1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
import (
"fmt.odin";
"atomics.odin";
"bits.odin";
"decimal.odin";
"hash.odin";
"math.odin";
"mem.odin";
"opengl.odin";
"os.odin";
"raw.odin";
"strconv.odin";
"strings.odin";
"sync.odin";
"sort.odin";
"types.odin";
"utf8.odin";
"utf16.odin";
/*
*/
)
general_stuff :: proc() {
// Complex numbers
a := 3 + 4i;
b: complex64 = 3 + 4i;
c: complex128 = 3 + 4i;
d := complex(2, 3);
e := a / conj(a);
fmt.println("(3+4i)/(3-4i) =", e);
fmt.println(real(e), "+", imag(e), "i");
// C-style variadic procedures
foreign __llvm_core {
// The variadic part allows for extra type checking too which C does not provide
c_printf :: proc(fmt: ^u8, #c_vararg args: ...any) -> i32 #link_name "printf" ---;
}
str := "%d\n\x00";
// c_printf(&str[0], i32(789456123));
Foo :: struct {
x: int;
y: f32;
z: string;
}
foo := Foo{123, 0.513, "A string"};
x, y, z := expand_to_tuple(foo);
fmt.println(x, y, z);
compile_assert(type_of(x) == int);
compile_assert(type_of(y) == f32);
compile_assert(type_of(z) == string);
// By default, all variables are zeroed
// This can be overridden with the "uninitialized value"
// This is similar to `nil` but applied to everything
undef_int: int = ---;
// Context system is now implemented using Implicit Parameter Passing (IPP)
// The previous implementation was Thread Local Storage (TLS)
// IPP has the advantage that it works on systems without TLS and that you can
// link the context to the stack frame and thus look at previous contexts
//
// It does mean that a pointer is implicitly passed procedures with the default
// Odin calling convention (#cc_odin)
// This can be overridden with something like #cc_contextless or #cc_c if performance
// is worried about
}
foreign_blocks :: proc() {
// See sys/windows.odin
}
default_arguments :: proc() {
hello :: proc(a: int = 9, b: int = 9) do fmt.printf("a is %d; b is %d\n", a, b);
fmt.println("\nTesting default arguments:");
hello(1, 2);
hello(1);
hello();
}
named_arguments :: proc() {
Colour :: enum {
Red,
Orange,
Yellow,
Green,
Blue,
Octarine,
};
using Colour;
make_character :: proc(name, catch_phrase: string, favourite_colour, least_favourite_colour: Colour) {
fmt.println();
fmt.printf("My name is %v and I like %v. %v\n", name, favourite_colour, catch_phrase);
}
make_character("Frank", "¡Ay, caramba!", Blue, Green);
// As the procedures have more and more parameters, it is very easy
// to get many of the arguments in the wrong order especialy if the
// types are the same
make_character("¡Ay, caramba!", "Frank", Green, Blue);
// Named arguments help to disambiguate this problem
make_character(catch_phrase = "¡Ay, caramba!", name = "Frank",
least_favourite_colour = Green, favourite_colour = Blue);
// The named arguments can be specifed in any order.
make_character(favourite_colour = Octarine, catch_phrase = "U wot m8!",
least_favourite_colour = Green, name = "Dennis");
// NOTE: You cannot mix named arguments with normal values
/*
make_character("Dennis",
favourite_colour = Octarine, catch_phrase = "U wot m8!",
least_favourite_colour = Green);
*/
// Named arguments can also aid with default arguments
numerous_things :: proc(s: string, a := 1, b := 2, c := 3.14,
d := "The Best String!", e := false, f := 10.3/3.1, g := false) {
g_str := g ? "true" : "false";
fmt.printf("How many?! %s: %v\n", s, g_str);
}
numerous_things("First");
numerous_things(s = "Second", g = true);
// Default values can be placed anywhere, not just at the end like in other languages
weird :: proc(pre: string, mid: int = 0, post: string) {
fmt.println(pre, mid, post);
}
weird("How many things", 42, "huh?");
weird(pre = "Prefix", post = "Pat");
}
default_return_values :: proc() {
foo :: proc(x: int) -> (first: string = "Hellope", second := "world!") {
match x {
case 0: return;
case 1: return "Goodbye";
case 2: return "Goodbye", "cruel world...";
case 3: return second = "cruel world...", first = "Goodbye";
}
return second = "my old friend.";
}
fmt.printf("%s %s\n", foo(0));
fmt.printf("%s %s\n", foo(1));
fmt.printf("%s %s\n", foo(2));
fmt.printf("%s %s\n", foo(3));
fmt.printf("%s %s\n", foo(4));
fmt.println();
// A more "real" example
Error :: enum {
None,
WhyTheNumberThree,
TenIsTooBig,
};
Entity :: struct {
name: string;
id: u32;
}
some_thing :: proc(input: int) -> (result: ^Entity = nil, err := Error.None) {
match {
case input == 3: return err = Error.WhyTheNumberThree;
case input >= 10: return err = Error.TenIsTooBig;
}
e := new(Entity);
e.id = u32(input);
return result = e;
}
}
call_location :: proc() {
amazing :: proc(n: int, using loc := #caller_location) {
fmt.printf("%s(%d:%d) just asked to do something amazing.\n",
fully_pathed_filename, line, column);
fmt.printf("Normal -> %d\n", n);
fmt.printf("Amazing -> %d\n", n+1);
fmt.println();
}
loc := #location(main);
fmt.println("`main` is located at", loc);
fmt.println("This line is located at", #location());
fmt.println();
amazing(3);
amazing(4, #location(call_location));
// See _preload.odin for the implementations of `assert` and `panic`
}
explicit_parametric_polymorphic_procedures :: proc() {
// This is how `new` is actually implemented, see _preload.odin
alloc_type :: proc(T: type) -> ^T do return cast(^T)alloc(size_of(T), align_of(T));
int_ptr := alloc_type(int);
defer free(int_ptr);
int_ptr^ = 137;
fmt.println(int_ptr, int_ptr^);
// Named arguments work too!
another_ptr := alloc_type(T = f32);
defer free(another_ptr);
add :: proc(T: type, args: ...T) -> T {
res: T;
for arg in args do res += arg;
return res;
}
fmt.println("add =", add(int, 1, 2, 3, 4, 5, 6));
swap :: proc(T: type, a, b: ^T) {
tmp := a^;
a^ = b^;
b^ = tmp;
}
a, b: int = 3, 4;
fmt.println("Pre-swap:", a, b);
swap(int, &a, &b);
fmt.println("Post-swap:", a, b);
a, b = b, a; // Or use this syntax for this silly example case
Vector2 :: struct {x, y: f32;};
{
// A more complicated example using subtyping
// Something like this could be used in a game
Entity :: struct {
using position: Vector2;
flags: u64;
id: u64;
derived: any;
}
Rock :: struct {
using entity: Entity;
heavy: bool;
}
Door :: struct {
using entity: Entity;
open: bool;
}
Monster :: struct {
using entity: Entity;
is_robot: bool;
is_zombie: bool;
}
new_entity :: proc(T: type, x, y: f32) -> ^T {
result := new(T);
result.derived = result^;
result.x = x;
result.y = y;
return result;
}
entities: [dynamic]^Entity;
rock := new_entity(Rock, 3, 5);
// Named arguments work too!
door := new_entity(T = Door, x = 3, y = 6);
// And named arguments can be any order
monster := new_entity(
y = 1,
x = 2,
T = Monster,
);
append(&entities, rock, door, monster);
fmt.println("Subtyping");
for entity in entities {
match e in entity.derived {
case Rock: fmt.println("Rock", e.x, e.y);
case Door: fmt.println("Door", e.x, e.y);
case Monster: fmt.println("Monster", e.x, e.y);
}
}
}
{
Entity :: struct {
using position: Vector2;
flags: u64;
id: u64;
variant: union { Rock, Door, Monster };
}
Rock :: struct {
using entity: ^Entity;
heavy: bool;
}
Door :: struct {
using entity: ^Entity;
open: bool;
}
Monster :: struct {
using entity: ^Entity;
is_robot: bool;
is_zombie: bool;
}
new_entity :: proc(T: type, x, y: f32) -> ^T {
result := new(Entity);
result.variant = T{entity = result};
result.x = x;
result.y = y;
return cast(^T)&result.variant;
}
entities: [dynamic]^Entity;
rock := new_entity(Rock, 3, 5);
// Named arguments work too!
door := new_entity(T = Door, x = 3, y = 6);
// And named arguments can be any order
monster := new_entity(
y = 1,
x = 2,
T = Monster,
);
append(&entities, rock, door, monster);
fmt.println("Union");
for entity in entities {
match e in entity.variant {
case Rock: fmt.println("Rock", e.x, e.y);
case Door: fmt.println("Door", e.x, e.y);
case Monster: fmt.println("Monster", e.x, e.y);
}
}
}
}
implicit_polymorphic_assignment :: proc() {
yep :: proc(p: proc(x: int)) {
p(123);
}
frank :: proc(x: $T) do fmt.println("frank ->", x);
tim :: proc(x, y: $T) do fmt.println("tim ->", x, y);
yep(frank);
// yep(tim);
}
main :: proc() {
/*
foo :: proc(x: i64, y: f32) do fmt.println("#1", x, y);
foo :: proc(x: type, y: f32) do fmt.println("#2", type_info(x), y);
foo :: proc(x: type) do fmt.println("#3", type_info(x));
f :: foo;
f(y = 3785.1546, x = 123);
f(x = int, y = 897.513);
f(x = f32);
general_stuff();
foreign_blocks();
default_arguments();
named_arguments();
default_return_values();
call_location();
explicit_parametric_polymorphic_procedures();
implicit_polymorphic_assignment();
// Command line argument(s)!
// -opt=0,1,2,3
*/
/*
program := "+ + * - /";
accumulator := 0;
for token in program {
match token {
case '+': accumulator += 1;
case '-': accumulator -= 1;
case '*': accumulator *= 2;
case '/': accumulator /= 2;
case: // Ignore everything else
}
}
fmt.printf("The program \"%s\" calculates the value %d\n",
program, accumulator);
*/
}
|