1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
package bufio
import "core:bytes"
import "core:io"
import "core:mem"
import "core:unicode/utf8"
import "base:intrinsics"
// Extra errors returns by scanning procedures
Scanner_Extra_Error :: enum i32 {
None,
Negative_Advance,
Advanced_Too_Far,
Bad_Read_Count,
Too_Long,
Too_Short,
}
Scanner_Error :: union #shared_nil {
io.Error,
Scanner_Extra_Error,
}
// Split_Proc is the signature of the split procedure used to tokenize the input.
Split_Proc :: proc(data: []byte, at_eof: bool) -> (advance: int, token: []byte, err: Scanner_Error, final_token: bool)
Scanner :: struct {
r: io.Reader,
split: Split_Proc,
buf: [dynamic]byte,
max_token_size: int,
start: int,
end: int,
token: []byte,
_err: Scanner_Error,
max_consecutive_empty_reads: int,
successive_empty_token_count: int,
scan_called: bool,
done: bool,
}
DEFAULT_MAX_SCAN_TOKEN_SIZE :: 1<<16
@(private)
_INIT_BUF_SIZE :: 4096
scanner_init :: proc(s: ^Scanner, r: io.Reader, buf_allocator := context.allocator) -> ^Scanner {
s.r = r
s.split = scan_lines
s.max_token_size = DEFAULT_MAX_SCAN_TOKEN_SIZE
s.buf.allocator = buf_allocator
return s
}
scanner_init_with_buffer :: proc(s: ^Scanner, r: io.Reader, buf: []byte) -> ^Scanner {
s.r = r
s.split = scan_lines
s.max_token_size = DEFAULT_MAX_SCAN_TOKEN_SIZE
s.buf = mem.buffer_from_slice(buf)
resize(&s.buf, cap(s.buf))
return s
}
scanner_destroy :: proc(s: ^Scanner) {
delete(s.buf)
}
// Returns the first non-EOF error that was encountered by the scanner
scanner_error :: proc(s: ^Scanner) -> Scanner_Error {
switch s._err {
case .EOF, nil:
return nil
}
return s._err
}
// Returns the most recent token created by scanner_scan.
// The underlying array may point to data that may be overwritten
// by another call to scanner_scan.
// Treat the returned value as if it is immutable.
scanner_bytes :: proc(s: ^Scanner) -> []byte {
return s.token
}
// Returns the most recent token created by scanner_scan.
// The underlying array may point to data that may be overwritten
// by another call to scanner_scan.
// Treat the returned value as if it is immutable.
scanner_text :: proc(s: ^Scanner) -> string {
return string(s.token)
}
// scanner_scan advances the scanner
scanner_scan :: proc(s: ^Scanner) -> bool {
set_err :: proc(s: ^Scanner, err: Scanner_Error) {
switch s._err {
case nil, .EOF:
s._err = err
}
}
if s.done {
return false
}
s.scan_called = true
for {
// Check if a token is possible with what is available
// Allow the split procedure to recover if it fails
if s.start < s.end || s._err != nil {
advance, token, err, final_token := s.split(s.buf[s.start:s.end], s._err != nil)
if final_token {
s.token = token
s.done = true
return true
}
if err != nil {
set_err(s, err)
return false
}
// Do advance
if advance < 0 {
set_err(s, .Negative_Advance)
return false
}
if advance > s.end-s.start {
set_err(s, .Advanced_Too_Far)
return false
}
s.start += advance
s.token = token
if s.token != nil {
if s._err == nil || advance > 0 {
s.successive_empty_token_count = 0
} else {
s.successive_empty_token_count += 1
if s.max_consecutive_empty_reads <= 0 {
s.max_consecutive_empty_reads = DEFAULT_MAX_CONSECUTIVE_EMPTY_READS
}
if s.successive_empty_token_count > s.max_consecutive_empty_reads {
set_err(s, .No_Progress)
return false
}
}
return true
}
}
// If an error is hit, no token can be created
if s._err != nil {
s.start = 0
s.end = 0
return false
}
// More data must be required to be read
if s.start > 0 && (s.end == len(s.buf) || s.start > len(s.buf)/2) {
copy(s.buf[:], s.buf[s.start:s.end])
s.end -= s.start
s.start = 0
}
could_be_too_short := false
// Resize the buffer if full
if s.end == len(s.buf) {
if s.max_token_size <= 0 {
s.max_token_size = DEFAULT_MAX_SCAN_TOKEN_SIZE
}
if len(s.buf) >= s.max_token_size {
set_err(s, .Too_Long)
return false
}
// overflow check
new_size := _INIT_BUF_SIZE
if len(s.buf) > 0 {
overflowed: bool
if new_size, overflowed = intrinsics.overflow_mul(len(s.buf), 2); overflowed {
set_err(s, .Too_Long)
return false
}
}
old_size := len(s.buf)
new_size = min(new_size, s.max_token_size)
resize(&s.buf, new_size)
s.end -= s.start
s.start = 0
could_be_too_short = old_size >= len(s.buf)
}
// Read data into the buffer
loop := 0
for {
n, err := io.read(s.r, s.buf[s.end:len(s.buf)])
if n < 0 || len(s.buf)-s.end < n {
set_err(s, .Bad_Read_Count)
break
}
s.end += n
if err != nil {
set_err(s, err)
break
}
if n > 0 {
s.successive_empty_token_count = 0
break
}
loop += 1
if s.max_consecutive_empty_reads <= 0 {
s.max_consecutive_empty_reads = DEFAULT_MAX_CONSECUTIVE_EMPTY_READS
}
if loop > s.max_consecutive_empty_reads {
if could_be_too_short {
set_err(s, .Too_Short)
} else {
set_err(s, .No_Progress)
}
break
}
}
}
}
scan_bytes :: proc(data: []byte, at_eof: bool) -> (advance: int, token: []byte, err: Scanner_Error, final_token: bool) {
if at_eof && len(data) == 0 {
return
}
return 1, data[0:1], nil, false
}
scan_runes :: proc(data: []byte, at_eof: bool) -> (advance: int, token: []byte, err: Scanner_Error, final_token: bool) {
if at_eof && len(data) == 0 {
return
}
if data[0] < utf8.RUNE_SELF {
advance = 1
token = data[0:1]
return
}
_, width := utf8.decode_rune(data)
if width > 1 {
advance = width
token = data[0:width]
return
}
if !at_eof && !utf8.full_rune(data) {
return
}
@thread_local ERROR_RUNE := []byte{0xef, 0xbf, 0xbd}
advance = 1
token = ERROR_RUNE
return
}
scan_words :: proc(data: []byte, at_eof: bool) -> (advance: int, token: []byte, err: Scanner_Error, final_token: bool) {
is_space :: proc "contextless" (r: rune) -> bool {
switch r {
// lower ones
case ' ', '\t', '\n', '\v', '\f', '\r':
return true
case '\u0085', '\u00a0':
return true
// higher ones
case '\u2000' ..= '\u200a':
return true
case '\u1680', '\u2028', '\u2029', '\u202f', '\u205f', '\u3000':
return true
}
return false
}
// skip spaces at the beginning
start := 0
for width := 0; start < len(data); start += width {
r: rune
r, width = utf8.decode_rune(data[start:])
if !is_space(r) {
break
}
}
for width, i := 0, start; i < len(data); i += width {
r: rune
r, width = utf8.decode_rune(data[i:])
if is_space(r) {
advance = i+width
token = data[start:i]
return
}
}
if at_eof && len(data) > start {
advance = len(data)
token = data[start:]
return
}
advance = start
return
}
scan_lines :: proc(data: []byte, at_eof: bool) -> (advance: int, token: []byte, err: Scanner_Error, final_token: bool) {
trim_carriage_return :: proc "contextless" (data: []byte) -> []byte {
if len(data) > 0 && data[len(data)-1] == '\r' {
return data[0:len(data)-1]
}
return data
}
if at_eof && len(data) == 0 {
return
}
if i := bytes.index_byte(data, '\n'); i >= 0 {
advance = i+1
token = trim_carriage_return(data[0:i])
return
}
if at_eof {
advance = len(data)
token = trim_carriage_return(data)
}
return
}
|