aboutsummaryrefslogtreecommitdiff
path: root/core/container/rbtree/rbtree.odin
blob: e892188d76cbee08ded33c4a139d2a5035b62dce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// A red-black tree with the same API as our AVL tree.
package container_rbtree

@(require) import "base:intrinsics"
@(require) import "base:runtime"
import "core:slice"

// Originally based on the CC0 implementation from literateprograms.org
// But with API design mimicking `core:container/avl` for ease of use.

// Direction specifies the traversal direction for a tree iterator.
Direction :: enum i8 {
	// Backward is the in-order backwards direction.
	Backward = -1,
	// Forward is the in-order forwards direction.
	Forward  = 1,
}

Ordering :: slice.Ordering

// Tree is a red-black tree
Tree :: struct($Key: typeid, $Value: typeid) {
	// user_data is a parameter that will be passed to the on_remove
	// callback.
	user_data: rawptr,
	// on_remove is an optional callback that can be called immediately
	// after a node is removed from the tree.
	on_remove: proc(key: Key, value: Value, user_data: rawptr),

	_root:           ^Node(Key, Value),
	_node_allocator: runtime.Allocator,
	_cmp_fn:         proc(Key, Key) -> Ordering,
	_size:           int,
}

// Node is a red-black tree node.
//
// WARNING: It is unsafe to mutate value if the node is part of a tree
// if doing so will alter the Node's sort position relative to other
// elements in the tree.
Node :: struct($Key: typeid, $Value: typeid) {
	key:    Key,
	value:  Value,

	_parent: ^Node(Key, Value),
	_left:   ^Node(Key, Value),
	_right:  ^Node(Key, Value),
	_color:  Color,
}

// Might store this in the node pointer in the future, but that'll require a decent amount of rework to pass ^^N instead of ^N
Color :: enum uintptr {Black = 0, Red = 1}

// Iterator is a tree iterator.
//
// WARNING: It is unsafe to modify the tree while iterating, except via
// the iterator_remove method.
Iterator :: struct($Key: typeid, $Value: typeid) {
	_tree:        ^Tree(Key, Value),
	_cur:         ^Node(Key, Value),
	_next:        ^Node(Key, Value),
	_direction:   Direction,
	_called_next: bool,
}

// init initializes a tree.
init :: proc {
	init_ordered,
	init_cmp,
}

// init_cmp initializes a tree.
init_cmp :: proc(t: ^$T/Tree($Key, $Value), cmp_fn: proc(a, b: Key) -> Ordering, node_allocator := context.allocator) {
	t._root   = nil
	t._node_allocator = node_allocator
	t._cmp_fn = cmp_fn
	t._size = 0
}

// init_ordered initializes a tree containing ordered keys, with
// a comparison function that results in an ascending order sort.
init_ordered :: proc(t: ^$T/Tree($Key, $Value), node_allocator := context.allocator) where intrinsics.type_is_ordered(Key) {
	init_cmp(t, slice.cmp_proc(Key), node_allocator)
}

// destroy de-initializes a tree.
destroy :: proc(t: ^$T/Tree($Key, $Value), call_on_remove: bool = true) {
	iter := iterator(t, .Forward)
	for _ in iterator_next(&iter) {
		iterator_remove(&iter, call_on_remove)
	}
}

len :: proc "contextless" (t: $T/Tree($Key, $Value)) -> (node_count: int) {
	return t._size
}

// first returns the first node in the tree (in-order) or nil iff
// the tree is empty.
first :: proc "contextless" (t: ^$T/Tree($Key, $Value)) -> ^Node(Key, Value) {
	return tree_first_or_last_in_order(t, Direction.Backward)
}

// last returns the last element in the tree (in-order) or nil iff
// the tree is empty.
last :: proc "contextless" (t: ^$T/Tree($Key, $Value)) -> ^Node(Key, Value) {
	return tree_first_or_last_in_order(t, Direction.Forward)
}

// find finds the key in the tree, and returns the corresponding node, or nil iff the value is not present.
find :: proc(t: $T/Tree($Key, $Value), key: Key) -> (node: ^Node(Key, Value)) {
	node = t._root
	for node != nil {
		switch t._cmp_fn(key, node.key) {
		case .Equal:   return node
		case .Less:    node = node._left
		case .Greater: node = node._right
		}
	}
	return node
}

// find_value finds the key in the tree, and returns the corresponding value, or nil iff the value is not present.
find_value :: proc(t: $T/Tree($Key, $Value), key: Key) -> (value: Value, ok: bool) #optional_ok {
	if n := find(t, key); n != nil {
		return n.value, true
	}
	return
}

// find_or_insert attempts to insert the key-value pair into the tree, and returns
// the node, a boolean indicating if a new node was inserted, and the
// node allocator error if relevant. If the key is already present, the existing node is updated and returned.
find_or_insert :: proc(t: ^$T/Tree($Key, $Value), key: Key, value: Value) -> (n: ^Node(Key, Value), inserted: bool, err: runtime.Allocator_Error) {
	n_ptr := &t._root
	for n_ptr^ != nil {
		n = n_ptr^
		switch t._cmp_fn(key, n.key) {
		case .Less:
			n_ptr = &n._left
		case .Greater:
			n_ptr = &n._right
		case .Equal:
			n.value = value
			return
		}
	}
	_parent := n

	n = new_clone(Node(Key, Value){key=key, value=value, _parent=_parent, _color=.Red}, t._node_allocator) or_return
	n_ptr^ = n
	insert_case1(t, n)
	t._size += 1
	return n, true, nil
}

// remove removes a node or value from the tree, and returns true iff the
// removal was successful.  While the node's value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove :: proc {
	remove_key,
	remove_node,
}

// remove_value removes a value from the tree, and returns true iff the
// removal was successful.  While the node's key + value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove_key :: proc(t: ^$T/Tree($Key, $Value), key: Key, call_on_remove := true) -> bool {
	n := find(t^, key)
	if n == nil {
		return false // Key not found, nothing to do
	}
	return remove_node(t, n, call_on_remove)
}

// remove_node removes a node from the tree, and returns true iff the
// removal was successful.  While the node's key + value will be left intact,
// the node itself will be freed via the tree's node allocator.
remove_node :: proc(t: ^$T/Tree($Key, $Value), node: ^$N/Node(Key, Value), call_on_remove := true) -> (found: bool) {
	if node._parent == node || (node._parent == nil && t._root != node) {
		return false // Don't touch self-parented or dangling nodes.
	}
	node := node
	if node._left != nil && node._right != nil {
		// Copy key + value from predecessor and delete it instead
		predecessor := maximum_node(node._left)
		node.key   = predecessor.key
		node.value = predecessor.value
		node = predecessor
	}

	child := node._right == nil ? node._left : node._right
	if node_color(node) == .Black {
		node._color = node_color(child)
		remove_case1(t, node)
	}
	replace_node(t, node, child)
	if node._parent == nil && child != nil {
		child._color = .Black // root should be black
	}

	if call_on_remove && t.on_remove != nil {
		t.on_remove(node.key, node.value, t.user_data)
	}
	free(node, t._node_allocator)
	t._size -= 1
	return true
}

// iterator returns a tree iterator in the specified direction.
iterator :: proc "contextless" (t: ^$T/Tree($Key, $Value), direction: Direction) -> Iterator(Key, Value) {
	it: Iterator(Key, Value)
	it._tree      = cast(^Tree(Key, Value))t
	it._direction = direction

	iterator_first(&it)

	return it
}

// iterator_from_pos returns a tree iterator in the specified direction,
// spanning the range [pos, last] (inclusive).
iterator_from_pos :: proc "contextless" (t: ^$T/Tree($Key, $Value), pos: ^Node(Key, Value), direction: Direction) -> Iterator(Key, Value) {
	it: Iterator(Key, Value)
	it._tree        = transmute(^Tree(Key, Value))t
	it._direction   = direction
	it._next        = nil
	it._called_next = false

	if it._cur = pos; pos != nil {
		it._next = node_next_or_prev_in_order(it._cur, it._direction)
	}

	return it
}

// iterator_get returns the node currently pointed to by the iterator,
// or nil iff the node has been removed, the tree is empty, or the end
// of the tree has been reached.
iterator_get :: proc "contextless" (it: ^$I/Iterator($Key, $Value)) -> ^Node(Key, Value) {
	return it._cur
}

// iterator_remove removes the node currently pointed to by the iterator,
// and returns true iff the removal was successful.  Semantics are the
// same as the Tree remove.
iterator_remove :: proc(it: ^$I/Iterator($Key, $Value), call_on_remove: bool = true) -> bool {
	if it._cur == nil {
		return false
	}

	ok := remove_node(it._tree, it._cur , call_on_remove)
	if ok {
		it._cur = nil
	}

	return ok
}

// iterator_next advances the iterator and returns the (node, true) or
// or (nil, false) iff the end of the tree has been reached.
//
// Note: The first call to iterator_next will return the first node instead
// of advancing the iterator.
iterator_next :: proc "contextless" (it: ^$I/Iterator($Key, $Value)) -> (^Node(Key, Value), bool) {
	// This check is needed so that the first element gets returned from
	// a brand-new iterator, and so that the somewhat contrived case where
	// iterator_remove is called before the first call to iterator_next
	// returns the correct value.
	if !it._called_next {
		it._called_next = true

		// There can be the contrived case where iterator_remove is
		// called before ever calling iterator_next, which needs to be
		// handled as an actual call to next.
		//
		// If this happens it._cur will be nil, so only return the
		// first value, if it._cur is valid.
		if it._cur != nil {
			return it._cur, true
		}
	}

	if it._next == nil {
		return nil, false
	}

	it._cur = it._next
	it._next = node_next_or_prev_in_order(it._cur, it._direction)

	return it._cur, true
}

@(private)
tree_first_or_last_in_order :: proc "contextless" (t: ^$T/Tree($Key, $Value), direction: Direction) -> ^Node(Key, Value) {
	first, sign := t._root, i8(direction)
	if first != nil {
		for {
			tmp := node_get_child(first, sign)
			if tmp == nil {
				break
			}
			first = tmp
		}
	}
	return first
}

@(private)
node_get_child :: #force_inline proc "contextless" (n: ^Node($Key, $Value), sign: i8) -> ^Node(Key, Value) {
	if sign < 0 {
		return n._left
	}
	return n._right
}

@(private)
node_next_or_prev_in_order :: proc "contextless" (n: ^Node($Key, $Value), direction: Direction) -> ^Node(Key, Value) {
	next, tmp: ^Node(Key, Value)
	sign := i8(direction)

	if next = node_get_child(n, +sign); next != nil {
		for {
			tmp = node_get_child(next, -sign)
			if tmp == nil {
				break
			}
			next = tmp
		}
	} else {
		tmp, next = n, n._parent
		for next != nil && tmp == node_get_child(next, +sign) {
			tmp, next = next, next._parent
		}
	}
	return next
}

@(private)
iterator_first :: proc "contextless" (it: ^Iterator($Key, $Value)) {
	// This is private because behavior when the user manually calls
	// iterator_first followed by iterator_next is unintuitive, since
	// the first call to iterator_next MUST return the first node
	// instead of advancing so that `for node in iterator_next(&next)`
	// works as expected.

	switch it._direction {
	case .Forward:
		it._cur = tree_first_or_last_in_order(it._tree, .Backward)
	case .Backward:
		it._cur = tree_first_or_last_in_order(it._tree, .Forward)
	}

	it._next = nil
	it._called_next = false

	if it._cur != nil {
		it._next = node_next_or_prev_in_order(it._cur, it._direction)
	}
}

@(private)
grand_parent :: proc(n: ^$N/Node($Key, $Value)) -> (g: ^N) {
	return n._parent._parent
}

@(private)
sibling :: proc(n: ^$N/Node($Key, $Value)) -> (s: ^N) {
	if n == n._parent._left {
		return n._parent._right
		} else {
			return n._parent._left
		}
}

@(private)
uncle :: proc(n: ^$N/Node($Key, $Value)) -> (u: ^N) {
	return sibling(n._parent)
}

@(private)
rotate__left :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	r := n._right
	replace_node(t, n, r)
	n._right = r._left
	if r._left != nil {
		r._left._parent = n
	}
	r._left   = n
	n._parent = r
}

@(private)
rotate__right :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	l := n._left
	replace_node(t, n, l)
	n._left = l._right
	if l._right != nil {
		l._right._parent = n
	}
	l._right  = n
	n._parent = l
}

@(private)
replace_node :: proc(t: ^$T/Tree($Key, $Value), old_n: ^$N/Node(Key, Value), new_n: ^N) {
	if old_n._parent == nil {
		t._root = new_n
	} else {
		if (old_n == old_n._parent._left) {
			old_n._parent._left  = new_n
		} else {
			old_n._parent._right = new_n
		}
	}
	if new_n != nil {
		new_n._parent = old_n._parent
	}
}

@(private)
insert_case1 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if n._parent == nil {
		n._color = .Black
	} else {
		insert_case2(t, n)
	}
}

@(private)
insert_case2 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if node_color(n._parent) == .Black {
		return // Tree is still valid
	} else {
		insert_case3(t, n)
	}
}

@(private)
insert_case3 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if node_color(uncle(n)) == .Red {
		n._parent._color       = .Black
		uncle(n)._color       = .Black
		grand_parent(n)._color = .Red
		insert_case1(t, grand_parent(n))
	} else {
		insert_case4(t, n)
	}
}

@(private)
insert_case4 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	n := n
	if n == n._parent._right && n._parent == grand_parent(n)._left {
		rotate__left(t, n._parent)
		n = n._left
	} else if n == n._parent._left && n._parent == grand_parent(n)._right {
		rotate__right(t, n._parent)
		n = n._right
	}
	insert_case5(t, n)
}

@(private)
insert_case5 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	n._parent._color = .Black
	grand_parent(n)._color = .Red
	if n == n._parent._left && n._parent == grand_parent(n)._left {
		rotate__right(t, grand_parent(n))
	} else {
		rotate__left(t, grand_parent(n))
	}
}

// The maximum_node() helper function just walks _right until it reaches the last non-leaf:
@(private)
maximum_node :: proc(n: ^$N/Node($Key, $Value)) -> (max_node: ^N) {
	n := n
	for n._right != nil {
		n = n._right
	}
	return n
}

@(private)
remove_case1 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if n._parent == nil {
		return
	} else {
		remove_case2(t, n)
	}
}

@(private)
remove_case2 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if node_color(sibling(n)) == .Red {
		n._parent._color = .Red
		sibling(n)._color = .Black
		if n == n._parent._left {
			rotate__left(t, n._parent)
		} else {
			rotate__right(t, n._parent)
		}
	}
	remove_case3(t, n)
}

@(private)
remove_case3 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if node_color(n._parent) == .Black &&
		node_color(sibling(n)) == .Black &&
		node_color(sibling(n)._left) == .Black &&
		node_color(sibling(n)._right) == .Black {
			sibling(n)._color = .Red
			remove_case1(t, n._parent)
	} else {
		remove_case4(t, n)
	}
}

@(private)
remove_case4 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if node_color(n._parent) == .Red &&
		node_color(sibling(n)) == .Black &&
		node_color(sibling(n)._left) == .Black &&
		node_color(sibling(n)._right) == .Black {
			sibling(n)._color = .Red
			n._parent._color = .Black
	} else {
		remove_case5(t, n)
	}
}

@(private)
remove_case5 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	if n == n._parent._left &&
		node_color(sibling(n)) == .Black &&
		node_color(sibling(n)._left) == .Red &&
		node_color(sibling(n)._right) == .Black {
			sibling(n)._color = .Red
			sibling(n)._left._color = .Black
			rotate__right(t, sibling(n))
	} else if n == n._parent._right &&
		node_color(sibling(n)) == .Black &&
		node_color(sibling(n)._right) == .Red &&
		node_color(sibling(n)._left) == .Black {
			sibling(n)._color = .Red
			sibling(n)._right._color = .Black
			rotate__left(t, sibling(n))
	}
	remove_case6(t, n)
}

@(private)
remove_case6 :: proc(t: ^$T/Tree($Key, $Value), n: ^$N/Node(Key, Value)) {
	sibling(n)._color = node_color(n._parent)
	n._parent._color = .Black
	if n == n._parent._left {
		sibling(n)._right._color = .Black
		rotate__left(t, n._parent)
	} else {
		sibling(n)._left._color = .Black
		rotate__right(t, n._parent)
	}
}

node_color :: proc(n: ^$N/Node($Key, $Value)) -> (c: Color) {
	return n == nil ? .Black : n._color
}