1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
|
// Reader for baseline `JPEG` images.
package jpeg
import "core:bytes"
import "core:compress"
import "core:math"
import "core:mem"
import "core:image"
import "core:slice"
import "core:strings"
Image :: image.Image
Error :: image.Error
Options :: image.Options
HUFFMAN_MAX_SYMBOLS :: 176
HUFFMAN_MAX_BITS :: 16
// 768 bytes of 24-bit RGB values.
THUMBNAIL_PALETTE_SIZE :: 768
BLOCK_SIZE :: 8
COEFFICIENT_COUNT :: BLOCK_SIZE * BLOCK_SIZE
SEGMENT_MAX_SIZE :: 65533
Coefficient :: enum u8 {
DC,
AC,
}
Component :: enum u8 {
Y = 1,
Cb = 2,
Cr = 3,
}
Huffman_Table :: struct {
symbols: [HUFFMAN_MAX_SYMBOLS]byte,
codes: [HUFFMAN_MAX_SYMBOLS]u32,
offsets: [HUFFMAN_MAX_BITS + 1]byte,
}
Quantization_Table :: [COEFFICIENT_COUNT]u16be
Color_Component :: struct {
dc_table_idx: u8,
ac_table_idx: u8,
quantization_table_idx: u8,
v_sampling_factor: int,
h_sampling_factor: int,
}
// 8x8 block of pixels
Block :: [Component][COEFFICIENT_COUNT]i16
@(private="file")
zigzag := [?]byte{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
}
@(optimization_mode="favor_size", private="file")
refill_msb :: #force_inline proc(z: ^compress.Context_Memory_Input, width := i8(48)) {
refill := u64(width)
b := u64(0)
if z.num_bits > refill {
return
}
for {
if len(z.input_data) != 0 {
b = u64(z.input_data[0])
if len(z.input_data) > 1 && b == 0xFF {
next := u64(z.input_data[1])
if next == 0x00 {
// 0x00 is used as a stuffing to indicate that the 0xFF is part of the data and not
// the beginning of a marker
z.input_data = z.input_data[2:]
} else if next >= cast(u64)image.JPEG_Marker.RST0 && next <= cast(u64)image.JPEG_Marker.RST7 {
// Skip any RSTn markers if we encounter them
if len(z.input_data) > 2 {
b = u64(z.input_data[2])
z.input_data = z.input_data[3:]
} else {
b = 0
}
}
} else {
z.input_data = z.input_data[1:]
}
} else {
b = 0
}
z.code_buffer |= ((b << 56) >> u8(z.num_bits))
z.num_bits += 8
if z.num_bits > refill {
break
}
}
}
@(optimization_mode="favor_size", private="file")
consume_bits_msb :: #force_inline proc(z: ^compress.Context_Memory_Input, width: u8) {
z.code_buffer <<= width
z.num_bits -= u64(width)
}
@(private="file")
byte_align :: #force_inline proc(z: ^compress.Context_Memory_Input) {
skip := z.num_bits % 8
consume_bits_msb(z, cast(u8)skip)
}
@(optimization_mode="favor_size", private="file")
peek_bits_msb :: #force_inline proc(z: ^compress.Context_Memory_Input, width: u8) -> u32 {
if z.num_bits < u64(width) {
refill_msb(z)
}
return u32((z.code_buffer &~ (max(u64) >> width)) >> (64 - width))
}
@(optimization_mode="favor_size", private="file")
read_bits_msb :: #force_inline proc(z: ^compress.Context_Memory_Input, width: u8) -> u32 {
k := #force_inline peek_bits_msb(z, width)
#force_inline consume_bits_msb(z, width)
return k
}
load_from_bytes :: proc(data: []byte, options := Options{}, allocator := context.allocator) -> (img: ^Image, err: Error) {
ctx := &compress.Context_Memory_Input{
input_data = data,
}
img, err = load_from_context(ctx, options, allocator)
return img, err
}
@(private="file")
get_symbol :: proc(ctx: ^$C, huffman_table: Huffman_Table) -> byte {
possible_code: u32 = 0
for i in 0..<HUFFMAN_MAX_BITS {
bit := read_bits_msb(ctx, 1)
possible_code = (possible_code << 1) | bit
for j := huffman_table.offsets[i]; j < huffman_table.offsets[i + 1]; j += 1 {
if possible_code == huffman_table.codes[j] {
return huffman_table.symbols[j]
}
}
}
return 0
}
load_from_context :: proc(ctx: ^$C, options := Options{}, allocator := context.allocator) -> (img: ^Image, err: Error) {
context.allocator = allocator
options := options
// Precalculate IDCT scaling factors
m0 := 2.0 * math.cos_f32(1.0 / 16.0 * 2.0 * math.PI)
m1 := 2.0 * math.cos_f32(2.0 / 16.0 * 2.0 * math.PI)
m3 := 2.0 * math.cos_f32(2.0 / 16.0 * 2.0 * math.PI)
m5 := 2.0 * math.cos_f32(3.0 / 16.0 * 2.0 * math.PI)
m2 := m0 - m5
m4 := m0 + m5
s0 := math.cos_f32(0.0 / 16.0 * math.PI) / math.sqrt_f32(8.0)
s1 := math.cos_f32(1.0 / 16.0 * math.PI) / 2.0
s2 := math.cos_f32(2.0 / 16.0 * math.PI) / 2.0
s3 := math.cos_f32(3.0 / 16.0 * math.PI) / 2.0
s4 := math.cos_f32(4.0 / 16.0 * math.PI) / 2.0
s5 := math.cos_f32(5.0 / 16.0 * math.PI) / 2.0
s6 := math.cos_f32(6.0 / 16.0 * math.PI) / 2.0
s7 := math.cos_f32(7.0 / 16.0 * math.PI) / 2.0
if .info in options {
options += {.return_metadata, .do_not_decompress_image}
options -= {.info}
}
if .return_header in options && .return_metadata in options {
options -= {.return_header}
}
if .do_not_expand_channels in options || .do_not_expand_grayscale in options {
return img, .Unsupported_Option
}
first := compress.read_u8(ctx) or_return
soi := cast(image.JPEG_Marker)compress.read_u8(ctx) or_return
if first != 0xFF && soi != .SOI {
return img, .Invalid_Signature
}
img = new(Image) or_return
img.which = .JPEG
expect_EOI := false
zero_based_components := false
huffman: [Coefficient][4]Huffman_Table
quantization: [4]Quantization_Table
color_components: [Component]Color_Component
restart_interval: int
// Image width and height in MCUs
mcu_width: int
mcu_height: int
// Image width and height in blocks
block_width: int
block_height: int
blocks: []Block
defer delete(blocks)
loop: for {
// Loop until we find 0xFF.
first = compress.read_u8(ctx) or_return
(first == 0xFF) or_continue
marker := cast(image.JPEG_Marker)compress.read_u8(ctx) or_return
if expect_EOI && marker != .EOI {
return img, .Extra_Data_After_SOS
}
#partial switch marker {
case cast(image.JPEG_Marker)0xFF:
// If we encounter multiple FF bytes then just skip them
continue
case .SOI:
return img, .Duplicate_SOI_Marker
case .APP0:
ident := make([dynamic]byte, 0, 16, context.temp_allocator) or_return
length := cast(int)((compress.read_data(ctx, u16be) or_return) - 2)
for {
b := compress.read_u8(ctx) or_return
if b == 0x00 {
break
}
append(&ident, b) or_return
}
if slice.equal(ident[:], image.JFIF_Magic[:]) {
if length != 14 {
// Malformed APP0. Skip it
compress.read_slice(ctx, length - len(ident) - 1) or_return
continue
}
version := compress.read_data(ctx, u16be) or_return
units := cast(image.JFIF_Unit)(compress.read_u8(ctx) or_return)
x_density := compress.read_data(ctx, u16be) or_return
y_density := compress.read_data(ctx, u16be) or_return
x_thumbnail := cast(int)compress.read_u8(ctx) or_return
y_thumbnail := cast(int)compress.read_u8(ctx) or_return
thumbnail: []image.RGB_Pixel
if x_thumbnail * y_thumbnail != 0 {
greyscale_thumbnail := false
thumbnail_size := x_thumbnail * y_thumbnail * 3
// According to the JFIF spec, the thumbnail should always be made of RGB pixels.
// But some jpegs encode single-channel thumbnails.
if thumbnail_size != length - 14 && thumbnail_size / 3 == length - 14 {
thumbnail_size = x_thumbnail * y_thumbnail
greyscale_thumbnail = true
} else {
return img, .Invalid_Thumbnail_Size
}
thumb_pixels := slice.reinterpret([]image.RGB_Pixel, compress.read_slice_from_memory(ctx, x_thumbnail * y_thumbnail) or_return)
if .return_metadata in options {
thumbnail = make([]image.RGB_Pixel, x_thumbnail * y_thumbnail) or_return
copy(thumbnail, thumb_pixels)
info: ^image.JPEG_Info
if img.metadata == nil {
info = new(image.JPEG_Info) or_return
} else {
info = img.metadata.(^image.JPEG_Info)
}
info.jfif_app0 = image.JFIF_APP0{
version,
x_density,
y_density,
units,
cast(u8)x_thumbnail,
cast(u8)y_thumbnail,
greyscale_thumbnail,
thumbnail,
}
img.metadata = info
}
}
} else if slice.equal(ident[:], image.JFXX_Magic[:]) {
extension_code := cast(image.JFXX_Extension_Code)compress.read_u8(ctx) or_return
thumbnail: []byte
switch extension_code {
// We return the JPEG-compressed bytes for this type of thumbnail.
// It's up to the user if they want to decode it by checking the extension code
// and calling image.load() on the thumbnail.
// Not sure where to document that though, maybe it's better if the thumbnail is always raw pixel data.
case .Thumbnail_JPEG:
// +1 for the NUL byte
thumbnail_len := length - (size_of(image.JFXX_Magic) + 1 + size_of(image.JFXX_Extension_Code))
thumbnail_jpeg := compress.read_slice(ctx, thumbnail_len) or_return
if .return_metadata in options {
thumbnail = make([]byte, thumbnail_len) or_return
copy(thumbnail, thumbnail_jpeg)
info: ^image.JPEG_Info
if img.metadata == nil {
info = new(image.JPEG_Info) or_return
} else {
info = img.metadata.(^image.JPEG_Info)
}
info.jfxx_app0 = image.JFXX_APP0{
extension_code,
0,
0,
thumbnail,
}
img.metadata = info
}
case .Thumbnail_3_Byte_RGB:
x_thumbnail := cast(int)compress.read_u8(ctx) or_return
y_thumbnail := cast(int)compress.read_u8(ctx) or_return
pixels := compress.read_slice(ctx, x_thumbnail * y_thumbnail * 3) or_return
if .return_metadata in options {
thumbnail = make([]byte, x_thumbnail * y_thumbnail * 3) or_return
copy(thumbnail, pixels)
info: ^image.JPEG_Info
if img.metadata == nil {
info = new(image.JPEG_Info) or_return
} else {
info = img.metadata.(^image.JPEG_Info)
}
info.jfxx_app0 = image.JFXX_APP0{
extension_code,
cast(u8)x_thumbnail,
cast(u8)y_thumbnail,
thumbnail,
}
img.metadata = info
}
case .Thumbnail_1_Byte_Palette: // NOTE(illusionman1212): NOT TESTED. Couldn't find a jpeg to test this with.
x_thumbnail := cast(int)compress.read_u8(ctx) or_return
y_thumbnail := cast(int)compress.read_u8(ctx) or_return
palette := slice.reinterpret([]image.RGB_Pixel, compress.read_slice(ctx, THUMBNAIL_PALETTE_SIZE / 3) or_return)
old_pixels := compress.read_slice(ctx, x_thumbnail * y_thumbnail) or_return
if .return_metadata in options {
pixels := make([]byte, x_thumbnail * y_thumbnail * 3) or_return
for i in 0..<x_thumbnail*y_thumbnail {
pixel := palette[old_pixels[i]]
pixels[i] = pixel.r
pixels[i + 1] = pixel.g
pixels[i + 2] = pixel.b
}
info: ^image.JPEG_Info
if img.metadata == nil {
info = new(image.JPEG_Info) or_return
} else {
info = img.metadata.(^image.JPEG_Info)
}
info.jfxx_app0 = image.JFXX_APP0{
extension_code,
cast(u8)x_thumbnail,
cast(u8)y_thumbnail,
pixels,
}
img.metadata = info
}
case:
return img, .Invalid_JFXX_Extension_Code
}
} else {
// - 1 for the NUL byte
compress.read_slice(ctx, length - len(ident) - 1) or_return
continue
}
case .APP1: // Metadata
length := cast(int)((compress.read_data(ctx, u16be) or_return) - 2)
if .return_metadata not_in options {
compress.read_slice(ctx, length) or_return
continue
}
info: ^image.JPEG_Info
if img.metadata == nil {
info = new(image.JPEG_Info) or_return
} else {
info = img.metadata.(^image.JPEG_Info)
}
ident := make([dynamic]byte, 0, 16, context.temp_allocator) or_return
for {
b := compress.read_u8(ctx) or_return
if b == 0x00 {
break
}
append(&ident, b) or_return
}
if slice.equal(ident[:], image.Exif_Magic[:]) {
// Padding byte according to section 4.7.2.2 in Exif spec 3.0
compress.read_u8(ctx) or_return
exif: image.Exif
peek := compress.peek_data(ctx, [4]byte) or_return
if peek[0] == 'M' && peek[1] == 'M' {
exif.byte_order = .big_endian
if peek[2] != 0 || peek[3] != 42 {
// - 2 for the NUL byte and padding byte
compress.read_slice(ctx, length - len(ident) - 2) or_return
continue
}
} else if peek[0] == 'I' && peek[1] == 'I' {
exif.byte_order = .little_endian
if peek[2] != 42 || peek[3] != 0 {
compress.read_slice(ctx, length - len(ident) - 2) or_return
continue
}
} else {
// If we can't determine the endianness then this Exif data is likely a continuation of the previous
// APP1 Exif data
// We only treat it as such if a previous Exif entry exists and its data length is the max
if len(info.exif) > 0 && len(info.exif[len(info.exif) - 1].data) == SEGMENT_MAX_SIZE - len(ident) - 2 {
exif.byte_order = info.exif[len(info.exif) - 1].byte_order
} else {
compress.read_slice(ctx, length - len(ident) - 2) or_return
continue
}
}
// - 2 for the NUL byte and padding byte
data := compress.read_slice(ctx, length - len(ident) - 2) or_return
exif.data = make([]byte, len(data)) or_return
copy(exif.data, data)
append(&info.exif, exif) or_return
img.metadata = info
} else {
// - 1 for the NUL byte
compress.read_slice(ctx, length - len(ident) - 1) or_return
continue
}
case .COM:
length := (compress.read_data(ctx, u16be) or_return) - 2
comment := string(compress.read_slice(ctx, cast(int)length) or_return)
if .return_metadata in options {
if info, ok := img.metadata.(^image.JPEG_Info); ok {
append(&info.comments, strings.clone(comment)) or_return
}
}
case .DQT:
length := cast(int)(compress.read_data(ctx, u16be) or_return) - 2
for length > 0 {
precision_and_index := compress.read_u8(ctx) or_return
precision := precision_and_index >> 4
index := precision_and_index & 0xF
if precision != 0 && precision != 1 {
return img, .Invalid_Quantization_Table_Precision
}
if index < 0 || index > 3 {
return img, .Invalid_Quantization_Table_Index
}
// When precision is 0, we read 64 u8s.
// when it's 1, we read 64 u16s.
table_bytes := 64
if precision == 1 {
table_bytes = 128
table := compress.read_slice(ctx, table_bytes) or_return
for v, i in slice.reinterpret([]u16be, table) {
quantization[index][i] = v
}
} else {
table := compress.read_slice(ctx, table_bytes) or_return
for v, i in table {
quantization[index][i] = cast(u16be)v
}
}
length -= table_bytes + 1
}
case .DHT:
length := (compress.read_data(ctx, u16be) or_return) - 2
for length > 0 {
type_index := compress.read_u8(ctx) or_return
type := cast(Coefficient)((type_index >> 4) & 0xF)
index := type_index & 0xF
if type != .DC && type != .AC {
return img, .Invalid_Huffman_Coefficient_Type
}
if index < 0 || index > 3 {
return img, .Invalid_Huffman_Table_Index
}
lengths := compress.read_slice(ctx, HUFFMAN_MAX_BITS) or_return
num_symbols: u8 = 0
for length, i in lengths {
num_symbols += length
huffman[type][index].offsets[i + 1] = num_symbols
}
if num_symbols > HUFFMAN_MAX_SYMBOLS {
return img, .Huffman_Symbols_Exceeds_Max
}
symbols := compress.read_slice(ctx, cast(int)num_symbols) or_return
copy(huffman[type][index].symbols[:], symbols)
length -= cast(u16be)(1 + HUFFMAN_MAX_BITS + num_symbols)
code: u32 = 0
for i in 0..<HUFFMAN_MAX_BITS {
for j := huffman[type][index].offsets[i]; j < huffman[type][index].offsets[i + 1]; j += 1 {
huffman[type][index].codes[j] = code
code += 1
}
code <<= 1
}
}
case .EOI:
break loop
case .DRI:
// Length
compress.read_data(ctx, u16be) or_return
restart_interval = cast(int)compress.read_data(ctx, u16be) or_return
case .RST0..=.RST7: // Handled by the bit reader. These shouldn't appear outside the entropy coded stream.
return img, .Encountered_RST_Marker_Outside_ECS
case .SOF0, .SOF1: // Baseline sequential DCT, and extended sequential DCT
if img.channels != 0 {
return img, .Multiple_SOS_Markers
}
// Length
compress.read_data(ctx, u16be) or_return
precision := compress.read_u8(ctx) or_return
height := compress.read_data(ctx, u16be) or_return
width := compress.read_data(ctx, u16be) or_return
components := compress.read_u8(ctx) or_return
img.width = cast(int)width
img.height = cast(int)height
img.depth = cast(int)precision
img.channels = cast(int)components
// TODO: 12-bit precision is valid too but we don't support it.
if precision == 12 {
return img, .Unsupported_12_Bit_Depth
}
if precision != 8 {
return img, .Invalid_Frame_Bit_Depth_Combo
}
// TODO: spec allows for the height to be 0 on the condition that a DNL marker MUST exist to define
// how many lines in the frame we have.
// ISO/IEC 10918-1: 1993.
// Section B.2.5
if img.width == 0 || img.height == 0 {
return img, .Invalid_Image_Dimensions
}
if u128(img.width) * u128(img.height) > image.MAX_DIMENSIONS {
return img, .Image_Dimensions_Too_Large
}
// TODO: Some JPEGs use CMYK as the color model which means there will be 4 components
if components != 1 && components != 3 {
return img, .Invalid_Number_Of_Channels
}
if img.metadata != nil {
info := img.metadata.(^image.JPEG_Info)
info.frame_type = marker
}
mcu_width = (img.width + 7) / BLOCK_SIZE
mcu_height = (img.height + 7) / BLOCK_SIZE
block_width = mcu_width
block_height = mcu_height
for _ in 0..<components {
id := cast(Component)compress.read_u8(ctx) or_return
if id == Component(0) {
zero_based_components = true
}
if zero_based_components {
id += Component(1)
}
// TODO: while others that use CMYK have these IDs 67, 77, 89, 75 which are CMYK in ASCII
// TODO: even more weird ids. 82, 71, 66 which is RGB in ASCII
if id < .Y || id > .Cr {
return img, .Image_Does_Not_Adhere_to_Spec
}
h_v_factors := compress.read_u8(ctx) or_return
horizontal_sampling := h_v_factors >> 4
vertical_sampling := h_v_factors & 0xF
// TODO: spec says the range for the sampling factors is 1-4
// We only support 1,2 for now.
if horizontal_sampling < 1 || horizontal_sampling > 2 {
return img, .Invalid_Sampling_Factor
}
if vertical_sampling < 1 || vertical_sampling > 2 {
return img, .Invalid_Sampling_Factor
}
if id == .Y {
if horizontal_sampling == 2 && mcu_width % 2 == 1 {
block_width += 1
}
if vertical_sampling == 2 && mcu_height % 2 == 1 {
block_height += 1
}
} else {
if horizontal_sampling != 1 && vertical_sampling != 1 {
return img, .Invalid_Sampling_Factor
}
}
quantization_table_idx := compress.read_u8(ctx) or_return
if quantization_table_idx < 0 || quantization_table_idx > 3 {
return img, .Invalid_Quantization_Table_Index
}
color_components[id].quantization_table_idx = quantization_table_idx
color_components[id].v_sampling_factor = cast(int)vertical_sampling
color_components[id].h_sampling_factor = cast(int)horizontal_sampling
}
case .SOF2, // Progressive DCT
.SOF3, // Lossless (sequential)
.SOF5, // Differential sequential DCT
.SOF6, // Differential progressive DCT
.SOF7, // Differential lossless (sequential)
.SOF9, // Extended sequential DCT, Arithmetic coding
.SOF10, // Progressive DCT, Arithmetic coding
.SOF11, // Lossless (sequential), Arithmetic coding
.SOF13, // Differential sequential DCT, Arithmetic coding
.SOF14, // Differential progressive DCT, Arithmetic coding
.SOF15: // Differential lossless (sequential), Arithmetic coding
if img.metadata != nil {
info := img.metadata.(^image.JPEG_Info)
info.frame_type = marker
}
return img, .Unsupported_Frame_Type
case .SOS:
if img.channels == 0 && img.depth == 0 && img.width == 0 && img.height == 0 {
return img, .Encountered_SOS_Before_SOF
}
if .do_not_decompress_image in options {
return img, nil
}
// Length
compress.read_data(ctx, u16be) or_return
num_components := compress.read_u8(ctx) or_return
if num_components != 1 && num_components != 3 {
return img, .Invalid_Number_Of_Channels
}
for _ in 0..<num_components {
component_id := cast(Component)compress.read_u8(ctx) or_return
if zero_based_components {
component_id += Component(1)
}
if component_id < .Y || component_id > .Cr {
return img, .Image_Does_Not_Adhere_to_Spec
}
// high 4 is DC, low 4 is AC
coefficient_indices := compress.read_u8(ctx) or_return
dc_table_idx := coefficient_indices >> 4
ac_table_idx := coefficient_indices & 0xF
if (dc_table_idx < 0 || dc_table_idx > 3) || (ac_table_idx < 0 || ac_table_idx > 3) {
return img, .Invalid_Huffman_Table_Index
}
color_components[component_id].dc_table_idx = dc_table_idx
color_components[component_id].ac_table_idx = ac_table_idx
}
// TODO: These aren't used for sequential DCT, only progressive and lossless.
Ss := compress.read_u8(ctx) or_return
_ = Ss
Se := compress.read_u8(ctx) or_return
_ = Se
Ah_Al := compress.read_u8(ctx) or_return
_ = Ah_Al
blocks = make([]Block, block_height * block_width) or_return
previous_dc: [Component]i16
luma_v_sampling_factor := color_components[.Y].v_sampling_factor
luma_h_sampling_factor := color_components[.Y].h_sampling_factor
restart_interval *= luma_v_sampling_factor * luma_h_sampling_factor
#no_bounds_check for y := 0; y < mcu_height; y += luma_v_sampling_factor {
for x := 0; x < mcu_width; x += luma_h_sampling_factor {
blk := y * block_width + x
if restart_interval != 0 && blk % restart_interval == 0 {
previous_dc[.Y] = 0
previous_dc[.Cb] = 0
previous_dc[.Cr] = 0
byte_align(ctx)
}
for c in 1..=img.channels {
c := cast(Component)c
for v in 0..<color_components[c].v_sampling_factor {
h_loop:
for h in 0..<color_components[c].h_sampling_factor {
mcu := &blocks[(y + v) * block_width + (h + x)][c]
dc_table := huffman[.DC][color_components[c].dc_table_idx]
ac_table := huffman[.AC][color_components[c].ac_table_idx]
quantization_table := quantization[color_components[c].quantization_table_idx]
length := get_symbol(ctx, dc_table)
if length > 11 {
return img, .Corrupt
}
dc_coeff := cast(i16)read_bits_msb(ctx, length)
if length != 0 && dc_coeff < (1 << (length - 1)) {
dc_coeff -= (1 << length) - 1
}
mcu[0] = (dc_coeff + previous_dc[c]) * cast(i16)quantization_table[0]
previous_dc[c] = dc_coeff + previous_dc[c]
for i := 1; i < COEFFICIENT_COUNT; i += 1 {
// High nibble is amount of 0s to skip.
// Low nibble is length of coeff.
symbol := get_symbol(ctx, ac_table)
// Special symbol used to indicate
// that the rest of the MCU is filled with 0s
if symbol == 0x00 {
continue h_loop
}
amnt_zeros := int(symbol >> 4)
ac_coeff_len := symbol & 0xF
ac_coeff: i16 = 0
if i + amnt_zeros >= COEFFICIENT_COUNT || ac_coeff_len > 10 {
return img, .Corrupt
}
i += amnt_zeros
ac_coeff = cast(i16)read_bits_msb(ctx, ac_coeff_len)
if ac_coeff < (1 << (ac_coeff_len - 1)) {
ac_coeff -= (1 << ac_coeff_len) - 1
}
mcu[zigzag[i]] = ac_coeff * cast(i16)quantization_table[i]
}
}
}
}
for c in 1..=img.channels {
c := cast(Component)c
for v in 0..<color_components[c].v_sampling_factor {
for h in 0..< color_components[c].h_sampling_factor {
mcu := &blocks[(y + v) * block_width + (x + h)][c]
for i in 0..<BLOCK_SIZE {
g0 := cast(f32)mcu[0 * BLOCK_SIZE + i] * s0
g1 := cast(f32)mcu[4 * BLOCK_SIZE + i] * s4
g2 := cast(f32)mcu[2 * BLOCK_SIZE + i] * s2
g3 := cast(f32)mcu[6 * BLOCK_SIZE + i] * s6
g4 := cast(f32)mcu[5 * BLOCK_SIZE + i] * s5
g5 := cast(f32)mcu[1 * BLOCK_SIZE + i] * s1
g6 := cast(f32)mcu[7 * BLOCK_SIZE + i] * s7
g7 := cast(f32)mcu[3 * BLOCK_SIZE + i] * s3
f4 := g4 - g7
f5 := g5 + g6
f6 := g5 - g6
f7 := g4 + g7
e0 := g0
e1 := g1
e2 := g2 - g3
e3 := g2 + g3
e4 := f4
e5 := f5 - f7
e6 := f6
e7 := f5 + f7
e8 := f4 + f6
d0 := e0
d1 := e1
d2 := e2 * m1
d3 := e3
d4 := e4 * m2
d5 := e5 * m3
d6 := e6 * m4
d7 := e7
d8 := e8 * m5
c0 := d0 + d1
c1 := d0 - d1
c2 := d2 - d3
c3 := d3
c4 := d4 + d8
c5 := d5 + d7
c6 := d6 - d8
c7 := d7
c8 := c5 - c6
b0 := c0 + c3
b1 := c1 + c2
b2 := c1 - c2
b3 := c0 - c3
b4 := c4 - c8
b5 := c8
b6 := c6 - c7
b7 := c7
mcu[0 * BLOCK_SIZE + i] = cast(i16)(b0 + b7)
mcu[1 * BLOCK_SIZE + i] = cast(i16)(b1 + b6)
mcu[2 * BLOCK_SIZE + i] = cast(i16)(b2 + b5)
mcu[3 * BLOCK_SIZE + i] = cast(i16)(b3 + b4)
mcu[4 * BLOCK_SIZE + i] = cast(i16)(b3 - b4)
mcu[5 * BLOCK_SIZE + i] = cast(i16)(b2 - b5)
mcu[6 * BLOCK_SIZE + i] = cast(i16)(b1 - b6)
mcu[7 * BLOCK_SIZE + i] = cast(i16)(b0 - b7)
}
for i in 0..<BLOCK_SIZE {
g0 := cast(f32)mcu[i * BLOCK_SIZE + 0] * s0
g1 := cast(f32)mcu[i * BLOCK_SIZE + 4] * s4
g2 := cast(f32)mcu[i * BLOCK_SIZE + 2] * s2
g3 := cast(f32)mcu[i * BLOCK_SIZE + 6] * s6
g4 := cast(f32)mcu[i * BLOCK_SIZE + 5] * s5
g5 := cast(f32)mcu[i * BLOCK_SIZE + 1] * s1
g6 := cast(f32)mcu[i * BLOCK_SIZE + 7] * s7
g7 := cast(f32)mcu[i * BLOCK_SIZE + 3] * s3
f4 := g4 - g7
f5 := g5 + g6
f6 := g5 - g6
f7 := g4 + g7
e0 := g0
e1 := g1
e2 := g2 - g3
e3 := g2 + g3
e4 := f4
e5 := f5 - f7
e6 := f6
e7 := f5 + f7
e8 := f4 + f6
d0 := e0
d1 := e1
d2 := e2 * m1
d3 := e3
d4 := e4 * m2
d5 := e5 * m3
d6 := e6 * m4
d7 := e7
d8 := e8 * m5
c0 := d0 + d1
c1 := d0 - d1
c2 := d2 - d3
c3 := d3
c4 := d4 + d8
c5 := d5 + d7
c6 := d6 - d8
c7 := d7
c8 := c5 - c6
b0 := c0 + c3
b1 := c1 + c2
b2 := c1 - c2
b3 := c0 - c3
b4 := c4 - c8
b5 := c8
b6 := c6 - c7
b7 := c7
mcu[i * BLOCK_SIZE + 0] = cast(i16)(b0 + b7)
mcu[i * BLOCK_SIZE + 1] = cast(i16)(b1 + b6)
mcu[i * BLOCK_SIZE + 2] = cast(i16)(b2 + b5)
mcu[i * BLOCK_SIZE + 3] = cast(i16)(b3 + b4)
mcu[i * BLOCK_SIZE + 4] = cast(i16)(b3 - b4)
mcu[i * BLOCK_SIZE + 5] = cast(i16)(b2 - b5)
mcu[i * BLOCK_SIZE + 6] = cast(i16)(b1 - b6)
mcu[i * BLOCK_SIZE + 7] = cast(i16)(b0 - b7)
}
}
}
}
// Convert the YCbCr pixel data to RGB
cbcr_blk := &blocks[y * block_width + x]
for v := luma_v_sampling_factor - 1; v >= 0; v -= 1 {
for h := luma_h_sampling_factor - 1; h >= 0; h -= 1 {
y_blk := &blocks[(y + v) * block_width + (x + h)]
for j := BLOCK_SIZE - 1; j >= 0; j -= 1 {
for k := BLOCK_SIZE - 1; k >= 0; k -= 1 {
i := j * BLOCK_SIZE + k
cbcr_pixel_row := j / luma_v_sampling_factor + 4 * v
cbcr_pixel_column := k / luma_h_sampling_factor + 4 * h
cbcr_pixel := cbcr_pixel_row * BLOCK_SIZE + cbcr_pixel_column
r := cast(i16)clamp(cast(f32)y_blk[.Y][i] + 1.402 * cast(f32)cbcr_blk[.Cr][cbcr_pixel] + 128, 0, 255)
g := cast(i16)clamp(cast(f32)y_blk[.Y][i] - 0.344 * cast(f32)cbcr_blk[.Cb][cbcr_pixel] - 0.714 * cast(f32)cbcr_blk[.Cr][cbcr_pixel] + 128, 0, 255)
b := cast(i16)clamp(cast(f32)y_blk[.Y][i] + 1.772 * cast(f32)cbcr_blk[.Cb][cbcr_pixel] + 128, 0, 255)
y_blk[.Y][i] = r
y_blk[.Cb][i] = g
y_blk[.Cr][i] = b
}
}
}
}
}
}
orig_channels := img.channels
// We automatically expand grayscale images to RGB
if img.channels == 1 {
img.channels += 2
}
if .alpha_add_if_missing in options {
img.channels += 1
orig_channels += 1
}
if resize(&img.pixels.buf, img.width * img.height * img.channels) != nil {
return img, .Unable_To_Allocate_Or_Resize
}
switch orig_channels {
case 1: // Grayscale JPEG expanded to RGB
out := mem.slice_data_cast([]image.RGB_Pixel, img.pixels.buf[:])
out_idx := 0
for y in 0..<img.height {
mcu_row := y / BLOCK_SIZE
pixel_row := y % BLOCK_SIZE
for x in 0..<img.width {
mcu_col := x / BLOCK_SIZE
pixel_col := x % BLOCK_SIZE
mcu_idx := mcu_row * block_width + mcu_col
pixel_idx := pixel_row * BLOCK_SIZE + pixel_col
luma := cast(byte)blocks[mcu_idx][.Y][pixel_idx]
out[out_idx] = {luma, luma, luma}
out_idx += 1
}
}
case 2: // Grayscale JPEG expanded to RGBA
out := mem.slice_data_cast([]image.RGBA_Pixel, img.pixels.buf[:])
out_idx := 0
for y in 0..<img.height {
mcu_row := y / BLOCK_SIZE
pixel_row := y % BLOCK_SIZE
for x in 0..<img.width {
mcu_col := x / BLOCK_SIZE
pixel_col := x % BLOCK_SIZE
mcu_idx := mcu_row * block_width + mcu_col
pixel_idx := pixel_row * BLOCK_SIZE + pixel_col
luma := cast(byte)blocks[mcu_idx][.Y][pixel_idx]
out[out_idx] = {luma, luma, luma, 255}
out_idx += 1
}
}
case 3:
out := mem.slice_data_cast([]image.RGB_Pixel, img.pixels.buf[:])
out_idx := 0
for y in 0..<img.height {
mcu_row := y / BLOCK_SIZE
pixel_row := y % BLOCK_SIZE
for x in 0..<img.width {
mcu_col := x / BLOCK_SIZE
pixel_col := x % BLOCK_SIZE
mcu_idx := mcu_row * block_width + mcu_col
pixel_idx := pixel_row * BLOCK_SIZE + pixel_col
out[out_idx] = {
cast(byte)blocks[mcu_idx][.Y][pixel_idx],
cast(byte)blocks[mcu_idx][.Cb][pixel_idx],
cast(byte)blocks[mcu_idx][.Cr][pixel_idx],
}
out_idx += 1
}
}
case 4:
out := mem.slice_data_cast([]image.RGBA_Pixel, img.pixels.buf[:])
out_idx := 0
for y in 0..<img.height {
mcu_row := y / BLOCK_SIZE
pixel_row := y % BLOCK_SIZE
for x in 0..<img.width {
mcu_col := x / BLOCK_SIZE
pixel_col := x % BLOCK_SIZE
mcu_idx := mcu_row * block_width + mcu_col
pixel_idx := pixel_row * BLOCK_SIZE + pixel_col
out[out_idx] = {
cast(byte)blocks[mcu_idx][.Y][pixel_idx],
cast(byte)blocks[mcu_idx][.Cb][pixel_idx],
cast(byte)blocks[mcu_idx][.Cr][pixel_idx],
255, // Alpha
}
out_idx += 1
}
}
}
expect_EOI = true
case .TEM:
// TEM doesn't have a length, continue to next marker
case:
length := (compress.read_data(ctx, u16be) or_return) - 2
compress.read_slice_from_memory(ctx, cast(int)length) or_return
}
}
return
}
destroy :: proc(img: ^Image) {
if img == nil {
return
}
bytes.buffer_destroy(&img.pixels)
if v, ok := img.metadata.(^image.JPEG_Info); ok {
if jfxx, jfxx_ok := v.jfxx_app0.?; jfxx_ok {
delete(jfxx.thumbnail)
}
if jfif, jfif_ok := v.jfif_app0.?; jfif_ok {
delete(jfif.thumbnail)
}
for comment in v.comments {
delete(comment)
}
delete(v.comments)
for exif in v.exif {
delete(exif.data)
}
delete(v.exif)
free(v)
}
free(img)
}
@(init, private)
_register :: proc "contextless" () {
image.register(.JPEG, load_from_bytes, destroy)
}
|