aboutsummaryrefslogtreecommitdiff
path: root/core/encoding/hxa/write.odin
blob: e774018b21fdab78af185c1dd036862e9baf145b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
package encoding_hxa

import "core:os"
import "core:mem"

Write_Error :: enum {
	None,
	Buffer_Too_Small,
	Failed_File_Write,
}

write_to_file :: proc(filepath: string, file: File) -> (err: Write_Error) {
	required := required_write_size(file)
	buf, alloc_err := make([]byte, required)
	if alloc_err == .Out_Of_Memory {
		return .Failed_File_Write
	}
	defer delete(buf)

	write_internal(&Writer{data = buf}, file)
	if !os.write_entire_file(filepath, buf) {
		err =.Failed_File_Write
	}
	return
}

write :: proc(buf: []byte, file: File) -> (n: int, err: Write_Error) {
	required := required_write_size(file)
	if len(buf) < required {
		err = .Buffer_Too_Small
		return
	}
	n = required
	write_internal(&Writer{data = buf}, file)
	return
}

required_write_size :: proc(file: File) -> (n: int) {
	writer := &Writer{dummy_pass = true}
	write_internal(writer, file)
	n = writer.offset
	return
}


@(private)
Writer :: struct {
	data:   []byte,
	offset: int,
	dummy_pass: bool,
}

@(private)
write_internal :: proc(w: ^Writer, file: File) {
	write_value :: proc(w: ^Writer, value: $T) {
		if !w.dummy_pass {
			remaining := len(w.data) - w.offset
			assert(size_of(T) <= remaining)
			ptr := raw_data(w.data[w.offset:])
			(^T)(ptr)^ = value
		}
		w.offset += size_of(T)
	}
	write_array :: proc(w: ^Writer, array: []$T) {
		if !w.dummy_pass {
			remaining := len(w.data) - w.offset
			assert(size_of(T)*len(array) <= remaining)
			ptr := raw_data(w.data[w.offset:])
			dst := mem.slice_ptr((^T)(ptr), len(array))
			copy(dst, array)
		}
		w.offset += size_of(T)*len(array)
	}
	write_string :: proc(w: ^Writer, str: string) {
		if !w.dummy_pass {
			remaining := len(w.data) - w.offset
			assert(size_of(byte)*len(str) <= remaining)
			ptr := raw_data(w.data[w.offset:])
			dst := mem.slice_ptr((^byte)(ptr), len(str))
			copy(dst, str)
		}
		w.offset += size_of(byte)*len(str)
	}

	write_metadata :: proc(w: ^Writer, meta_data: []Meta) {
		for m in meta_data {
			name_len := max(len(m.name), 255)
			write_value(w, u8(name_len))
			write_string(w, m.name[:name_len])

			meta_data_type: Meta_Value_Type
			length: u32le = 0
			switch v in m.value {
			case []i64le:
				meta_data_type = .Int64
				length = u32le(len(v))
			case []f64le:
				meta_data_type = .Double
				length = u32le(len(v))
			case []Node_Index:
				meta_data_type = .Node
				length = u32le(len(v))
			case string:
				meta_data_type = .Text
				length = u32le(len(v))
			case []byte:
				meta_data_type = .Binary
				length = u32le(len(v))
			case []Meta:
				meta_data_type = .Meta
				length = u32le(len(v))
			}
			write_value(w, meta_data_type)
			write_value(w, length)

			switch v in m.value {
			case []i64le:      write_array(w, v)
			case []f64le:      write_array(w, v)
			case []Node_Index: write_array(w, v)
			case string:       write_string(w, v)
			case []byte:       write_array(w, v)
			case []Meta:       write_metadata(w, v)
			}
		}
		return
	}
	write_layer_stack :: proc(w: ^Writer, layers: Layer_Stack) {
		write_value(w, u32(len(layers)))
		for layer in layers {
			name_len := max(len(layer.name), 255)
			write_value(w, u8(name_len))
			write_string(w, layer .name[:name_len])

			write_value(w, layer.components)

			layer_data_type: Layer_Data_Type
			switch v in layer.data {
			case []u8:    layer_data_type = .Uint8
			case []i32le: layer_data_type = .Int32
			case []f32le: layer_data_type = .Float
			case []f64le: layer_data_type = .Double
			}
			write_value(w, layer_data_type)

			switch v in layer.data {
			case []u8:   write_array(w, v)
			case []i32le: write_array(w, v)
			case []f32le: write_array(w, v)
			case []f64le: write_array(w, v)
			}
		}
		return
	}

	write_value(w, &Header{
		magic_number = MAGIC_NUMBER,
		version = LATEST_VERSION,
		internal_node_count = u32le(len(file.nodes)),
	})

	for node in file.nodes {
		node_type: Node_Type
		switch content in node.content {
		case Node_Geometry: node_type = .Geometry
		case Node_Image:    node_type = .Image
		}
		write_value(w, node_type)

		write_value(w, u32(len(node.meta_data)))
		write_metadata(w, node.meta_data)

		switch content in node.content {
		case Node_Geometry:
			write_value(w, content.vertex_count)
			write_layer_stack(w, content.vertex_stack)
			write_value(w, content.edge_corner_count)
			write_layer_stack(w, content.corner_stack)
			write_layer_stack(w, content.edge_stack)
			write_value(w, content.face_count)
			write_layer_stack(w, content.face_stack)
		case Node_Image:
			write_value(w, content.type)
			dimensions := int(content.type)
			if content.type == .Image_Cube {
				dimensions = 2
			}
			for d in 0..<dimensions {
				write_value(w, content.resolution[d])
			}
			write_layer_stack(w, content.image_stack)
		}
	}
}