1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
// A non-intrusive and non-recursive implementation of `AVL` trees.
package container_avl
@(require) import "base:intrinsics"
@(require) import "base:runtime"
import "core:slice"
// Originally based on the CC0 implementation by Eric Biggers
// See: https://github.com/ebiggers/avl_tree/
// Direction specifies the traversal direction for a tree iterator.
Direction :: enum i8 {
// Backward is the in-order backwards direction.
Backward = -1,
// Forward is the in-order forwards direction.
Forward = 1,
}
// Ordering specifies order when inserting/finding values into the tree.
Ordering :: slice.Ordering
// Tree is an AVL tree.
Tree :: struct($Value: typeid) {
// user_data is a parameter that will be passed to the on_remove
// callback.
user_data: rawptr,
// on_remove is an optional callback that can be called immediately
// after a node is removed from the tree.
on_remove: proc(value: Value, user_data: rawptr),
_root: ^Node(Value),
_node_allocator: runtime.Allocator,
_cmp_fn: proc(a, b: Value) -> Ordering,
_size: int,
}
// Node is an AVL tree node.
//
// WARNING: It is unsafe to mutate value if the node is part of a tree
// if doing so will alter the Node's sort position relative to other
// elements in the tree.
Node :: struct($Value: typeid) {
value: Value,
_parent: ^Node(Value),
_left: ^Node(Value),
_right: ^Node(Value),
_balance: i8,
}
// Iterator is a tree iterator.
//
// WARNING: It is unsafe to modify the tree while iterating, except via
// the iterator_remove method.
Iterator :: struct($Value: typeid) {
_tree: ^Tree(Value),
_cur: ^Node(Value),
_next: ^Node(Value),
_direction: Direction,
_called_next: bool,
}
// init initializes a tree.
init :: proc {
init_ordered,
init_cmp,
}
// init_cmp initializes a tree.
init_cmp :: proc(
t: ^$T/Tree($Value),
cmp_fn: proc(a, b: Value) -> Ordering,
node_allocator := context.allocator,
) {
t._root = nil
t._node_allocator = node_allocator
t._cmp_fn = cmp_fn
t._size = 0
}
// init_ordered initializes a tree containing ordered items, with
// a comparison function that results in an ascending order sort.
init_ordered :: proc(
t: ^$T/Tree($Value),
node_allocator := context.allocator,
) where intrinsics.type_is_ordered(Value) {
init_cmp(t, slice.cmp_proc(Value), node_allocator)
}
// destroy de-initializes a tree.
destroy :: proc(t: ^$T/Tree($Value), call_on_remove: bool = true) {
iter := iterator(t, Direction.Forward)
for _ in iterator_next(&iter) {
iterator_remove(&iter, call_on_remove)
}
}
// len returns the number of elements in the tree.
len :: proc "contextless" (t: ^$T/Tree($Value)) -> int {
return t._size
}
// first returns the first node in the tree (in-order) or nil iff
// the tree is empty.
first :: proc "contextless" (t: ^$T/Tree($Value)) -> ^Node(Value) {
return tree_first_or_last_in_order(t, Direction.Backward)
}
// last returns the last element in the tree (in-order) or nil iff
// the tree is empty.
last :: proc "contextless" (t: ^$T/Tree($Value)) -> ^Node(Value) {
return tree_first_or_last_in_order(t, Direction.Forward)
}
// find finds the value in the tree, and returns the corresponding
// node or nil iff the value is not present.
find :: proc(t: ^$T/Tree($Value), value: Value) -> ^Node(Value) {
cur := t._root
descend_loop: for cur != nil {
switch t._cmp_fn(value, cur.value) {
case .Less:
cur = cur._left
case .Greater:
cur = cur._right
case .Equal:
break descend_loop
}
}
return cur
}
// find_or_insert attempts to insert the value into the tree, and returns
// the node, a boolean indicating if the value was inserted, and the
// node allocator error if relevant. If the value is already
// present, the existing node is returned un-altered.
find_or_insert :: proc(
t: ^$T/Tree($Value),
value: Value,
) -> (
n: ^Node(Value),
inserted: bool,
err: runtime.Allocator_Error,
) {
n_ptr := &t._root
for n_ptr^ != nil {
n = n_ptr^
switch t._cmp_fn(value, n.value) {
case .Less:
n_ptr = &n._left
case .Greater:
n_ptr = &n._right
case .Equal:
return
}
}
parent := n
n = new(Node(Value), t._node_allocator) or_return
n.value = value
n._parent = parent
n_ptr^ = n
tree_rebalance_after_insert(t, n)
t._size += 1
inserted = true
return
}
// remove removes a node or value from the tree, and returns true iff the
// removal was successful. While the node's value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove :: proc {
remove_value,
remove_node,
}
// remove_value removes a value from the tree, and returns true iff the
// removal was successful. While the node's value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove_value :: proc(t: ^$T/Tree($Value), value: Value, call_on_remove: bool = true) -> bool {
n := find(t, value)
if n == nil {
return false
}
return remove_node(t, n, call_on_remove)
}
// remove_node removes a node from the tree, and returns true iff the
// removal was successful. While the node's value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove_node :: proc(t: ^$T/Tree($Value), node: ^Node(Value), call_on_remove: bool = true) -> bool {
if node._parent == node || (node._parent == nil && t._root != node) {
return false
}
defer {
if call_on_remove && t.on_remove != nil {
t.on_remove(node.value, t.user_data)
}
free(node, t._node_allocator)
}
parent: ^Node(Value)
left_deleted: bool
t._size -= 1
if node._left != nil && node._right != nil {
parent, left_deleted = tree_swap_with_successor(t, node)
} else {
child := node._left
if child == nil {
child = node._right
}
parent = node._parent
if parent != nil {
if node == parent._left {
parent._left = child
left_deleted = true
} else {
parent._right = child
left_deleted = false
}
if child != nil {
child._parent = parent
}
} else {
if child != nil {
child._parent = parent
}
t._root = child
node_reset(node)
return true
}
}
for {
if left_deleted {
parent = tree_handle_subtree_shrink(t, parent, +1, &left_deleted)
} else {
parent = tree_handle_subtree_shrink(t, parent, -1, &left_deleted)
}
if parent == nil {
break
}
}
node_reset(node)
return true
}
// iterator returns a tree iterator in the specified direction.
iterator :: proc "contextless" (t: ^$T/Tree($Value), direction: Direction) -> Iterator(Value) {
it: Iterator(Value)
it._tree = transmute(^Tree(Value))t
it._direction = direction
iterator_first(&it)
return it
}
// iterator_from_pos returns a tree iterator in the specified direction,
// spanning the range [pos, last] (inclusive).
iterator_from_pos :: proc "contextless" (
t: ^$T/Tree($Value),
pos: ^Node(Value),
direction: Direction,
) -> Iterator(Value) {
it: Iterator(Value)
it._tree = transmute(^Tree(Value))t
it._direction = direction
it._next = nil
it._called_next = false
if it._cur = pos; pos != nil {
it._next = node_next_or_prev_in_order(it._cur, it._direction)
}
return it
}
// iterator_get returns the node currently pointed to by the iterator,
// or nil iff the node has been removed, the tree is empty, or the end
// of the tree has been reached.
iterator_get :: proc "contextless" (it: ^$I/Iterator($Value)) -> ^Node(Value) {
return it._cur
}
// iterator_remove removes the node currently pointed to by the iterator,
// and returns true iff the removal was successful. Semantics are the
// same as the Tree remove.
iterator_remove :: proc(it: ^$I/Iterator($Value), call_on_remove: bool = true) -> bool {
if it._cur == nil {
return false
}
ok := remove_node(it._tree, it._cur, call_on_remove)
if ok {
it._cur = nil
}
return ok
}
// iterator_next advances the iterator and returns the (node, true) or
// or (nil, false) iff the end of the tree has been reached.
//
// Note: The first call to iterator_next will return the first node instead
// of advancing the iterator.
iterator_next :: proc "contextless" (it: ^$I/Iterator($Value)) -> (^Node(Value), bool) {
// This check is needed so that the first element gets returned from
// a brand-new iterator, and so that the somewhat contrived case where
// iterator_remove is called before the first call to iterator_next
// returns the correct value.
if !it._called_next {
it._called_next = true
// There can be the contrived case where iterator_remove is
// called before ever calling iterator_next, which needs to be
// handled as an actual call to next.
//
// If this happens it._cur will be nil, so only return the
// first value, if it._cur is valid.
if it._cur != nil {
return it._cur, true
}
}
if it._next == nil {
return nil, false
}
it._cur = it._next
it._next = node_next_or_prev_in_order(it._cur, it._direction)
return it._cur, true
}
@(private)
tree_first_or_last_in_order :: proc "contextless" (
t: ^$T/Tree($Value),
direction: Direction,
) -> ^Node(Value) {
first, sign := t._root, i8(direction)
if first != nil {
for {
tmp := node_get_child(first, +sign)
if tmp == nil {
break
}
first = tmp
}
}
return first
}
@(private)
tree_replace_child :: proc "contextless" (
t: ^$T/Tree($Value),
parent, old_child, new_child: ^Node(Value),
) {
if parent != nil {
if old_child == parent._left {
parent._left = new_child
} else {
parent._right = new_child
}
} else {
t._root = new_child
}
}
@(private)
tree_rotate :: proc "contextless" (t: ^$T/Tree($Value), a: ^Node(Value), sign: i8) {
b := node_get_child(a, -sign)
e := node_get_child(b, +sign)
p := a._parent
node_set_child(a, -sign, e)
a._parent = b
node_set_child(b, +sign, a)
b._parent = p
if e != nil {
e._parent = a
}
tree_replace_child(t, p, a, b)
}
@(private)
tree_double_rotate :: proc "contextless" (
t: ^$T/Tree($Value),
b, a: ^Node(Value),
sign: i8,
) -> ^Node(Value) {
e := node_get_child(b, +sign)
f := node_get_child(e, -sign)
g := node_get_child(e, +sign)
p := a._parent
e_bal := e._balance
node_set_child(a, -sign, g)
a_bal := -e_bal
if sign * e_bal >= 0 {
a_bal = 0
}
node_set_parent_balance(a, e, a_bal)
node_set_child(b, +sign, f)
b_bal := -e_bal
if sign * e_bal <= 0 {
b_bal = 0
}
node_set_parent_balance(b, e, b_bal)
node_set_child(e, +sign, a)
node_set_child(e, -sign, b)
node_set_parent_balance(e, p, 0)
if g != nil {
g._parent = a
}
if f != nil {
f._parent = b
}
tree_replace_child(t, p, a, e)
return e
}
@(private)
tree_handle_subtree_growth :: proc "contextless" (
t: ^$T/Tree($Value),
node, parent: ^Node(Value),
sign: i8,
) -> bool {
old_balance_factor := parent._balance
if old_balance_factor == 0 {
node_adjust_balance_factor(parent, sign)
return false
}
new_balance_factor := old_balance_factor + sign
if new_balance_factor == 0 {
node_adjust_balance_factor(parent, sign)
return true
}
if sign * node._balance > 0 {
tree_rotate(t, parent, -sign)
node_adjust_balance_factor(parent, -sign)
node_adjust_balance_factor(node, -sign)
} else {
tree_double_rotate(t, node, parent, -sign)
}
return true
}
@(private)
tree_rebalance_after_insert :: proc "contextless" (t: ^$T/Tree($Value), inserted: ^Node(Value)) {
node, parent := inserted, inserted._parent
switch {
case parent == nil:
return
case node == parent._left:
node_adjust_balance_factor(parent, -1)
case:
node_adjust_balance_factor(parent, +1)
}
if parent._balance == 0 {
return
}
for done := false; !done; {
node = parent
if parent = node._parent; parent == nil {
return
}
if node == parent._left {
done = tree_handle_subtree_growth(t, node, parent, -1)
} else {
done = tree_handle_subtree_growth(t, node, parent, +1)
}
}
}
@(private)
tree_swap_with_successor :: proc "contextless" (
t: ^$T/Tree($Value),
x: ^Node(Value),
) -> (
^Node(Value),
bool,
) {
ret: ^Node(Value)
left_deleted: bool
y := x._right
if y._left == nil {
ret = y
} else {
q: ^Node(Value)
for {
q = y
if y = y._left; y._left == nil {
break
}
}
if q._left = y._right; q._left != nil {
q._left._parent = q
}
y._right = x._right
x._right._parent = y
ret = q
left_deleted = true
}
y._left = x._left
x._left._parent = y
y._parent = x._parent
y._balance = x._balance
tree_replace_child(t, x._parent, x, y)
return ret, left_deleted
}
@(private)
tree_handle_subtree_shrink :: proc "contextless" (
t: ^$T/Tree($Value),
parent: ^Node(Value),
sign: i8,
left_deleted: ^bool,
) -> ^Node(Value) {
old_balance_factor := parent._balance
if old_balance_factor == 0 {
node_adjust_balance_factor(parent, sign)
return nil
}
node: ^Node(Value)
new_balance_factor := old_balance_factor + sign
if new_balance_factor == 0 {
node_adjust_balance_factor(parent, sign)
node = parent
} else {
node = node_get_child(parent, sign)
if sign * node._balance >= 0 {
tree_rotate(t, parent, -sign)
if node._balance == 0 {
node_adjust_balance_factor(node, -sign)
return nil
}
node_adjust_balance_factor(parent, -sign)
node_adjust_balance_factor(node, -sign)
} else {
node = tree_double_rotate(t, node, parent, -sign)
}
}
parent := parent
if parent = node._parent; parent != nil {
left_deleted^ = node == parent._left
}
return parent
}
@(private)
node_reset :: proc "contextless" (n: ^Node($Value)) {
// Mostly pointless as n will be deleted after this is called, but
// attempt to be able to catch cases of n not being in the tree.
n._parent = n
n._left = nil
n._right = nil
n._balance = 0
}
@(private)
node_set_parent_balance :: #force_inline proc "contextless" (
n, parent: ^Node($Value),
balance: i8,
) {
n._parent = parent
n._balance = balance
}
@(private)
node_get_child :: #force_inline proc "contextless" (n: ^Node($Value), sign: i8) -> ^Node(Value) {
if sign < 0 {
return n._left
}
return n._right
}
@(private)
node_next_or_prev_in_order :: proc "contextless" (
n: ^Node($Value),
direction: Direction,
) -> ^Node(Value) {
next, tmp: ^Node(Value)
sign := i8(direction)
if next = node_get_child(n, +sign); next != nil {
for {
tmp = node_get_child(next, -sign)
if tmp == nil {
break
}
next = tmp
}
} else {
tmp, next = n, n._parent
for next != nil && tmp == node_get_child(next, +sign) {
tmp, next = next, next._parent
}
}
return next
}
@(private)
node_set_child :: #force_inline proc "contextless" (
n: ^Node($Value),
sign: i8,
child: ^Node(Value),
) {
if sign < 0 {
n._left = child
} else {
n._right = child
}
}
@(private)
node_adjust_balance_factor :: #force_inline proc "contextless" (n: ^Node($Value), amount: i8) {
n._balance += amount
}
@(private)
iterator_first :: proc "contextless" (it: ^Iterator($Value)) {
// This is private because behavior when the user manually calls
// iterator_first followed by iterator_next is unintuitive, since
// the first call to iterator_next MUST return the first node
// instead of advancing so that `for node in iterator_next(&next)`
// works as expected.
switch it._direction {
case .Forward:
it._cur = tree_first_or_last_in_order(it._tree, .Backward)
case .Backward:
it._cur = tree_first_or_last_in_order(it._tree, .Forward)
}
it._next = nil
it._called_next = false
if it._cur != nil {
it._next = node_next_or_prev_in_order(it._cur, it._direction)
}
}
|