1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/*
`AEAD_CHACHA20_POLY1305` and `AEAD_XChaCha20_Poly1305` algorithms.
Where AEAD stands for Authenticated Encryption with Additional Data.
See:
- [[ https://www.rfc-editor.org/rfc/rfc8439 ]]
- [[ https://datatracker.ietf.org/doc/html/draft-arciszewski-xchacha-03 ]]
*/
package chacha20poly1305
import "core:crypto"
import "core:crypto/chacha20"
import "core:crypto/poly1305"
import "core:encoding/endian"
// KEY_SIZE is the chacha20poly1305 key size in bytes.
KEY_SIZE :: chacha20.KEY_SIZE
// IV_SIZE is the chacha20poly1305 IV size in bytes.
IV_SIZE :: chacha20.IV_SIZE
// XIV_SIZE is the xchacha20poly1305 IV size in bytes.
XIV_SIZE :: chacha20.XIV_SIZE
// TAG_SIZE is the chacha20poly1305 tag size in bytes.
TAG_SIZE :: poly1305.TAG_SIZE
@(private)
_P_MAX :: 64 * 0xffffffff // 64 * (2^32-1)
@(private)
_validate_common_slice_sizes :: proc (tag, iv, aad, text: []byte, is_xchacha: bool) {
expected_iv_len := is_xchacha ? XIV_SIZE : IV_SIZE
ensure(len(tag) == TAG_SIZE, "crypto/chacha20poly1305: invalid destination tag size")
ensure(len(iv) == expected_iv_len, "crypto/chacha20poly1305: invalid IV size")
#assert(size_of(int) == 8 || size_of(int) <= 4)
when size_of(int) == 8 {
// A_MAX = 2^64 - 1 due to the length field limit.
// P_MAX = 64 * (2^32 - 1) due to the IETF ChaCha20 counter limit.
//
// A_MAX is limited by size_of(int), so there is no need to
// enforce it. P_MAX only needs to be checked on 64-bit targets,
// for reasons that should be obvious.
ensure(len(text) <= _P_MAX, "crypto/chacha20poly1305: oversized src data")
}
}
@(private, rodata)
_PAD: [16]byte
@(private)
_update_mac_pad16 :: #force_inline proc (ctx: ^poly1305.Context, x_len: int) {
if pad_len := 16 - (x_len & (16-1)); pad_len != 16 {
poly1305.update(ctx, _PAD[:pad_len])
}
}
// Context is a keyed (X)Chacha20Poly1305 instance.
Context :: struct {
_key: [KEY_SIZE]byte,
_impl: chacha20.Implementation,
_is_xchacha: bool,
_is_initialized: bool,
}
// init initializes a Context with the provided key, for AEAD_CHACHA20_POLY1305.
init :: proc(ctx: ^Context, key: []byte, impl := chacha20.DEFAULT_IMPLEMENTATION) {
ensure(len(key) == KEY_SIZE, "crypto/chacha20poly1305: invalid key size")
copy(ctx._key[:], key)
ctx._impl = impl
ctx._is_xchacha = false
ctx._is_initialized = true
}
// init_xchacha initializes a Context with the provided key, for
// AEAD_XChaCha20_Poly1305.
//
// Note: While there are multiple definitions of XChaCha20-Poly1305
// this sticks to the IETF draft and uses a 32-bit counter.
init_xchacha :: proc(ctx: ^Context, key: []byte, impl := chacha20.DEFAULT_IMPLEMENTATION) {
init(ctx, key, impl)
ctx._is_xchacha = true
}
// seal encrypts the plaintext and authenticates the aad and ciphertext,
// with the provided Context and iv, stores the output in dst and tag.
//
// dst and plaintext MUST alias exactly or not at all.
seal :: proc(ctx: ^Context, dst, tag, iv, aad, plaintext: []byte) {
ensure(ctx._is_initialized)
ciphertext := dst
_validate_common_slice_sizes(tag, iv, aad, plaintext, ctx._is_xchacha)
ensure(len(ciphertext) == len(plaintext), "crypto/chacha20poly1305: invalid destination ciphertext size")
stream_ctx: chacha20.Context = ---
chacha20.init(&stream_ctx, ctx._key[:],iv, ctx._impl)
stream_ctx._state._is_ietf_flavor = true
// otk = poly1305_key_gen(key, iv)
otk: [poly1305.KEY_SIZE]byte = ---
chacha20.keystream_bytes(&stream_ctx, otk[:])
mac_ctx: poly1305.Context = ---
poly1305.init(&mac_ctx, otk[:])
crypto.zero_explicit(&otk, size_of(otk))
aad_len, ciphertext_len := len(aad), len(ciphertext)
// There is nothing preventing aad and ciphertext from overlapping
// so auth the AAD before encrypting (slightly different from the
// RFC, since the RFC encrypts into a new buffer).
//
// mac_data = aad | pad16(aad)
poly1305.update(&mac_ctx, aad)
_update_mac_pad16(&mac_ctx, aad_len)
// ciphertext = chacha20_encrypt(key, 1, iv, plaintext)
chacha20.seek(&stream_ctx, 1)
chacha20.xor_bytes(&stream_ctx, ciphertext, plaintext)
chacha20.reset(&stream_ctx) // Don't need the stream context anymore.
// mac_data |= ciphertext | pad16(ciphertext)
poly1305.update(&mac_ctx, ciphertext)
_update_mac_pad16(&mac_ctx, ciphertext_len)
// mac_data |= num_to_8_le_bytes(aad.length)
// mac_data |= num_to_8_le_bytes(ciphertext.length)
l_buf := otk[0:16] // Reuse the scratch buffer.
endian.unchecked_put_u64le(l_buf[0:8], u64(aad_len))
endian.unchecked_put_u64le(l_buf[8:16], u64(ciphertext_len))
poly1305.update(&mac_ctx, l_buf)
// tag = poly1305_mac(mac_data, otk)
poly1305.final(&mac_ctx, tag) // Implicitly sanitizes context.
}
// open authenticates the aad and ciphertext, and decrypts the ciphertext,
// with the provided Context, iv, and tag, and stores the output in dst,
// returning true iff the authentication was successful. If authentication
// fails, the destination buffer will be zeroed.
//
// dst and plaintext MUST alias exactly or not at all.
@(require_results)
open :: proc(ctx: ^Context, dst, iv, aad, ciphertext, tag: []byte) -> bool {
ensure(ctx._is_initialized)
plaintext := dst
_validate_common_slice_sizes(tag, iv, aad, ciphertext, ctx._is_xchacha)
ensure(len(ciphertext) == len(plaintext), "crypto/chacha20poly1305: invalid destination plaintext size")
// Note: Unlike encrypt, this can fail early, so use defer for
// sanitization rather than assuming control flow reaches certain
// points where needed.
stream_ctx: chacha20.Context = ---
chacha20.init(&stream_ctx, ctx._key[:], iv, ctx._impl)
stream_ctx._state._is_ietf_flavor = true
// otk = poly1305_key_gen(key, iv)
otk: [poly1305.KEY_SIZE]byte = ---
chacha20.keystream_bytes(&stream_ctx, otk[:])
defer chacha20.reset(&stream_ctx)
mac_ctx: poly1305.Context = ---
poly1305.init(&mac_ctx, otk[:])
defer crypto.zero_explicit(&otk, size_of(otk))
aad_len, ciphertext_len := len(aad), len(ciphertext)
// mac_data = aad | pad16(aad)
// mac_data |= ciphertext | pad16(ciphertext)
// mac_data |= num_to_8_le_bytes(aad.length)
// mac_data |= num_to_8_le_bytes(ciphertext.length)
poly1305.update(&mac_ctx, aad)
_update_mac_pad16(&mac_ctx, aad_len)
poly1305.update(&mac_ctx, ciphertext)
_update_mac_pad16(&mac_ctx, ciphertext_len)
l_buf := otk[0:16] // Reuse the scratch buffer.
endian.unchecked_put_u64le(l_buf[0:8], u64(aad_len))
endian.unchecked_put_u64le(l_buf[8:16], u64(ciphertext_len))
poly1305.update(&mac_ctx, l_buf)
// tag = poly1305_mac(mac_data, otk)
derived_tag := otk[0:poly1305.TAG_SIZE] // Reuse the scratch buffer again.
poly1305.final(&mac_ctx, derived_tag) // Implicitly sanitizes context.
// Validate the tag in constant time.
if crypto.compare_constant_time(tag, derived_tag) != 1 {
// Zero out the plaintext, as a defense in depth measure.
crypto.zero_explicit(raw_data(plaintext), ciphertext_len)
return false
}
// plaintext = chacha20_decrypt(key, 1, iv, ciphertext)
chacha20.seek(&stream_ctx, 1)
chacha20.xor_bytes(&stream_ctx, plaintext, ciphertext)
return true
}
// reset sanitizes the Context. The Context must be
// re-initialized to be used again.
reset :: proc "contextless" (ctx: ^Context) {
crypto.zero_explicit(&ctx._key, len(ctx._key))
ctx._is_xchacha = false
ctx._is_initialized = false
}
|