aboutsummaryrefslogtreecommitdiff
path: root/core/encoding/hxa/read.odin
blob: 1721bf7fcab8acab7f18353f5d31d0faed107825 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
package encoding_hxa

import "core:fmt"
import "core:mem"

Read_Error :: enum {
	None,
	Short_Read,
	Invalid_Data,
	Unable_To_Read_File,
}

read :: proc(data: []byte, filename := "<input>", print_error := false, allocator := context.allocator, loc := #caller_location) -> (file: File, err: Read_Error) {
	Reader :: struct {
		filename:    string,
		data:        []byte,
		offset:      int,
		print_error: bool,
	}

	read_value :: proc(r: ^Reader, $T: typeid) -> (value: T, err: Read_Error) {
		remaining := len(r.data) - r.offset
		if remaining < size_of(T) {
			if r.print_error {
				fmt.eprintf("file '%s' failed to read value at offset %v\n", r.filename, r.offset)
			}
			err = .Short_Read
			return
		}
		ptr := raw_data(r.data[r.offset:])
		value = (^T)(ptr)^
		r.offset += size_of(T)
		return
	}

	read_array :: proc(r: ^Reader, $T: typeid, count: int) -> (value: []T, err: Read_Error) {
		remaining := len(r.data) - r.offset
		if remaining < size_of(T)*count {
			if r.print_error {
				fmt.eprintf("file '%s' failed to read array of %d elements at offset %v\n",
							r.filename, count, r.offset)
			}
			err = .Short_Read
			return
		}
		ptr := raw_data(r.data[r.offset:])

		value = mem.slice_ptr((^T)(ptr), count)
		r.offset += size_of(T)*count
		return
	}

	read_string :: proc(r: ^Reader, count: int) -> (string, Read_Error) {
		buf, err := read_array(r, byte, count)
		return string(buf), err
	}

	read_name :: proc(r: ^Reader) -> (value: string, err: Read_Error) {
		len  := read_value(r, u8)             or_return
		data := read_array(r, byte, int(len)) or_return
		return string(data[:len]), nil
	}

	read_meta :: proc(r: ^Reader, capacity: u32le, allocator := context.allocator, loc := #caller_location) -> (meta_data: []Meta, err: Read_Error) {
		meta_data = make([]Meta, int(capacity), allocator=allocator)
		count := 0
		for &m in meta_data {
			m.name = read_name(r) or_return

			type := read_value(r, Meta_Value_Type) or_return
			if type > max(Meta_Value_Type) {
				if r.print_error {
					fmt.eprintf("HxA Error: file '%s' has meta value type %d. Maximum value is %d\n",
								r.filename, u8(type), u8(max(Meta_Value_Type)))
				}
				err = .Invalid_Data
				return
			}
			array_length := read_value(r, u32le) or_return

			switch type {
			case .Int64:  m.value = read_array(r, i64le, int(array_length))      or_return
			case .Double: m.value = read_array(r, f64le, int(array_length))      or_return
			case .Node:   m.value = read_array(r, Node_Index, int(array_length)) or_return
			case .Text:   m.value = read_string(r, int(array_length))            or_return
			case .Binary: m.value = read_array(r, byte, int(array_length))       or_return
			case .Meta:   m.value = read_meta(r, array_length)                   or_return
			}

			count += 1
		}
		meta_data = meta_data[:count]
		return
	}

	read_layer_stack :: proc(r: ^Reader, capacity: u32le, allocator := context.allocator, loc := #caller_location) -> (layers: Layer_Stack, err: Read_Error) {
		stack_count := read_value(r, u32le) or_return
		layer_count := 0
		layers = make(Layer_Stack, stack_count, allocator=allocator, loc=loc)
		for &layer in layers {
			layer.name = read_name(r) or_return
			layer.components = read_value(r, u8) or_return
			type := read_value(r, Layer_Data_Type) or_return
			if type > max(Layer_Data_Type) {
				if r.print_error {
					fmt.eprintf("HxA Error: file '%s' has layer data type %d. Maximum value is %d\n",
								r.filename, u8(type), u8(max(Layer_Data_Type)))
				}
				err = .Invalid_Data
				return
			}
			data_len := int(layer.components) * int(capacity)

			switch type {
			case .Uint8:  layer.data = read_array(r, u8,    data_len) or_return
			case .Int32:  layer.data = read_array(r, i32le, data_len) or_return
			case .Float:  layer.data = read_array(r, f32le, data_len) or_return
			case .Double: layer.data = read_array(r, f64le, data_len) or_return
			}
			layer_count += 1
		}

		layers = layers[:layer_count]
		return
	}

	if len(data) < size_of(Header) {
		if print_error {
			fmt.eprintf("HxA Error: file '%s' has no header\n", filename)
		}
		err = .Short_Read
		return
	}

	context.allocator = allocator

	header := cast(^Header)raw_data(data)
	if (header.magic_number != MAGIC_NUMBER) {
		if print_error {
			fmt.eprintf("HxA Error: file '%s' has invalid magic number 0x%x\n", filename, header.magic_number)
		}
		err = .Invalid_Data
		return
	}

	r := &Reader{
		filename    = filename,
		data        = data[:],
		offset      = size_of(Header),
		print_error = print_error,
	}

	node_count := 0
	file.header = header^
	file.nodes = make([]Node, header.internal_node_count, allocator=allocator, loc=loc)
	file.allocator = allocator
	defer if err != nil {
		nodes_destroy(file.nodes)
		file.nodes = nil
	}
	defer file.nodes = file.nodes[:node_count]

	for _ in 0..<header.internal_node_count {
		node := &file.nodes[node_count]
		type := read_value(r, Node_Type) or_return
		if type > max(Node_Type) {
			if r.print_error {
				fmt.eprintf("HxA Error: file '%s' has node type %d. Maximum value is %d\n",
							r.filename, u8(type), u8(max(Node_Type)))
			}
			err = .Invalid_Data
			return
		}
		node_count += 1

		node.meta_data = read_meta(r, read_value(r, u32le) or_return) or_return

		switch type {
		case .Meta_Only:
			// Okay
		case .Geometry:
			g: Node_Geometry

			g.vertex_count      = read_value(r, u32le)                               or_return
			g.vertex_stack      = read_layer_stack(r, g.vertex_count, loc=loc)       or_return
			g.edge_corner_count = read_value(r, u32le)                               or_return
			g.corner_stack      = read_layer_stack(r, g.edge_corner_count, loc=loc)  or_return
			if header.version > 2 {
				g.edge_stack = read_layer_stack(r, g.edge_corner_count, loc=loc) or_return
			}
			g.face_count = read_value(r, u32le)                       or_return
			g.face_stack = read_layer_stack(r, g.face_count, loc=loc) or_return

			node.content = g

		case .Image:
			img: Node_Image

			img.type = read_value(r, Image_Type) or_return
			dimensions := int(img.type)
			if img.type == .Image_Cube {
				dimensions = 2
			}
			img.resolution = {1, 1, 1}
			for d in 0..<dimensions {
				img.resolution[d] = read_value(r, u32le) or_return
			}
			size := img.resolution[0]*img.resolution[1]*img.resolution[2]
			if img.type == .Image_Cube {
				size *= 6
			}
			img.image_stack = read_layer_stack(r, size) or_return

			node.content = img
		}
	}

	return
}