1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
List of contributors:
Jeroen van Rijn: Initial implementation.
Ginger Bill: Cosmetic changes.
An example of how to use `load`.
*/
//+build ignore
package png
import "core:image"
// import "core:image/png"
import "core:bytes"
import "core:fmt"
// For PPM writer
import "core:mem"
import "core:os"
main :: proc() {
track := mem.Tracking_Allocator{}
mem.tracking_allocator_init(&track, context.allocator)
context.allocator = mem.tracking_allocator(&track)
demo()
if len(track.allocation_map) > 0 {
fmt.println("Leaks:")
for _, v in track.allocation_map {
fmt.printf("\t%v\n\n", v)
}
}
}
demo :: proc() {
file: string
options := image.Options{.return_metadata}
err: image.Error
img: ^image.Image
file = "../../../misc/logo-slim.png"
img, err = load(file, options)
defer destroy(img)
if err != nil {
fmt.printf("Trying to read PNG file %v returned %v\n", file, err)
} else {
fmt.printf("Image: %vx%vx%v, %v-bit.\n", img.width, img.height, img.channels, img.depth)
if v, ok := img.metadata.(^image.PNG_Info); ok {
// Handle ancillary chunks as you wish.
// We provide helper functions for a few types.
for c in v.chunks {
#partial switch c.header.type {
case .tIME:
if t, t_ok := core_time(c); t_ok {
fmt.printf("[tIME]: %v\n", t)
}
case .gAMA:
if gama, gama_ok := gamma(c); gama_ok {
fmt.printf("[gAMA]: %v\n", gama)
}
case .pHYs:
if phys, phys_ok := phys(c); phys_ok {
if phys.unit == .Meter {
xm := f32(img.width) / f32(phys.ppu_x)
ym := f32(img.height) / f32(phys.ppu_y)
dpi_x, dpi_y := phys_to_dpi(phys)
fmt.printf("[pHYs] Image resolution is %v x %v pixels per meter.\n", phys.ppu_x, phys.ppu_y)
fmt.printf("[pHYs] Image resolution is %v x %v DPI.\n", dpi_x, dpi_y)
fmt.printf("[pHYs] Image dimensions are %v x %v meters.\n", xm, ym)
} else {
fmt.printf("[pHYs] x: %v, y: %v pixels per unknown unit.\n", phys.ppu_x, phys.ppu_y)
}
}
case .iTXt, .zTXt, .tEXt:
res, ok_text := text(c)
if ok_text {
if c.header.type == .iTXt {
fmt.printf("[iTXt] %v (%v:%v): %v\n", res.keyword, res.language, res.keyword_localized, res.text)
} else {
fmt.printf("[tEXt/zTXt] %v: %v\n", res.keyword, res.text)
}
}
defer text_destroy(res)
case .bKGD:
fmt.printf("[bKGD] %v\n", img.background)
case .eXIf:
if res, ok_exif := exif(c); ok_exif {
/*
Other than checking the signature and byte order, we don't handle Exif data.
If you wish to interpret it, pass it to an Exif parser.
*/
fmt.printf("[eXIf] %v\n", res)
}
case .PLTE:
if plte, plte_ok := plte(c); plte_ok {
fmt.printf("[PLTE] %v\n", plte)
} else {
fmt.printf("[PLTE] Error\n")
}
case .hIST:
if res, ok_hist := hist(c); ok_hist {
fmt.printf("[hIST] %v\n", res)
}
case .cHRM:
if res, ok_chrm := chrm(c); ok_chrm {
fmt.printf("[cHRM] %v\n", res)
}
case .sPLT:
res, ok_splt := splt(c)
if ok_splt {
fmt.printf("[sPLT] %v\n", res)
}
splt_destroy(res)
case .sBIT:
if res, ok_sbit := sbit(c); ok_sbit {
fmt.printf("[sBIT] %v\n", res)
}
case .iCCP:
res, ok_iccp := iccp(c)
if ok_iccp {
fmt.printf("[iCCP] %v\n", res)
}
iccp_destroy(res)
case .sRGB:
if res, ok_srgb := srgb(c); ok_srgb {
fmt.printf("[sRGB] Rendering intent: %v\n", res)
}
case:
type := c.header.type
name := chunk_type_to_name(&type)
fmt.printf("[%v]: %v\n", name, c.data)
}
}
}
}
fmt.printf("Done parsing metadata.\n")
if err == nil && .do_not_decompress_image not_in options && .info not_in options {
if ok := write_image_as_ppm("out.ppm", img); ok {
fmt.println("Saved decoded image.")
} else {
fmt.println("Error saving out.ppm.")
fmt.println(img)
}
}
}
// Crappy PPM writer used during testing. Don't use in production.
write_image_as_ppm :: proc(filename: string, image: ^image.Image) -> (success: bool) {
_bg :: proc(bg: Maybe([3]u16), x, y: int, high := true) -> (res: [3]u16) {
if v, ok := bg.?; ok {
res = v
} else {
if high {
l := u16(30 * 256 + 30)
if (x & 4 == 0) ~ (y & 4 == 0) {
res = [3]u16{l, 0, l}
} else {
res = [3]u16{l >> 1, 0, l >> 1}
}
} else {
if (x & 4 == 0) ~ (y & 4 == 0) {
res = [3]u16{30, 30, 30}
} else {
res = [3]u16{15, 15, 15}
}
}
}
return
}
// profiler.timed_proc();
using image
using os
flags: int = O_WRONLY|O_CREATE|O_TRUNC
img := image
// PBM 16-bit images are big endian
when ODIN_ENDIAN == .Little {
if img.depth == 16 {
// The pixel components are in Big Endian. Let's byteswap back.
input := mem.slice_data_cast([]u16, img.pixels.buf[:])
output := mem.slice_data_cast([]u16be, img.pixels.buf[:])
#no_bounds_check for v, i in input {
output[i] = u16be(v)
}
}
}
pix := bytes.buffer_to_bytes(&img.pixels)
if len(pix) == 0 || len(pix) < image.width * image.height * int(image.channels) {
return false
}
mode: int = 0
when ODIN_OS == .Linux || ODIN_OS == .Darwin {
// NOTE(justasd): 644 (owner read, write; group read; others read)
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH
}
fd, err := open(filename, flags, mode)
if err != 0 {
return false
}
defer close(fd)
write_string(fd,
fmt.tprintf("P6\n%v %v\n%v\n", width, height, uint(1 << uint(depth) - 1)),
)
if channels == 3 {
// We don't handle transparency here...
write_ptr(fd, raw_data(pix), len(pix))
} else {
bpp := depth == 16 ? 2 : 1
bytes_needed := width * height * 3 * bpp
op := bytes.Buffer{}
bytes.buffer_init_allocator(&op, bytes_needed, bytes_needed)
defer bytes.buffer_destroy(&op)
if channels == 1 {
if depth == 16 {
assert(len(pix) == width * height * 2)
p16 := mem.slice_data_cast([]u16, pix)
o16 := mem.slice_data_cast([]u16, op.buf[:])
#no_bounds_check for len(p16) != 0 {
r := u16(p16[0])
o16[0] = r
o16[1] = r
o16[2] = r
p16 = p16[1:]
o16 = o16[3:]
}
} else {
o := 0
for i := 0; i < len(pix); i += 1 {
r := pix[i]
op.buf[o ] = r
op.buf[o+1] = r
op.buf[o+2] = r
o += 3
}
}
write_ptr(fd, raw_data(op.buf), len(op.buf))
} else if channels == 2 {
if depth == 16 {
p16 := mem.slice_data_cast([]u16, pix)
o16 := mem.slice_data_cast([]u16, op.buf[:])
bgcol := img.background
#no_bounds_check for len(p16) != 0 {
r := f64(u16(p16[0]))
bg: f64
if bgcol != nil {
v := bgcol.([3]u16)[0]
bg = f64(v)
}
a := f64(u16(p16[1])) / 65535.0
l := (a * r) + (1 - a) * bg
o16[0] = u16(l)
o16[1] = u16(l)
o16[2] = u16(l)
p16 = p16[2:]
o16 = o16[3:]
}
} else {
o := 0
for i := 0; i < len(pix); i += 2 {
r := pix[i]; a := pix[i+1]; a1 := f32(a) / 255.0
c := u8(f32(r) * a1)
op.buf[o ] = c
op.buf[o+1] = c
op.buf[o+2] = c
o += 3
}
}
write_ptr(fd, raw_data(op.buf), len(op.buf))
} else if channels == 4 {
if depth == 16 {
p16 := mem.slice_data_cast([]u16be, pix)
o16 := mem.slice_data_cast([]u16be, op.buf[:])
#no_bounds_check for len(p16) != 0 {
bg := _bg(img.background, 0, 0)
r := f32(p16[0])
g := f32(p16[1])
b := f32(p16[2])
a := f32(p16[3]) / 65535.0
lr := (a * r) + (1 - a) * f32(bg[0])
lg := (a * g) + (1 - a) * f32(bg[1])
lb := (a * b) + (1 - a) * f32(bg[2])
o16[0] = u16be(lr)
o16[1] = u16be(lg)
o16[2] = u16be(lb)
p16 = p16[4:]
o16 = o16[3:]
}
} else {
o := 0
for i := 0; i < len(pix); i += 4 {
x := (i / 4) % width
y := i / width / 4
_b := _bg(img.background, x, y, false)
bgcol := [3]u8{u8(_b[0]), u8(_b[1]), u8(_b[2])}
r := f32(pix[i])
g := f32(pix[i+1])
b := f32(pix[i+2])
a := f32(pix[i+3]) / 255.0
lr := u8(f32(r) * a + (1 - a) * f32(bgcol[0]))
lg := u8(f32(g) * a + (1 - a) * f32(bgcol[1]))
lb := u8(f32(b) * a + (1 - a) * f32(bgcol[2]))
op.buf[o ] = lr
op.buf[o+1] = lg
op.buf[o+2] = lb
o += 3
}
}
write_ptr(fd, raw_data(op.buf), len(op.buf))
} else {
return false
}
}
return true
}
|