1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/*
`Base32` encoding and decoding, as specified in [[ RFC 4648; https://www.rfc-editor.org/rfc/rfc4648.html ]].
A secondary param can be used to supply a custom alphabet to `encode` and a matching decoding table to `decode`.
If none is supplied it just uses the standard Base32 alphabet.
In case your specific version does not use padding, you may
truncate it from the encoded output.
Error represents errors that can occur during base32 decoding operations.
As per RFC 4648:
- Section 3.3: Invalid character handling
- Section 3.2: Padding requirements
- Section 6: Base32 encoding specifics (including block size requirements)
*/
package encoding_base32
Error :: enum {
None,
Invalid_Character, // Input contains characters outside the specified alphabet
Invalid_Length, // Input length is not valid for base32 (must be a multiple of 8 with proper padding)
Malformed_Input, // Input has improper structure (wrong padding position or incomplete groups)
}
Validate_Proc :: #type proc(c: byte) -> bool
@private
_validate_default :: proc(c: byte) -> bool {
return (c >= 'A' && c <= 'Z') || (c >= '2' && c <= '7')
}
@(rodata)
ENC_TABLE := [32]byte {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', '2', '3', '4', '5', '6', '7',
}
PADDING :: '='
@(rodata)
DEC_TABLE := [256]u8 {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 26, 27, 28, 29, 30, 31, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
}
encode :: proc(data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) -> string {
out_length := (len(data) + 4) / 5 * 8
out := make([]byte, out_length, allocator)
_encode(out, data, ENC_TBL)
return string(out[:])
}
@private
_encode :: proc(out, data: []byte, ENC_TBL := ENC_TABLE, allocator := context.allocator) {
out := out
data := data
for len(data) > 0 {
carry: byte
switch len(data) {
case:
out[7] = ENC_TBL[data[4] & 0x1f]
carry = data[4] >> 5
fallthrough
case 4:
out[6] = ENC_TBL[carry | (data[3] << 3) & 0x1f]
out[5] = ENC_TBL[(data[3] >> 2) & 0x1f]
carry = data[3] >> 7
fallthrough
case 3:
out[4] = ENC_TBL[carry | (data[2] << 1) & 0x1f]
carry = (data[2] >> 4) & 0x1f
fallthrough
case 2:
out[3] = ENC_TBL[carry | (data[1] << 4) & 0x1f]
out[2] = ENC_TBL[(data[1] >> 1) & 0x1f]
carry = (data[1] >> 6) & 0x1f
fallthrough
case 1:
out[1] = ENC_TBL[carry | (data[0] << 2) & 0x1f]
out[0] = ENC_TBL[data[0] >> 3]
}
if len(data) < 5 {
out[7] = byte(PADDING)
if len(data) < 4 {
out[6] = byte(PADDING)
out[5] = byte(PADDING)
if len(data) < 3 {
out[4] = byte(PADDING)
if len(data) < 2 {
out[3] = byte(PADDING)
out[2] = byte(PADDING)
}
}
}
break
}
data = data[5:]
out = out[8:]
}
}
@(optimization_mode="favor_size")
decode :: proc(
data: string,
DEC_TBL := DEC_TABLE,
validate: Validate_Proc = _validate_default,
allocator := context.allocator) -> (out: []byte, err: Error) {
if len(data) == 0 {
return nil, .None
}
// Check minimum length requirement first
if len(data) < 2 {
return nil, .Invalid_Length
}
// Validate characters using provided validation function
for i := 0; i < len(data); i += 1 {
c := data[i]
if c == byte(PADDING) {
break
}
if !validate(c) {
return nil, .Invalid_Character
}
}
// Validate padding and length
data_len := len(data)
padding_count := 0
for i := data_len - 1; i >= 0; i -= 1 {
if data[i] != byte(PADDING) {
break
}
padding_count += 1
}
// Check for proper padding and length combinations
if padding_count > 0 {
// Verify no padding in the middle
for i := 0; i < data_len - padding_count; i += 1 {
if data[i] == byte(PADDING) {
return nil, .Malformed_Input
}
}
content_len := data_len - padding_count
mod8 := content_len % 8
required_padding: int
switch mod8 {
case 2: required_padding = 6 // 2 chars need 6 padding chars
case 4: required_padding = 4 // 4 chars need 4 padding chars
case 5: required_padding = 3 // 5 chars need 3 padding chars
case 7: required_padding = 1 // 7 chars need 1 padding char
case: required_padding = 0
}
if required_padding > 0 {
if padding_count != required_padding {
return nil, .Malformed_Input
}
} else if mod8 != 0 {
return nil, .Malformed_Input
}
} else {
// No padding - must be multiple of 8
if data_len % 8 != 0 {
return nil, .Malformed_Input
}
}
// Calculate decoded length: 5 bytes for every 8 input chars
input_chars := data_len - padding_count
out_len := input_chars * 5 / 8
out = make([]byte, out_len, allocator)
defer if err != .None {
delete(out)
}
// Process input in 8-byte blocks
outi := 0
for i := 0; i < input_chars; i += 8 {
buf: [8]byte
block_size := min(8, input_chars - i)
// Decode block
for j := 0; j < block_size; j += 1 {
buf[j] = DEC_TBL[data[i + j]]
}
// Convert to output bytes based on block size
bytes_to_write := block_size * 5 / 8
switch block_size {
case 8:
out[outi + 4] = (buf[6] << 5) | buf[7]
fallthrough
case 7:
out[outi + 3] = (buf[4] << 7) | (buf[5] << 2) | (buf[6] >> 3)
fallthrough
case 5:
out[outi + 2] = (buf[3] << 4) | (buf[4] >> 1)
fallthrough
case 4:
out[outi + 1] = (buf[1] << 6) | (buf[2] << 1) | (buf[3] >> 4)
fallthrough
case 2:
out[outi] = (buf[0] << 3) | (buf[1] >> 2)
}
outi += bytes_to_write
}
return
}
|