1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
package xxhash
/*
An implementation of Yann Collet's [xxhash Fast Hash Algorithm](https://cyan4973.github.io/xxHash/).
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's license, based on the original C code.
List of contributors:
Jeroen van Rijn: Initial implementation.
*/
import "base:intrinsics"
/*
64-bit hash functions
*/
XXH64_hash :: u64
xxh_u64 :: u64
XXH64_DEFAULT_SEED :: XXH64_hash(0)
XXH64_state :: struct {
total_len: XXH64_hash, /*!< Total length hashed. This is always 64-bit. */
v1: XXH64_hash, /*!< First accumulator lane */
v2: XXH64_hash, /*!< Second accumulator lane */
v3: XXH64_hash, /*!< Third accumulator lane */
v4: XXH64_hash, /*!< Fourth accumulator lane */
mem64: [4]XXH64_hash, /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
memsize: XXH32_hash, /*!< Amount of data in @ref mem64 */
reserved32: XXH32_hash, /*!< Reserved field, needed for padding anyways*/
reserved64: XXH64_hash, /*!< Reserved field. Do not read or write to it, it may be removed. */
}
XXH64_canonical :: struct {
digest: [8]u8,
}
XXH_PRIME64_1 :: 0x9E3779B185EBCA87 /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
XXH_PRIME64_2 :: 0xC2B2AE3D27D4EB4F /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
XXH_PRIME64_3 :: 0x165667B19E3779F9 /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
XXH_PRIME64_4 :: 0x85EBCA77C2B2AE63 /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
XXH_PRIME64_5 :: 0x27D4EB2F165667C5 /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
@(optimization_mode="favor_size")
XXH64_round :: proc(acc, input: xxh_u64) -> (res: xxh_u64) {
acc := acc
acc += input * XXH_PRIME64_2
acc = XXH_rotl64(acc, 31)
acc *= XXH_PRIME64_1
return acc
}
@(optimization_mode="favor_size")
XXH64_mergeRound :: proc(acc, val: xxh_u64) -> (res: xxh_u64) {
res = acc ~ XXH64_round(0, val)
res = res * XXH_PRIME64_1 + XXH_PRIME64_4
return res
}
@(optimization_mode="favor_size")
XXH64_avalanche :: proc(h64: xxh_u64) -> (res: xxh_u64) {
res = h64
res ~= res >> 33
res *= XXH_PRIME64_2
res ~= res >> 29
res *= XXH_PRIME64_3
res ~= res >> 32
return res
}
@(optimization_mode="favor_size")
XXH64_finalize :: proc(h64: xxh_u64, buf: []u8, alignment: Alignment) -> (res: xxh_u64) {
buf := buf
length := len(buf) & 31
res = h64
for length >= 8 {
b := XXH64_read64(buf, alignment)
k1 := XXH64_round(0, b)
#no_bounds_check buf = buf[8:]
res ~= k1
res = XXH_rotl64(res, 27) * XXH_PRIME64_1 + XXH_PRIME64_4
length -= 8
}
if length >= 4 {
res ~= xxh_u64(XXH32_read32(buf, alignment)) * XXH_PRIME64_1
#no_bounds_check buf = buf[4:]
res = XXH_rotl64(res, 23) * XXH_PRIME64_2 + XXH_PRIME64_3
length -= 4
}
for length > 0 {
#no_bounds_check b := xxh_u64(buf[0])
buf = buf[1:]
res ~= b * XXH_PRIME64_5
res = XXH_rotl64(res, 11) * XXH_PRIME64_1
length -= 1
}
return XXH64_avalanche(res)
}
@(optimization_mode="favor_size")
XXH64_endian_align :: proc(input: []u8, seed := XXH64_DEFAULT_SEED, alignment := Alignment.Unaligned) -> (res: xxh_u64) {
buf := input
length := len(buf)
if length >= 32 {
v1 := seed + XXH_PRIME64_1 + XXH_PRIME64_2
v2 := seed + XXH_PRIME64_2
v3 := seed + 0
v4 := seed - XXH_PRIME64_1
for len(buf) >= 32 {
v1 = XXH64_round(v1, XXH64_read64(buf, alignment)); buf = buf[8:]
v2 = XXH64_round(v2, XXH64_read64(buf, alignment)); buf = buf[8:]
v3 = XXH64_round(v3, XXH64_read64(buf, alignment)); buf = buf[8:]
v4 = XXH64_round(v4, XXH64_read64(buf, alignment)); buf = buf[8:]
}
res = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18)
res = XXH64_mergeRound(res, v1)
res = XXH64_mergeRound(res, v2)
res = XXH64_mergeRound(res, v3)
res = XXH64_mergeRound(res, v4)
} else {
res = seed + XXH_PRIME64_5
}
res += xxh_u64(length)
return XXH64_finalize(res, buf, alignment)
}
XXH64 :: proc(input: []u8, seed := XXH64_DEFAULT_SEED) -> (digest: XXH64_hash) {
when false {
/*
Simple version, good for code maintenance, but unfortunately slow for small inputs.
*/
state: XXH64_state
XXH64_reset_state(&state, seed)
buf := input
for len(buf) > 0 {
l := min(65536, len(buf))
XXH64_update(&state, buf[:l])
buf = buf[l:]
}
return XXH64_digest(&state)
} else {
when XXH_FORCE_ALIGN_CHECK {
if uintptr(raw_data(input)) & uintptr(7) == 0 {
/*
Input is 8-bytes aligned, leverage the speed benefit.
*/
return XXH64_endian_align(input, seed, .Aligned)
}
}
return XXH64_endian_align(input, seed, .Unaligned)
}
}
/*
****** Hash Streaming ******
*/
XXH64_create_state :: proc(allocator := context.allocator) -> (res: ^XXH64_state, err: Error) {
state := new(XXH64_state, allocator)
XXH64_reset_state(state)
return state, .None if state != nil else .Error
}
XXH64_destroy_state :: proc(state: ^XXH64_state, allocator := context.allocator) -> (err: Error) {
free(state, allocator)
return .None
}
XXH64_copy_state :: proc(dest, src: ^XXH64_state) {
assert(dest != nil && src != nil)
mem_copy(dest, src, size_of(XXH64_state))
}
XXH64_reset_state :: proc(state_ptr: ^XXH64_state, seed := XXH64_DEFAULT_SEED) -> (err: Error) {
state := XXH64_state{}
state.v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2
state.v2 = seed + XXH_PRIME64_2
state.v3 = seed + 0
state.v4 = seed - XXH_PRIME64_1
/*
Fo not write into reserved64, might be removed in a future version.
*/
mem_copy(state_ptr, &state, size_of(state) - size_of(state.reserved64))
return .None
}
@(optimization_mode="favor_size")
XXH64_update :: proc(state: ^XXH64_state, input: []u8) -> (err: Error) {
buf := input
length := len(buf)
state.total_len += u64(length)
if state.memsize + u32(length) < 32 { /* fill in tmp buffer */
ptr := uintptr(raw_data(state.mem64[:])) + uintptr(state.memsize)
mem_copy(rawptr(ptr), raw_data(input), int(length))
state.memsize += u32(length)
return .None
}
if state.memsize > 0 { /* tmp buffer is full */
ptr := uintptr(raw_data(state.mem64[:])) + uintptr(state.memsize)
mem_copy(rawptr(ptr), raw_data(input), int(32 - state.memsize))
{
#no_bounds_check state.v1 = XXH64_round(state.v1, state.mem64[0])
#no_bounds_check state.v2 = XXH64_round(state.v2, state.mem64[1])
#no_bounds_check state.v3 = XXH64_round(state.v3, state.mem64[2])
#no_bounds_check state.v4 = XXH64_round(state.v4, state.mem64[3])
}
buf = buf[32 - state.memsize:]
state.memsize = 0
}
if len(buf) >= 32 {
v1 := state.v1
v2 := state.v2
v3 := state.v3
v4 := state.v4
for len(buf) >= 32 {
#no_bounds_check v1 = XXH64_round(v1, XXH64_read64(buf, .Unaligned)); buf = buf[8:]
#no_bounds_check v2 = XXH64_round(v2, XXH64_read64(buf, .Unaligned)); buf = buf[8:]
#no_bounds_check v3 = XXH64_round(v3, XXH64_read64(buf, .Unaligned)); buf = buf[8:]
#no_bounds_check v4 = XXH64_round(v4, XXH64_read64(buf, .Unaligned)); buf = buf[8:]
}
state.v1 = v1
state.v2 = v2
state.v3 = v3
state.v4 = v4
}
length = len(buf)
if length > 0 {
mem_copy(raw_data(state.mem64[:]), raw_data(buf[:]), int(length))
state.memsize = u32(length)
}
return .None
}
@(optimization_mode="favor_size")
XXH64_digest :: proc(state: ^XXH64_state) -> (res: XXH64_hash) {
if state.total_len >= 32 {
v1 := state.v1
v2 := state.v2
v3 := state.v3
v4 := state.v4
res = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18)
res = XXH64_mergeRound(res, v1)
res = XXH64_mergeRound(res, v2)
res = XXH64_mergeRound(res, v3)
res = XXH64_mergeRound(res, v4)
} else {
res = state.v3 /*seed*/ + XXH_PRIME64_5
}
res += XXH64_hash(state.total_len)
buf := (^[32]u8)(&state.mem64)^
alignment: Alignment = .Aligned if uintptr(&state.mem64) & 15 == 0 else .Unaligned
return XXH64_finalize(res, buf[:state.memsize], alignment)
}
/*
****** Canonical representation ******
The default return values from XXH functions are unsigned 32 and 64 bit integers.
The canonical representation uses big endian convention,
the same convention as human-readable numbers (large digits first).
This way, hash values can be written into a file or buffer, remaining
comparable across different systems.
The following functions allow transformation of hash values to and from their
canonical format.
*/
XXH64_canonical_from_hash :: proc(hash: XXH64_hash) -> (canonical: XXH64_canonical) {
#assert(size_of(XXH64_canonical) == size_of(XXH64_hash))
h := u64be(hash)
mem_copy(&canonical, &h, size_of(canonical))
return
}
XXH64_hash_from_canonical :: proc(canonical: ^XXH64_canonical) -> (hash: XXH64_hash) {
h := (^u64be)(&canonical.digest)^
return XXH64_hash(h)
}
|