1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
package encoding_hxa
import "core:fmt"
Read_Error :: enum {
None,
Short_Read,
Invalid_Data,
Unable_To_Read_File,
}
read :: proc(data: []byte, filename := "<input>", print_error := false, allocator := context.allocator, loc := #caller_location) -> (file: File, err: Read_Error) {
Reader :: struct {
filename: string,
data: []byte,
offset: int,
print_error: bool,
}
read_value :: proc(r: ^Reader, $T: typeid) -> (value: T, err: Read_Error) {
remaining := len(r.data) - r.offset
if remaining < size_of(T) {
if r.print_error {
fmt.eprintf("file '%s' failed to read value at offset %v\n", r.filename, r.offset)
}
err = .Short_Read
return
}
ptr := raw_data(r.data[r.offset:])
value = (^T)(ptr)^
r.offset += size_of(T)
return
}
read_array :: proc(r: ^Reader, $T: typeid, count: int) -> (value: []T, err: Read_Error) {
remaining := len(r.data) - r.offset
if remaining < size_of(T)*count {
if r.print_error {
fmt.eprintf("file '%s' failed to read array of %d elements at offset %v\n",
r.filename, count, r.offset)
}
err = .Short_Read
return
}
ptr := raw_data(r.data[r.offset:])
value = ([^]T)(ptr)[:count]
r.offset += size_of(T)*count
return
}
read_string :: proc(r: ^Reader, count: int) -> (string, Read_Error) {
buf, err := read_array(r, byte, count)
return string(buf), err
}
read_name :: proc(r: ^Reader) -> (value: string, err: Read_Error) {
len := read_value(r, u8) or_return
data := read_array(r, byte, int(len)) or_return
return string(data[:len]), nil
}
read_meta :: proc(r: ^Reader, capacity: u32le, allocator := context.allocator, loc := #caller_location) -> (meta_data: []Meta, err: Read_Error) {
meta_data = make([]Meta, int(capacity), allocator=allocator)
count := 0
for &m in meta_data {
m.name = read_name(r) or_return
type := read_value(r, Meta_Value_Type) or_return
if type > max(Meta_Value_Type) {
if r.print_error {
fmt.eprintf("HxA Error: file '%s' has meta value type %d. Maximum value is %d\n",
r.filename, u8(type), u8(max(Meta_Value_Type)))
}
err = .Invalid_Data
return
}
array_length := read_value(r, u32le) or_return
switch type {
case .Int64: m.value = read_array(r, i64le, int(array_length)) or_return
case .Double: m.value = read_array(r, f64le, int(array_length)) or_return
case .Node: m.value = read_array(r, Node_Index, int(array_length)) or_return
case .Text: m.value = read_string(r, int(array_length)) or_return
case .Binary: m.value = read_array(r, byte, int(array_length)) or_return
case .Meta: m.value = read_meta(r, array_length) or_return
}
count += 1
}
meta_data = meta_data[:count]
return
}
read_layer_stack :: proc(r: ^Reader, capacity: u32le, allocator := context.allocator, loc := #caller_location) -> (layers: Layer_Stack, err: Read_Error) {
stack_count := read_value(r, u32le) or_return
layer_count := 0
layers = make(Layer_Stack, stack_count, allocator=allocator, loc=loc)
for &layer in layers {
layer.name = read_name(r) or_return
layer.components = read_value(r, u8) or_return
type := read_value(r, Layer_Data_Type) or_return
if type > max(Layer_Data_Type) {
if r.print_error {
fmt.eprintf("HxA Error: file '%s' has layer data type %d. Maximum value is %d\n",
r.filename, u8(type), u8(max(Layer_Data_Type)))
}
err = .Invalid_Data
return
}
data_len := int(layer.components) * int(capacity)
switch type {
case .Uint8: layer.data = read_array(r, u8, data_len) or_return
case .Int32: layer.data = read_array(r, i32le, data_len) or_return
case .Float: layer.data = read_array(r, f32le, data_len) or_return
case .Double: layer.data = read_array(r, f64le, data_len) or_return
}
layer_count += 1
}
layers = layers[:layer_count]
return
}
if len(data) < size_of(Header) {
if print_error {
fmt.eprintf("HxA Error: file '%s' has no header\n", filename)
}
err = .Short_Read
return
}
context.allocator = allocator
header := cast(^Header)raw_data(data)
if (header.magic_number != MAGIC_NUMBER) {
if print_error {
fmt.eprintf("HxA Error: file '%s' has invalid magic number 0x%x\n", filename, header.magic_number)
}
err = .Invalid_Data
return
}
r := &Reader{
filename = filename,
data = data[:],
offset = size_of(Header),
print_error = print_error,
}
node_count := 0
file.header = header^
file.nodes = make([]Node, header.internal_node_count, allocator=allocator, loc=loc)
file.allocator = allocator
defer if err != nil {
nodes_destroy(file.nodes)
file.nodes = nil
}
defer file.nodes = file.nodes[:node_count]
for _ in 0..<header.internal_node_count {
node := &file.nodes[node_count]
type := read_value(r, Node_Type) or_return
if type > max(Node_Type) {
if r.print_error {
fmt.eprintf("HxA Error: file '%s' has node type %d. Maximum value is %d\n",
r.filename, u8(type), u8(max(Node_Type)))
}
err = .Invalid_Data
return
}
node_count += 1
node.meta_data = read_meta(r, read_value(r, u32le) or_return) or_return
switch type {
case .Meta_Only:
// Okay
case .Geometry:
g: Node_Geometry
g.vertex_count = read_value(r, u32le) or_return
g.vertex_stack = read_layer_stack(r, g.vertex_count, loc=loc) or_return
g.edge_corner_count = read_value(r, u32le) or_return
g.corner_stack = read_layer_stack(r, g.edge_corner_count, loc=loc) or_return
if header.version > 2 {
g.edge_stack = read_layer_stack(r, g.edge_corner_count, loc=loc) or_return
}
g.face_count = read_value(r, u32le) or_return
g.face_stack = read_layer_stack(r, g.face_count, loc=loc) or_return
node.content = g
case .Image:
img: Node_Image
img.type = read_value(r, Image_Type) or_return
dimensions := int(img.type)
if img.type == .Image_Cube {
dimensions = 2
}
img.resolution = {1, 1, 1}
for d in 0..<dimensions {
img.resolution[d] = read_value(r, u32le) or_return
}
size := img.resolution[0]*img.resolution[1]*img.resolution[2]
if img.type == .Image_Cube {
size *= 6
}
img.image_stack = read_layer_stack(r, size) or_return
node.content = img
}
}
return
}
|