_Region,
	end_ptr: ^byte,
}

@(private="file")
Mutex_State :: enum u32 {
	Unlocked = 0,
	Locked   = 1,
	Waiting  = 2,
}

@(private="file")
lock :: proc(a: ^WASM_Allocator) {
	when intrinsics.has_target_feature("atomics") {
		@(cold)
		lock_slow :: proc(a: ^WASM_Allocator, curr_state: Mutex_State) {
			new_state := curr_state // Make a copy of it

			spin_lock: for spin in 0..<i32(100) {
				state, ok := intrinsics.atomic_compare_exchange_weak_explicit(&a.mu, .Unlocked, new_state, .Acquire, .Consume)
				if ok {
					return
				}

				if state == .Waiting {
					break spin_lock
				}

				for i := min(spin+1, 32); i > 0; i -= 1 {
					intrinsics.cpu_relax()
				}
			}

			// Set just in case 100 iterations did not do it
			new_state = .Waiting

			for {
				if intrinsics.atomic_exchange_explicit(&a.mu, .Waiting, .Acquire) == .Unlocked {
					return
				}

				assert(intrinsics.wasm_memory_atomic_wait32((^u32)(&a.mu), u32(new_state), -1) != 0)
				intrinsics.cpu_relax()
			}
		}


		if v := intrinsics.atomic_exchange_explicit(&a.mu, .Locked, .Acquire); v != .Unlocked {
			lock_slow(a, v)
		}
	}
}

@(private="file")
unlock :: proc(a: ^WASM_Allocator) {
	when intrinsics.has_target_feature("atomics") {
		@(cold)
		unlock_slow :: proc(a: ^WASM_Allocator) {
			for {
				s := intrinsics.wasm_memory_atomic_notify32((^u32)(&a.mu), 1)
				if s >= 1 {
					return
				}
			}
		}

		switch intrinsics.atomic_exchange_explicit(&a.mu, .Unlocked, .Release) {
		case .Unlocked:
			unreachable()
		case .Locked:
		// Okay
		case .Waiting:
			unlock_slow(a)
		}
	}
}

@(private="file")
assert_locked :: proc(a: ^WASM_Allocator) {
	when intrinsics.has_target_feature("atomics") {
		assert(intrinsics.atomic_load(&a.mu) != .Unlocked)
	}
}

@(private="file")
has_alignment_uintptr :: proc(ptr: uintptr, #any_int alignment: uintptr) -> bool {
	return ptr & (alignment-1) == 0
}

@(private="file")
has_alignment_uint :: proc(ptr: uint, alignment: uint) -> bool {
	return ptr & (alignment-1) == 0
}

@(private="file")
has_alignment :: proc {
	has_alignment_uintptr,
	has_alignment_uint,
}

@(private="file")
REGION_HEADER_SIZE :: 2*size_of(uint)

@(private="file")
SMALLEST_ALLOCATION_SIZE :: 2*size_of(rawptr)

// Subdivide regions of free space into distinct circular doubly linked lists, where each linked list
// represents a range of free space blocks. The following function compute_free_list_bucket() converts
// an allocation size to the bucket index that should be looked at.
#assert(NUM_FREE_BUCKETS == 64, "Following function is tailored specifically for the NUM_FREE_BUCKETS == 64 case")
@(private="file")
compute_free_list_bucket :: proc(size: uint) -> uint {
	if size < 128 { return (size >> 3) - 1 }

	clz := intrinsics.count_leading_zeros(i32(size))
	bucket_index: i32 = ((clz > 19) \
		?     110 - (clz<<2) + ((i32)(size >> (u32)(29-clz)) ~ 4) \
		: min( 71 - (clz<<1) + ((i32)(size >> (u32)(30-clz)) ~ 2), NUM_FREE_BUCKETS-1))

	assert(bucket_index >= 0)
	assert(bucket_index < NUM_FREE_BUCKETS)
	return uint(bucket_index)
}

@(private="file")
prev_region :: proc(region: ^Region) -> ^Region {
	prev_region_size := ([^]uint)(region)[-1]
	prev_region_size  = prev_region_size & ~uint(FREE_REGION_FLAG)
	return (^Region)(uintptr(region)-uintptr(prev_region_size))
}

@(private="file")
next_region :: proc(region: ^Region) -> ^Region {
	return (^Region)(uintptr(region)+uintptr(region.size))
}

@(private="file")
region_ceiling_size :: proc(region: ^Region) -> uint {
	return ([^]uint)(uintptr(region)+uintptr(region.size))[-1]
}

@(private="file")
region_is_free :: proc(r: ^Region) -> bool {
	return region_ceiling_size(r) & FREE_REGION_FLAG >= 1
}

@(private="file")
region_is_in_use :: proc(r: ^Region) -> bool {
	return r.size == region_ceiling_size(r)
}

@(private="file")
region_payload_start_ptr :: proc(r: ^Region) -> [^]byte {
	return ([^]byte)(r)[size_of(uint):]
}

@(private="file")
region_payload_end_ptr :: proc(r: ^Region) -> [^]byte {
	return ([^]byte)(r)[r.size-size_of(uint):]
}

@(private="file")
create_used_region :: proc(ptr: rawptr, size: uint) {
	assert(has_alignment(uintptr(ptr), size_of(uint)))
	assert(has_alignment(size, size_of(uint)))
	assert(size >= size_of(Region))

	uptr := ([^]uint)(ptr)
	uptr[0] = size
	uptr[size/size_of(uint)-1] = size
}

@(private="file")
create_free_region :: proc(ptr: rawptr, size: uint) {
	assert(has_alignment(uintptr(ptr), size_of(uint)))
	assert(has_alignment(size, size_of(uint)))
	assert(size >= size_of(Region))

	free_region := (^Region)(ptr)
	free_region.size = size
	([^]uint)(ptr)[size/size_of(uint)-1] = size | FREE_REGION_FLAG
}

@(private="file")
prepend_to_free_list :: proc(region: ^Region, prepend_to: ^Region) {
	assert(region_is_free(region))
	region.next = prepend_to
	region.prev = prepend_to.prev
	prepend_to.prev = region
	region.prev.next = region
}

@(private="file")
unlink_from_free_list :: proc(region: ^Region) {
	assert(region_is_free(region))
	region.prev.next = region.next
	region.next.prev = region.prev
}

@(private="file")
link_to_free_list :: proc(a: ^WASM_Allocator, free_region: ^Region) {
	assert(free_region.size >= size_of(Region))
	bucket_index := compute_free_list_bucket(free_region.size-REGION_HEADER_SIZE)
	free_list_head := &a.free_region_buckets[bucket_index]
	free_region.prev = free_list_head
	free_region.next = free_list_head.next
	free_list_head.next = free_region
	free_region.next.prev = free_region
	a.free_region_buckets_used |= BUCKET_BITMASK_T(1) << bucket_index
}

@(private="file")
claim_more_memory :: proc(a: ^WASM_Allocator, num_bytes: uint) -> bool {

	PAGE_SIZE :: 64 * 1024

	page_alloc :: proc(page_count: int) -> []byte {
		prev_page_count := intrinsics.wasm_memory_grow(0, uintptr(page_count))
		if prev_page_count < 0 { return nil }

		ptr := ([^]byte)(uintptr(prev_page_count) * PAGE_SIZE)
		return ptr[:page_count * PAGE_SIZE]
	}

	alloc :: proc(a: ^WASM_Allocator, num_bytes: uint) -> (bytes: [^]byte) #no_bounds_check {
		if uint(len(a.spill)) >= num_bytes {
			bytes = raw_data(a.spill[:num_bytes])
			a.spill = a.spill[num_bytes:]
			return
		}

		pages := int((num_bytes / PAGE_SIZE) + 1)
		allocated := page_alloc(pages)
		if allocated == nil { return nil }

		// If the allocated memory is a direct continuation of the spill from before,
		// we can just extend the spill.
		spill_end := uintptr(raw_data(a.spill)) + uintptr(len(a.spill))
		if spill_end == uintptr(raw_data(allocated)) {
			raw_spill := transmute(^Raw_Slice)(&a.spill)
			raw_spill.len += len(allocated)
		} else {
			// Otherwise, we have to "waste" the previous spill.
			// Now this is probably uncommon, and will only happen if another code path
			// is also requesting pages.
			a.spill = allocated
		}

		bytes = raw_data(a.spill)
		a.spill = a.spill[num_bytes:]
		return
	}

	num_bytes := num_bytes
	num_bytes  = align_forward(num_bytes, a.alignment)

	start_ptr := alloc(a, uint(num_bytes))
	if start_ptr == nil { return false }

	assert(has_alignment(uintptr(start_ptr), align_of(uint)))
	end_ptr := start_ptr[num_bytes:]

	end_sentinel_region := (^Region)(end_ptr[-size_of(Region):])
	create_used_region(end_sentinel_region, size_of(Region))

	// If we are the sole user of wasm_memory_grow(), it will feed us continuous/consecutive memory addresses - take advantage
	// of that if so: instead of creating two disjoint memory regions blocks, expand the previous one to a larger size.
	prev_alloc_end_address := a.list_of_all_regions != nil ? a.list_of_all_regions.end_ptr : nil
	if start_ptr == prev_alloc_end_address {
		prev_end_sentinel := prev_region((^Region)(start_ptr))
		assert(region_is_in_use(prev_end_sentinel))
		prev_region := prev_region(prev_end_sentinel)

		a.list_of_all_regions.end_ptr = end_ptr

		// Two scenarios, either the last region of the previous block was in use, in which case we need to create
		// a new free region in the newly allocated space; or it was free, in which case we can extend that region
		// to cover a larger size.
		if region_is_free(prev_region) {
			new_free_region_size := uint(uintptr(end_sentinel_region) - uintptr(prev_region))
			unlink_from_free_list(prev_region)
			create_free_region(prev_region, new_free_region_size)
			link_to_free_list(a, prev_region)
			return true
		}

		start_ptr = start_ptr[-size_of(Region):]
	} else {
		create_used_region(start_ptr, size_of(Region))

		new_region_block := (^Root_Region)(start_ptr)
		new_region_block.next = a.list_of_all_regions
		new_region_block.end_ptr = end_ptr
		a.list_of_all_regions = new_region_block
		start_ptr = start_ptr[size_of(Region):]
	}

	create_free_region(start_ptr, uint(uintptr(end_sentinel_region)-uintptr(start_ptr)))
	link_to_free_list(a, (^Region)(start_ptr))
	return true
}

@(private="file")
validate_alloc_size :: proc(size: uint) -> uint {
	#assert(size_of(uint) >= size_of(uintptr))
	#assert(size_of(uint)  % size_of(uintptr) == 0)

	// NOTE: emmalloc aligns this forward on pointer size, but I think that is a mistake and will
	// do bad on wasm64p32.

	validated_size := size > SMALLEST_ALLOCATION_SIZE ? align_forward(size, size_of(uint)) : SMALLEST_ALLOCATION_SIZE
	assert(validated_size >= size) // Assert we haven't wrapped.

	return validated_size
}

@(private="file")
allocate_memory :: proc(a: ^WASM_Allocator, alignment: uint, size: uint, loc := #caller_location) -> rawptr {

	attempt_allocate :: proc(a: ^WASM_Allocator, free_region: ^Region, alignment, size: uint) -> rawptr {
		assert_locked(a)
		free_region := free_region

		payload_start_ptr := uintptr(region_payload_start_ptr(free_region))
		payload_start_ptr_aligned := align_forward(payload_start_ptr, uintptr(alignment))
		payload_end_ptr := uintptr(region_payload_end_ptr(free_region))

		if payload_start_ptr_aligned + uintptr(size) > payload_end_ptr {
			return nil
		}

		// We have enough free space, so the memory allocation will be made into this region. Remove this free region
		// from the list of free regions: whatever slop remains will be later added back to the free region pool.
		unlink_from_free_list(free_region)

		// Before we proceed further, fix up the boundary between this and the preceding region,
		// so that the boundary between the two regions happens at a right spot for the payload to be aligned.
		if payload_start_ptr != payload_start_ptr_aligned {
			prev := prev_region(free_region)
			assert(region_is_in_use(prev))
			region_boundary_bump_amount := payload_start_ptr_aligned - payload_start_ptr
			new_this_region_size := free_region.size - uint(region_boundary_bump_amount)
			create_used_region(prev, prev.size + uint(region_boundary_bump_amount))
			free_region = (^Region)(uintptr(free_region) + region_boundary_bump_amount)
			free_region.size = new_this_region_size
		}

		// Next, we need to decide whether this region is so large that it should be split into two regions,
		// one representing the newly used memory area, and at the high end a remaining leftover free area.
		// This splitting to two is done always if there is enough space for the high end to fit a region.
		// Carve 'size' bytes of payload off this region. So,
		// [sz prev next sz]
		// becomes
		// [sz payload sz] [sz prev next sz]
		if size_of(Region) + REGION_HEADER_SIZE + size <= free_region.size {
			new_free_region := (^Region)(uintptr(free_region) + REGION_HEADER_SIZE + uintptr(size))
			create_free_region(new_free_region, free_region.size - size - REGION_HEADER_SIZE)
			link_to_free_list(a, new_free_region)
			create_used_region(free_region, size + REGION_HEADER_SIZE)
		} else {
			// There is not enough space to split the free memory region into used+free parts, so consume the whole
			// region as used memory, not leaving a free memory region behind.
			// Initialize the free region as used by resetting the ceiling size to the same value as the size at bottom.
			([^]uint)(uintptr(free_region) + uintptr(free_region.size))[-1] = free_region.size
		}

		return rawptr(uintptr(free_region) + size_of(uint))
	}

	assert_locked(a)
	assert(is_power_of_two(alignment))
	assert(size <= MAX_ALLOC_SIZE, "allocation too big", loc=loc)

	alignment := alignment
	alignment  = max(alignment, a.alignment)

	size := size
	size  = validate_alloc_size(size)

	// Attempt to allocate memory starting from smallest bucket that can contain the required amount of memory.
	// Under normal alignment conditions this should always be the first or second bucket we look at, but if
	// performing an allocation with complex alignment, we may need to look at multiple buckets.
	bucket_index := compute_free_list_bucket(size)
	bucket_mask := a.free_region_buckets_used >> bucket_index

	// Loop through each bucket that has free regions in it, based on bits set in free_region_buckets_used bitmap.
	for bucket_mask != 0 {
		index_add := intrinsics.count_trailing_zeros(bucket_mask)
		bucket_index += uint(index_add)
		bucket_mask >>= index_add
		assert(bucket_index <= NUM_FREE_BUCKETS-1)
		assert(a.free_region_buckets_used & (BUCKET_BITMASK_T(1) << bucket_index) > 0)

		free_region := a.free_region_buckets[bucket_index].next
		assert(free_region != nil)
		if free_region != &a.free_region_buckets[bucket_index] {
			ptr := attempt_allocate(a, free_region, alignment, size)
			if ptr != nil {
				return ptr
			}

			// We were not able to allocate from the first region found in this bucket, so penalize
			// the region by cycling it to the end of the doubly circular linked list. (constant time)
			// This provides a randomized guarantee that when performing allocations of size k to a
			// bucket of [k-something, k+something] range, we will not always attempt to satisfy the
			// allocation from the same available region at the front of the list, but we try each
			// region in turn.
			unlink_from_free_list(free_region)
			prepend_to_free_list(free_region, &a.free_region_buckets[bucket_index])
			// But do not stick around to attempt to look at other regions in this bucket - move
			// to search the next populated bucket index if this did not fit. This gives a practical
			// "allocation in constant time" guarantee, since the next higher bucket will only have
			// regions that are all of strictly larger size than the requested allocation. Only if
			// there is a difficult alignment requirement we may fail to perform the allocation from
			// a region in the next bucket, and if so, we keep trying higher buckets until one of them
			// works.
			bucket_index += 1
			bucket_mask >>= 1
		} else {
			// This bucket was not populated after all with any regions,
			// but we just had a stale bit set to mark a populated bucket.
			// Reset the bit to update latest status so that we do not
			// redundantly look at this bucket again.
			a.free_region_buckets_used &= ~(BUCKET_BITMASK_T(1) << bucket_index)
			bucket_mask ~= 1
		}

		assert((bucket_index == NUM_FREE_BUCKETS && bucket_mask == 0) || (bucket_mask == a.free_region_buckets_used >> bucket_index))
	}

	// None of the buckets were able to accommodate an allocation. If this happens we are almost out of memory.
	// The largest bucket might contain some suitable regions, but we only looked at one region in that bucket, so
	// as a last resort, loop through more free regions in the bucket that represents the largest allocations available.
	// But only if the bucket representing largest allocations available is not any of the first thirty buckets,
	// these represent allocatable areas less than <1024 bytes - which could be a lot of scrap.
	// In such case, prefer to claim more memory right away.
	largest_bucket_index := NUM_FREE_BUCKETS - 1 - intrinsics.count_leading_zeros(a.free_region_buckets_used)
	// free_region will be null if there is absolutely no memory left. (all buckets are 100% used)
	free_region := a.free_region_buckets_used > 0 ? a.free_region_buckets[largest_bucket_index].next : nil
	// The 30 first free region buckets cover memory blocks < 2048 bytes, so skip looking at those here (too small)
	if a.free_region_buckets_used >> 30 > 0 {
		// Look only at a constant number of regions in this bucket max, to avoid bad worst case behavior.
		// If this many regions cannot find free space, we give up and prefer to claim more memory instead.
		max_regions_to_try_before_giving_up :: 99
		num_tries_left := max_regions_to_try_before_giving_up
		for ; free_region != &a.free_region_buckets[largest_bucket_index] && num_tries_left > 0; num_tries_left -= 1 {
			ptr := attempt_allocate(a, free_region, alignment, size)
			if ptr != nil {
				return ptr
			}
			free_region = free_region.next
		}
	}

	// We were unable to find a free memory region. Must claim more memory!
	num_bytes_to_claim := size+size_of(Region)*3
	if alignment > a.alignment {
		num_bytes_to_claim += alignment
	}
	success := claim_more_memory(a, num_bytes_to_claim)
	if (success) {
		// Try allocate again with the newly available memory.
		return allocate_memory(a, alignment, size)
	}

	// also claim_more_memory failed, we are really really constrained :( As a last resort, go back to looking at the
	// bucket we already looked at above, continuing where the above search left off - perhaps there are
	// regions we overlooked the first time that might be able to satisfy the allocation.
	if free_region != nil {
		for free_region != &a.free_region_buckets[largest_bucket_index] {
			ptr := attempt_allocate(a, free_region, alignment, size)
			if ptr != nil {
				return ptr
			}
			free_region = free_region.next
		}
	}

	// Fully out of memory.
	return nil
}

@(private="file")
aligned_alloc :: proc(a: ^WASM_Allocator, alignment, size: uint, loc := #caller_location) -> rawptr {
	lock(a)
	defer unlock(a)

	return allocate_memory(a, alignment, size, loc)
}

@(private="file")
free :: proc(a: ^WASM_Allocator, ptr: rawptr, loc := #caller_location) {
	if ptr == nil {
		return
	}

	region_start_ptr := uintptr(ptr) - size_of(uint)
	region := (^Region)(region_start_ptr)
	assert(has_alignment(region_start_ptr, size_of(uint)))

	lock(a)
	defer unlock(a)

	size := region.size
	assert(region_is_in_use(region), "double free", loc=loc)

	prev_region_size_field := ([^]uint)(region)[-1]
	prev_region_size := prev_region_size_field & ~uint(FREE_REGION_FLAG)
	if prev_region_size_field != prev_region_size {
		prev_region := (^Region)(uintptr(region) - uintptr(prev_region_size))
		unlink_from_free_list(prev_region)
		region_start_ptr = uintptr(prev_region)
		size += prev_region_size
	}

	next_reg := next_region(region)
	size_at_end := (^uint)(region_payload_end_ptr(next_reg))^
	if next_reg.size != size_at_end {
		unlink_from_free_list(next_reg)
		size += next_reg.size
	}

	create_free_region(rawptr(region_start_ptr), size)
	link_to_free_list(a, (^Region)(region_start_ptr))
}

@(private="file")
aligned_realloc :: proc(a: ^WASM_Allocator, ptr: rawptr, alignment, size: uint, loc := #caller_location) -> rawptr {

	attempt_region_resize :: proc(a: ^WASM_Allocator, region: ^Region, size: uint) -> bool {
		lock(a)
		defer unlock(a)

		// First attempt to resize this region, if the next region that follows this one
		// is a free region.
		next_reg := next_region(region)
		next_region_end_ptr := uintptr(next_reg) + uintptr(next_reg.size)
		size_at_ceiling := ([^]uint)(next_region_end_ptr)[-1]
		if next_reg.size != size_at_ceiling { // Next region is free?
			assert(region_is_free(next_reg))
			new_next_region_start_ptr := uintptr(region) + uintptr(size)
			assert(has_alignment(new_next_region_start_ptr, size_of(uint)))
			// Next region does not shrink to too small size?
			if new_next_region_start_ptr + size_of(Region) <= next_region_end_ptr {
				unlink_from_free_list(next_reg)
				create_free_region(rawptr(new_next_region_start_ptr), uint(next_region_end_ptr - new_next_region_start_ptr))
				link_to_free_list(a, (^Region)(new_next_region_start_ptr))
				create_used_region(region, uint(new_next_region_start_ptr - uintptr(region)))
				return true
			}
			// If we remove the next region altogether, allocation is satisfied?
			if new_next_region_start_ptr <= next_region_end_ptr {
				unlink_from_free_list(next_reg)
				create_used_region(region, region.size + next_reg.size)
				return true
			}
		} else {
			// Next region is an used region - we cannot change its starting address. However if we are shrinking the
			// size of this region, we can create a new free region between this and the next used region.
			if size + size_of(Region) <= region.size {
				free_region_size := region.size - size
				create_used_region(region, size)
				free_region := (^Region)(uintptr(region) + uintptr(size))
				create_free_region(free_region, free_region_size)
				link_to_free_list(a, free_region)
				return true
			} else if size <= region.size {
				// Caller was asking to shrink the size, but due to not being able to fit a full Region in the shrunk
				// area, we cannot actually do anything. This occurs if the shrink amount is really small. In such case,
				// just call it success without doing any work.
				return true
			}
		}

		return false
	}

	if ptr == nil {
		return aligned_alloc(a, alignment, size, loc)
	}

	if size == 0 {
		free(a, ptr, loc)
		return nil
	}

	if size > MAX_ALLOC_SIZE {
		return nil
	}

	assert(is_power_of_two(alignment))
	assert(has_alignment(uintptr(ptr), alignment), "realloc on different alignment than original allocation", loc=loc)

	size := size
	size  = validate_alloc_size(size)

	region := (^Region)(uintptr(ptr) - size_of(uint))

	// Attempt an in-place resize.
	if attempt_region_resize(a, region, size + REGION_HEADER_SIZE) {
		return ptr
	}

	// Can't do it in-place, allocate new region and copy over.
	newptr := aligned_alloc(a, alignment, size, loc)
	if newptr != nil {
		intrinsics.mem_copy(newptr, ptr, min(size, region.size - REGION_HEADER_SIZE))
		free(a, ptr, loc=loc)
	}

	return newptr
}