aboutsummaryrefslogtreecommitdiff
path: root/core/crypto/ristretto255/ristretto255.odin
blob: 78bf45c284c42e6e639b83cb70b6dadfa1285a03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
Ristretto255 prime-order group.

See:
- [[ https://www.rfc-editor.org/rfc/rfc9496 ]]
*/
package ristretto255

import grp "core:crypto/_edwards25519"
import field "core:crypto/_fiat/field_curve25519"
import "core:mem"

// ELEMENT_SIZE is the size of a byte-encoded ristretto255 group element.
ELEMENT_SIZE :: 32
// WIDE_ELEMENT_SIZE is the side of a wide byte-encoded ristretto255
// group element.
WIDE_ELEMENT_SIZE :: 64

@(private, rodata)
FE_NEG_ONE := field.Tight_Field_Element {
	2251799813685228,
	2251799813685247,
	2251799813685247,
	2251799813685247,
	2251799813685247,
}
@(private, rodata)
FE_INVSQRT_A_MINUS_D := field.Tight_Field_Element {
	278908739862762,
	821645201101625,
	8113234426968,
	1777959178193151,
	2118520810568447,
}
@(private, rodata)
FE_ONE_MINUS_D_SQ := field.Tight_Field_Element {
	1136626929484150,
	1998550399581263,
	496427632559748,
	118527312129759,
	45110755273534,
}
@(private, rodata)
FE_D_MINUS_ONE_SQUARED := field.Tight_Field_Element {
	1507062230895904,
	1572317787530805,
	683053064812840,
	317374165784489,
	1572899562415810,
}
@(private, rodata)
FE_SQRT_AD_MINUS_ONE := field.Tight_Field_Element {
	2241493124984347,
	425987919032274,
	2207028919301688,
	1220490630685848,
	974799131293748,
}
@(private)
GE_IDENTITY := Group_Element{grp.GE_IDENTITY, true}

// Group_Element is a ristretto255 group element.  The zero-initialized
// value is invalid.
Group_Element :: struct {
	// WARNING: While the internal representation is an Edwards25519
	// group element, this is not guaranteed to always be the case,
	// and your code *WILL* break if you mess with `_p`.
	_p:              grp.Group_Element,
	_is_initialized: bool,
}

// ge_clear clears ge to the uninitialized state.
ge_clear :: proc "contextless" (ge: ^Group_Element) {
	mem.zero_explicit(ge, size_of(Group_Element))
}

// ge_set sets `ge = a`.
ge_set :: proc(ge, a: ^Group_Element) {
	_ge_ensure_initialized([]^Group_Element{a})

	grp.ge_set(&ge._p, &a._p)
	ge._is_initialized = true
}

// ge_identity sets ge to the identity (neutral) element.
ge_identity :: proc "contextless" (ge: ^Group_Element) {
	grp.ge_identity(&ge._p)
	ge._is_initialized = true
}

// ge_generator sets ge to the group generator.
ge_generator :: proc "contextless" (ge: ^Group_Element) {
	grp.ge_generator(&ge._p)
	ge._is_initialized = true
}

// ge_set_bytes sets ge to the result of decoding b as a ristretto255
// group element, and returns true on success.
@(require_results)
ge_set_bytes :: proc "contextless" (ge: ^Group_Element, b: []byte) -> bool {
	// 1.  Interpret the string as an unsigned integer s in little-endian
	//     representation.  If the length of the string is not 32 bytes or
	//     if the resulting value is >= p, decoding fails.
	//
	// 2.  If IS_NEGATIVE(s) returns TRUE, decoding fails.

	if len(b) != ELEMENT_SIZE {
		return false
	}
	if b[31] & 128 != 0 || b[0] & 1 != 0 {
		// Fail early if b is clearly > p, or negative.
		return false
	}

	b_ := (^[32]byte)(raw_data(b))

	s: field.Tight_Field_Element = ---
	defer field.fe_clear(&s)

	field.fe_from_bytes(&s, b_)
	if field.fe_equal_bytes(&s, b_) != 1 {
		// Reject non-canonical encodings of s.
		return false
	}

	// 3.  Process s as follows:
	v, u1, u2: field.Loose_Field_Element = ---, ---, ---
	tmp, u2_sqr: field.Tight_Field_Element = ---, ---

	// ss = s^2
	// u1 = 1 - ss
	// u2 = 1 + ss
	// u2_sqr = u2^2
	field.fe_carry_square(&tmp, field.fe_relax_cast(&s))
	field.fe_sub(&u1, &field.FE_ONE, &tmp)
	field.fe_add(&u2, &field.FE_ONE, &tmp)
	field.fe_carry_square(&u2_sqr, &u2)

	// v = -(D * u1^2) - u2_sqr
	field.fe_carry_square(&tmp, &u1)
	field.fe_carry_mul(&tmp, field.fe_relax_cast(&grp.FE_D), field.fe_relax_cast(&tmp))
	field.fe_carry_add(&tmp, &tmp, &u2_sqr)
	field.fe_opp(&v, &tmp)

	// (was_square, invsqrt) = SQRT_RATIO_M1(1, v * u2_sqr)
	field.fe_carry_mul(&tmp, &v, field.fe_relax_cast(&u2_sqr))
	was_square := field.fe_carry_sqrt_ratio_m1(
		&tmp,
		field.fe_relax_cast(&field.FE_ONE),
		field.fe_relax_cast(&tmp),
	)

	// den_x = invsqrt * u2
	// den_y = invsqrt * den_x * v
	x, y, t: field.Tight_Field_Element = ---, ---, ---
	field.fe_carry_mul(&x, field.fe_relax_cast(&tmp), &u2)
	field.fe_carry_mul(&y, field.fe_relax_cast(&tmp), field.fe_relax_cast(&x))
	field.fe_carry_mul(&y, field.fe_relax_cast(&y), &v)

	// x = CT_ABS(2 * s * den_x)
	field.fe_carry_mul(&x, field.fe_relax_cast(&s), field.fe_relax_cast(&x))
	field.fe_carry_add(&x, &x, &x)
	field.fe_carry_abs(&x, &x)

	// y = u1 * den_y
	field.fe_carry_mul(&y, &u1, field.fe_relax_cast(&y))

	// t = x * y
	field.fe_carry_mul(&t, field.fe_relax_cast(&x), field.fe_relax_cast(&y))

	field.fe_clear_vec([]^field.Loose_Field_Element{&v, &u1, &u2})
	field.fe_clear_vec([]^field.Tight_Field_Element{&tmp, &u2_sqr})
	defer field.fe_clear_vec([]^field.Tight_Field_Element{&x, &y, &t})

	// 4.  If was_square is FALSE, IS_NEGATIVE(t) returns TRUE, or y = 0,
	// decoding fails.  Otherwise, return the group element represented
	// by the internal representation (x, y, 1, t) as the result of
	// decoding.

	switch {
	case was_square == 0:
		// Not sure why the RFC doesn't have this just fail early.
		return false
	case field.fe_is_negative(&t) != 0:
		return false
	case field.fe_equal(&y, &field.FE_ZERO) != 0:
		return false
	}

	field.fe_set(&ge._p.x, &x)
	field.fe_set(&ge._p.y, &y)
	field.fe_one(&ge._p.z)
	field.fe_set(&ge._p.t, &t)
	ge._is_initialized = true

	return true
}

// ge_set_wide_bytes sets ge to the result of deriving a ristretto255
// group element, from a wide (512-bit) byte string.
ge_set_wide_bytes :: proc(ge: ^Group_Element, b: []byte) {
	ensure(len(b) == WIDE_ELEMENT_SIZE, "crypto/ristretto255: invalid wide input size")

	// The element derivation function on an input string b proceeds as
	// follows:
	//
	// 1.  Compute P1 as MAP(b[0:32]).
	// 2.  Compute P2 as MAP(b[32:64]).
	// 3.  Return P1 + P2.

	p1, p2: Group_Element = ---, ---
	ge_map(&p1, b[0:32])
	ge_map(&p2, b[32:64])

	ge_add(ge, &p1, &p2)

	ge_clear(&p1)
	ge_clear(&p2)
}

// ge_bytes sets dst to the canonical encoding of ge.
ge_bytes :: proc(ge: ^Group_Element, dst: []byte) {
	_ge_ensure_initialized([]^Group_Element{ge})
	ensure(len(dst) == ELEMENT_SIZE, "crypto/ristretto255: invalid destination size")

	x0, y0, z0, t0 := &ge._p.x, &ge._p.y, &ge._p.z, &ge._p.t

	// 1.  Process the internal representation into a field element s as
	// follows:

	// u1 = (z0 + y0) * (z0 - y0)
	// u2 = x0 * y0
	u1, u2: field.Tight_Field_Element = ---, ---
	tmp1, tmp2: field.Loose_Field_Element = ---, ---
	field.fe_add(&tmp1, z0, y0)
	field.fe_sub(&tmp2, z0, y0)
	field.fe_carry_mul(&u1, &tmp1, &tmp2)
	field.fe_carry_mul(&u2, field.fe_relax_cast(x0), field.fe_relax_cast(y0))

	// Ignore was_square since this is always square.
	// (_, invsqrt) = SQRT_RATIO_M1(1, u1 * u2^2)
	tmp: field.Tight_Field_Element = ---
	field.fe_carry_square(&tmp, field.fe_relax_cast(&u2))
	field.fe_carry_mul(&tmp, field.fe_relax_cast(&u1), field.fe_relax_cast(&tmp))
	_ = field.fe_carry_sqrt_ratio_m1(
		&tmp,
		field.fe_relax_cast(&field.FE_ONE),
		field.fe_relax_cast(&tmp),
	)

	// den1 = invsqrt * u1
	// den2 = invsqrt * u2
	// z_inv = den1 * den2 * t0
	den1, den2 := &u1, &u2
	z_inv: field.Tight_Field_Element = ---
	field.fe_carry_mul(den1, field.fe_relax_cast(&tmp), field.fe_relax_cast(&u1))
	field.fe_carry_mul(den2, field.fe_relax_cast(&tmp), field.fe_relax_cast(&u2))
	field.fe_carry_mul(&z_inv, field.fe_relax_cast(den1), field.fe_relax_cast(den2))
	field.fe_carry_mul(&z_inv, field.fe_relax_cast(&z_inv), field.fe_relax_cast(t0))

	// rotate = IS_NEGATIVE(t0 * z_inv)
	// Note: Reordered from the RFC because invsqrt is no longer needed.
	field.fe_carry_mul(&tmp, field.fe_relax_cast(t0), field.fe_relax_cast(&z_inv))
	rotate := field.fe_is_negative(&tmp)

	// ix0 = x0 * SQRT_M1
	// iy0 = y0 * SQRT_M1
	// enchanted_denominator = den1 * INVSQRT_A_MINUS_D
	ix0, iy0: field.Tight_Field_Element = ---, ---
	field.fe_carry_mul(&ix0, field.fe_relax_cast(x0), field.fe_relax_cast(&field.FE_SQRT_M1))
	field.fe_carry_mul(&iy0, field.fe_relax_cast(y0), field.fe_relax_cast(&field.FE_SQRT_M1))
	field.fe_carry_mul(&tmp, field.fe_relax_cast(den1), field.fe_relax_cast(&FE_INVSQRT_A_MINUS_D))

	// Conditionally rotate x and y.
	// x = CT_SELECT(iy0 IF rotate ELSE x0)
	// y = CT_SELECT(ix0 IF rotate ELSE y0)
	// z = z0
	// den_inv = CT_SELECT(enchanted_denominator IF rotate ELSE den2)
	x, y: field.Tight_Field_Element = ---, ---
	field.fe_cond_select(&x, x0, &iy0, rotate)
	field.fe_cond_select(&y, y0, &ix0, rotate)
	field.fe_cond_select(&tmp, den2, &tmp, rotate)

	// y = CT_SELECT(-y IF IS_NEGATIVE(x * z_inv) ELSE y)
	field.fe_carry_mul(&x, field.fe_relax_cast(&x), field.fe_relax_cast(&z_inv))
	field.fe_cond_negate(&y, &y, field.fe_is_negative(&x))

	// s = CT_ABS(den_inv * (z - y))
	field.fe_sub(&tmp1, z0, &y)
	field.fe_carry_mul(&tmp, field.fe_relax_cast(&tmp), &tmp1)
	field.fe_carry_abs(&tmp, &tmp)

	// 2.  Return the 32-byte little-endian encoding of s.  More
	// specifically, this is the encoding of the canonical
	// representation of s as an integer between 0 and p-1, inclusive.
	dst_ := (^[32]byte)(raw_data(dst))
	field.fe_to_bytes(dst_, &tmp)

	field.fe_clear_vec([]^field.Tight_Field_Element{&u1, &u2, &tmp, &z_inv, &ix0, &iy0, &x, &y})
	field.fe_clear_vec([]^field.Loose_Field_Element{&tmp1, &tmp2})
}

// ge_add sets `ge = a + b`.
ge_add :: proc(ge, a, b: ^Group_Element) {
	_ge_ensure_initialized([]^Group_Element{a, b})

	grp.ge_add(&ge._p, &a._p, &b._p)
	ge._is_initialized = true
}

// ge_double sets `ge = a + a`.
ge_double :: proc(ge, a: ^Group_Element) {
	_ge_ensure_initialized([]^Group_Element{a})

	grp.ge_double(&ge._p, &a._p)
	ge._is_initialized = true
}

// ge_negate sets `ge = -a`.
ge_negate :: proc(ge, a: ^Group_Element) {
	_ge_ensure_initialized([]^Group_Element{a})

	grp.ge_negate(&ge._p, &a._p)
	ge._is_initialized = true
}

// ge_scalarmult sets `ge = A * sc`.
ge_scalarmult :: proc(ge, A: ^Group_Element, sc: ^Scalar) {
	_ge_ensure_initialized([]^Group_Element{A})

	grp.ge_scalarmult(&ge._p, &A._p, sc)
	ge._is_initialized = true
}

// ge_scalarmult_generator sets `ge = G * sc`
ge_scalarmult_generator :: proc "contextless" (ge: ^Group_Element, sc: ^Scalar) {
	grp.ge_scalarmult_basepoint(&ge._p, sc)
	ge._is_initialized = true
}

// ge_scalarmult_vartime sets `ge = A * sc` in variable time.
ge_scalarmult_vartime :: proc(ge, A: ^Group_Element, sc: ^Scalar) {
	_ge_ensure_initialized([]^Group_Element{A})

	grp.ge_scalarmult_vartime(&ge._p, &A._p, sc)
	ge._is_initialized = true
}

// ge_double_scalarmult_generator_vartime sets `ge = A * a + G * b` in variable
// time.
ge_double_scalarmult_generator_vartime :: proc(
	ge: ^Group_Element,
	a: ^Scalar,
	A: ^Group_Element,
	b: ^Scalar,
) {
	_ge_ensure_initialized([]^Group_Element{A})

	grp.ge_double_scalarmult_basepoint_vartime(&ge._p, a, &A._p, b)
	ge._is_initialized = true
}

// ge_cond_negate sets `ge = a` iff `ctrl == 0` and `ge = -a` iff `ctrl == 1`.
// Behavior for all other values of ctrl are undefined,
ge_cond_negate :: proc(ge, a: ^Group_Element, ctrl: int) {
	_ge_ensure_initialized([]^Group_Element{a})

	grp.ge_cond_negate(&ge._p, &a._p, ctrl)
	ge._is_initialized = true
}

// ge_cond_assign sets `ge = ge` iff `ctrl == 0` and `ge = a` iff `ctrl == 1`.
// Behavior for all other values of ctrl are undefined,
ge_cond_assign :: proc(ge, a: ^Group_Element, ctrl: int) {
	_ge_ensure_initialized([]^Group_Element{ge, a})

	grp.ge_cond_assign(&ge._p, &a._p, ctrl)
}

// ge_cond_select sets `ge = a` iff `ctrl == 0` and `ge = b` iff `ctrl == 1`.
// Behavior for all other values of ctrl are undefined,
ge_cond_select :: proc(ge, a, b: ^Group_Element, ctrl: int) {
	_ge_ensure_initialized([]^Group_Element{a, b})

	grp.ge_cond_select(&ge._p, &a._p, &b._p, ctrl)
	ge._is_initialized = true
}

// ge_equal returns 1 iff `a == b`, and 0 otherwise.
@(require_results)
ge_equal :: proc(a, b: ^Group_Element) -> int {
	_ge_ensure_initialized([]^Group_Element{a, b})

	// CT_EQ(x1 * y2, y1 * x2) | CT_EQ(y1 * y2, x1 * x2)
	ax_by, ay_bx, ay_by, ax_bx: field.Tight_Field_Element = ---, ---, ---, ---
	field.fe_carry_mul(&ax_by, field.fe_relax_cast(&a._p.x), field.fe_relax_cast(&b._p.y))
	field.fe_carry_mul(&ay_bx, field.fe_relax_cast(&a._p.y), field.fe_relax_cast(&b._p.x))
	field.fe_carry_mul(&ay_by, field.fe_relax_cast(&a._p.y), field.fe_relax_cast(&b._p.y))
	field.fe_carry_mul(&ax_bx, field.fe_relax_cast(&a._p.x), field.fe_relax_cast(&b._p.x))

	ret := field.fe_equal(&ax_by, &ay_bx) | field.fe_equal(&ay_by, &ax_bx)

	field.fe_clear_vec([]^field.Tight_Field_Element{&ax_by, &ay_bx, &ay_by, &ax_bx})

	return ret
}

// ge_is_identity returns 1 iff `ge` is the identity element, and 0 otherwise.
@(require_results)
ge_is_identity :: proc(ge: ^Group_Element) -> int {
	return ge_equal(ge, &GE_IDENTITY)
}

@(private)
ge_map :: proc "contextless" (ge: ^Group_Element, b: []byte) {
	b_ := (^[32]byte)(raw_data(b))

	// The MAP function is defined on 32-byte strings as:
	//
	// 1.  Mask the most significant bit in the final byte of the string,
	// and interpret the string as an unsigned integer r in little-
	// endian representation.  Reduce r modulo p to obtain a field
	// element t.
	// *  Masking the most significant bit is equivalent to interpreting
	// the whole string as an unsigned integer in little-endian
	// representation and then reducing it modulo 2^255.
	t: field.Tight_Field_Element = ---
	field.fe_from_bytes(&t, b_)

	// 2.  Process t as follows:
	//
	// r = SQRT_M1 * t^2
	// u = (r + 1) * ONE_MINUS_D_SQ
	// v = (-1 - r*D) * (r + D)
	tmp1: field.Loose_Field_Element = ---
	r, u, v: field.Tight_Field_Element = ---, ---, ---

	field.fe_carry_square(&r, field.fe_relax_cast(&t))
	field.fe_carry_mul(&r, field.fe_relax_cast(&field.FE_SQRT_M1), field.fe_relax_cast(&r))

	field.fe_add(&tmp1, &field.FE_ONE, &r)
	field.fe_carry_mul(&u, &tmp1, field.fe_relax_cast(&FE_ONE_MINUS_D_SQ))

	field.fe_carry_mul(&v, field.fe_relax_cast(&r), field.fe_relax_cast(&grp.FE_D))
	field.fe_carry_add(&v, &field.FE_ONE, &v)
	field.fe_carry_opp(&v, &v)
	field.fe_add(&tmp1, &r, &grp.FE_D)
	field.fe_carry_mul(&v, field.fe_relax_cast(&v), &tmp1)

	// (was_square, s) = SQRT_RATIO_M1(u, v)
	// s_prime = -CT_ABS(s*t)
	// s = CT_SELECT(s IF was_square ELSE s_prime)
	// c = CT_SELECT(-1 IF was_square ELSE r)
	s, s_prime, c: field.Tight_Field_Element = ---, ---, ---
	was_square := field.fe_carry_sqrt_ratio_m1(
		&s,
		field.fe_relax_cast(&u),
		field.fe_relax_cast(&v),
	)
	field.fe_carry_mul(&s_prime, field.fe_relax_cast(&s), field.fe_relax_cast(&t))
	field.fe_carry_abs(&s_prime, &s_prime)
	field.fe_carry_opp(&s_prime, &s_prime)
	field.fe_cond_select(&s, &s_prime, &s, was_square)
	field.fe_cond_select(&c, &r, &FE_NEG_ONE, was_square)

	// N = c * (r - 1) * D_MINUS_ONE_SQ - v
	N: field.Tight_Field_Element = ---
	field.fe_sub(&tmp1, &r, &field.FE_ONE)
	field.fe_carry_mul(&N, field.fe_relax_cast(&c), &tmp1)
	field.fe_carry_mul(&N, field.fe_relax_cast(&N), field.fe_relax_cast(&FE_D_MINUS_ONE_SQUARED))
	field.fe_carry_sub(&N, &N, &v)

	// w0 = 2 * s * v
	// w1 = N * SQRT_AD_MINUS_ONE
	// w2 = 1 - s^2
	// w3 = 1 + s^2
	w0, w1: field.Tight_Field_Element = ---, ---
	w2, w3: field.Loose_Field_Element = ---, ---
	field.fe_carry_mul(&w0, field.fe_relax_cast(&s), field.fe_relax_cast(&v))
	field.fe_carry_add(&w0, &w0, &w0)
	field.fe_carry_mul(&w1, field.fe_relax_cast(&N), field.fe_relax_cast(&FE_SQRT_AD_MINUS_ONE))
	field.fe_carry_square(&s, field.fe_relax_cast(&s))
	field.fe_sub(&w2, &field.FE_ONE, &s)
	field.fe_add(&w3, &field.FE_ONE, &s)

	// 3.  Return the group element represented by the internal
	// representation (w0*w3, w2*w1, w1*w3, w0*w2).

	field.fe_carry_mul(&ge._p.x, field.fe_relax_cast(&w0), &w3)
	field.fe_carry_mul(&ge._p.y, &w2, field.fe_relax_cast(&w1))
	field.fe_carry_mul(&ge._p.z, field.fe_relax_cast(&w1), &w3)
	field.fe_carry_mul(&ge._p.t, field.fe_relax_cast(&w0), &w2)
	ge._is_initialized = true

	field.fe_clear_vec([]^field.Tight_Field_Element{&r, &u, &v, &s, &s_prime, &c, &N, &w0, &w1})
	field.fe_clear_vec([]^field.Loose_Field_Element{&tmp1, &w2, &w3})
}

@(private)
_ge_ensure_initialized :: proc(ges: []^Group_Element) {
	for ge in ges {
		ensure(ge._is_initialized, "crypto/ristretto255: uninitialized group element")
	}
}