1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
#import "fmt.odin";
#import "utf8.odin";
// #import "atomic.odin";
// #import "hash.odin";
// #import "math.odin";
// #import "mem.odin";
// #import "opengl.odin";
// #import "os.odin";
// #import "sync.odin";
// #import win32 "sys/windows.odin";
main :: proc() {
syntax();
}
syntax :: proc() {
// Cyclic type checking
// Uncomment to see the error
// A :: struct {b: B};
// B :: struct {a: A};
x: int;
y := cast(f32)x;
z := transmute(u32)y;
// down_cast, union_cast as similar too
// Basic directives
fmt.printf("Basic directives = %s(%d): %s\n", #file, #line, #procedure);
// NOTE: new and improved `printf`
// TODO: It does need accurate float printing
// record fields use the same syntax a procedure signatures
Thing1 :: struct {
x: f32,
y: int,
z: ^[]int,
};
Thing2 :: struct {x: f32, y: int, z: ^[]int};
// Slice interals are now just a `ptr+count`
slice: []int; compile_assert(size_of_val(slice) == 2*size_of(int));
// Helper type - Help the reader understand what it is quicker
My_Int :: type int;
My_Proc :: type proc(int) -> f32;
// All declarations with : are either variable or constant
// To make these declarations syntactically consistent
v_variable := 123;
c_constant :: 123;
c_type1 :: int;
c_type2 :: []int;
c_proc :: proc() { /* code here */ };
x += 1;
x -= 1;
// ++ and -- have been removed
// x++;
// x--;
// Question: Should they be added again?
// They were removed as they are redundant and statements, not expressions
// like in C/C++
// You can now build files as a `.dll`
// `odin build_dll demo.odin`
// New vector syntax
v: [vector 3]f32;
v[0] = 123;
v.x = 123; // valid for all vectors with count 1 to 4
// Next part
prefixes();
}
Prefix_Type :: struct {x: int, y: f32, z: rawptr};
thread_local my_tls: Prefix_Type;
prefixes :: proc() {
using var: Prefix_Type;
immutable const := Prefix_Type{1, 2, nil};
var.x = 123;
x = 123;
// const.x = 123; // const is immutable
foo :: proc(using immutable pt: Prefix_Type, immutable int_ptr: ^int) {
// int_ptr = nil; // Not valid
int_ptr^ = 123; // Is valid
}
// Same as C99's `restrict`
bar :: proc(no_alias a, b: ^int) {
// Assumes a never equals b so it can perform optimizations with that fact
}
when_statements();
}
when_statements :: proc() {
X :: 123 + 12;
Y :: X/5;
COND :: Y > 0;
when COND {
fmt.println("Y > 0");
} else {
fmt.println("Y <= 0");
}
when false {
this_code_does_not_exist(123, 321);
but_its_syntax_is_valid();
x :: ^^^^int;
}
foreign_procedures();
}
#foreign_system_library win32_user "user32.lib" when ODIN_OS == "windows";
// NOTE: This is done on purpose for two reasons:
// * Makes it clear where the platform specific stuff is
// * Removes the need to solve the travelling salesman problem when importing files :P
foreign_procedures :: proc() {
ShowWindow :: proc(hwnd: rawptr, cmd_show: i32) -> i32 #foreign win32_user;
show_window :: proc(hwnd: rawptr, cmd_show: i32) -> i32 #foreign win32_user "ShowWindow";
// NOTE: If that library doesn't get used, it doesn't get linked with
// NOTE: There is not link checking yet to see if that procedure does come from that library
// See sys/windows.odin for more examples
special_expressions();
}
special_expressions :: proc() {
// Block expression
x := {
a: f32 = 123;
b := a-123;
c := b/a;
give c;
}; // semicolon is required as it's an expression
y := if x < 50 {
give x;
} else {
// TODO: Type cohesion is not yet finished
give 123;
}; // semicolon is required as it's an expression
// This is allows for inline blocks of code and will be a useful feature to have when
// macros will be implemented into the language
loops();
}
loops :: proc() {
// The C-style for loop
for i := 0; i < 123; i += 1 {
break;
}
for i := 0; i < 123; {
break;
}
for false {
break;
}
for {
break;
}
for i in 0..<123 { // 123 exclusive
}
for i in 0...122 { // 122 inclusive
}
for val, idx in 12..<16 {
fmt.println(val, idx);
}
primes := [...]int{2, 3, 5, 7, 11, 13, 17, 19};
for p in primes {
fmt.println(p);
}
// Pointers to arrays, slices, or strings are allowed
for _ in ^primes {
// ignore the value and just iterate across it
}
name := "你好,世界";
fmt.println(name);
for r in name {
compile_assert(type_of_val(r) == rune);
fmt.printf("%r\n", r);
}
when false {
for i, size := 0; i < name.count; i += size {
r: rune;
r, size = utf8.decode_rune(name[i:]);
fmt.printf("%r\n", r);
}
}
procedure_overloading();
}
procedure_overloading :: proc() {
THINGF :: 14451.1;
THINGI :: 14451;
foo :: proc() {
fmt.printf("Zero args\n");
}
foo :: proc(i: int) {
fmt.printf("int arg, i=%d\n", i);
}
foo :: proc(f: f64) {
i := cast(int)f;
fmt.printf("f64 arg, f=%d\n", i);
}
foo();
foo(THINGF);
// foo(THINGI); // 14451 is just a number so it could go to either procedures
foo(cast(int)THINGI);
foo :: proc(x: ^i32) -> (int, int) {
fmt.println("^int");
return 123, cast(int)(x^);
}
foo :: proc(x: rawptr) {
fmt.println("rawptr");
}
a: i32 = 123;
b: f32;
c: rawptr;
fmt.println(foo(^a));
foo(^b);
foo(c);
// foo(nil); // nil could go to numerous types thus the ambiguity
f: proc();
f = foo; // The correct `foo` to chosen
f();
// See math.odin and atomic.odin for more examples
}
|