1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
package png
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-2 license.
List of contributors:
Jeroen van Rijn: Initial implementation.
Ginger Bill: Cosmetic changes.
These are a few useful utility functions to work with PNG images.
*/
import "core:image"
import "core:compress/zlib"
import coretime "core:time"
import "core:strings"
import "core:bytes"
import "core:mem"
import "base:runtime"
/*
Cleanup of image-specific data.
There are other helpers for cleanup of PNG-specific data.
Those are named *_destroy, where * is the name of the helper.
*/
destroy :: proc(img: ^Image) {
if img == nil {
/*
Nothing to do.
Load must've returned with an error.
*/
return
}
bytes.buffer_destroy(&img.pixels)
if v, ok := img.metadata.(^image.PNG_Info); ok {
for chunk in v.chunks {
delete(chunk.data)
}
delete(v.chunks)
free(v)
}
free(img)
}
/*
Chunk helpers
*/
gamma :: proc(c: image.PNG_Chunk) -> (res: f32, ok: bool) {
if c.header.type != .gAMA || len(c.data) != size_of(gAMA) {
return {}, false
}
gama := (^gAMA)(raw_data(c.data))^
return f32(gama.gamma_100k) / 100_000.0, true
}
INCHES_PER_METER :: 1000.0 / 25.4
phys :: proc(c: image.PNG_Chunk) -> (res: pHYs, ok: bool) {
if c.header.type != .pHYs || len(c.data) != size_of(pHYs) {
return {}, false
}
return (^pHYs)(raw_data(c.data))^, true
}
phys_to_dpi :: proc(p: pHYs) -> (x_dpi, y_dpi: f32) {
return f32(p.ppu_x) / INCHES_PER_METER, f32(p.ppu_y) / INCHES_PER_METER
}
time :: proc(c: image.PNG_Chunk) -> (res: tIME, ok: bool) {
if c.header.type != .tIME || len(c.data) != size_of(tIME) {
return {}, false
}
return (^tIME)(raw_data(c.data))^, true
}
core_time :: proc(c: image.PNG_Chunk) -> (t: coretime.Time, ok: bool) {
if t, png_ok := time(c); png_ok {
return coretime.datetime_to_time(
int(t.year), int(t.month), int(t.day),
int(t.hour), int(t.minute), int(t.second),
)
} else {
return {}, false
}
}
text :: proc(c: image.PNG_Chunk) -> (res: Text, ok: bool) {
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD(ignore = context.temp_allocator == context.allocator)
assert(len(c.data) == int(c.header.length))
#partial switch c.header.type {
case .tEXt:
ok = true
fields := bytes.split(c.data, sep=[]u8{0}, allocator=context.temp_allocator)
if len(fields) == 2 {
res.keyword = strings.clone(string(fields[0]))
res.text = strings.clone(string(fields[1]))
} else {
ok = false
}
return
case .zTXt:
ok = true
fields := bytes.split_n(c.data, sep=[]u8{0}, n=3, allocator=context.temp_allocator)
if len(fields) != 3 || len(fields[1]) != 0 {
// Compression method must be 0=Deflate, which thanks to the split above turns
// into an empty slice
ok = false; return
}
// Set up ZLIB context and decompress text payload.
buf: bytes.Buffer
zlib_error := zlib.inflate_from_byte_array(fields[2], &buf)
defer bytes.buffer_destroy(&buf)
if zlib_error != nil {
ok = false; return
}
res.keyword = strings.clone(string(fields[0]))
res.text = strings.clone(bytes.buffer_to_string(&buf))
return
case .iTXt:
ok = true
s := string(c.data)
null := strings.index_byte(s, 0)
if null == -1 {
ok = false; return
}
if len(c.data) < null + 4 {
// At a minimum, including the \0 following the keyword, we require 5 more bytes.
ok = false; return
}
res.keyword = strings.clone(string(c.data[:null]))
rest := c.data[null+1:]
compression_flag := rest[:1][0]
if compression_flag > 1 {
ok = false; return
}
compression_method := rest[1:2][0]
if compression_flag == 1 && compression_method > 0 {
// Only Deflate is supported
ok = false; return
}
rest = rest[2:]
// We now expect an optional language keyword and translated keyword, both followed by a \0
null = strings.index_byte(string(rest), 0)
if null == -1 {
ok = false; return
}
res.language = strings.clone(string(rest[:null]))
rest = rest[null+1:]
null = strings.index_byte(string(rest), 0)
if null == -1 {
ok = false; return
}
res.keyword_localized = strings.clone(string(rest[:null]))
rest = rest[null+1:]
if compression_flag == 0 {
res.text = strings.clone(string(rest))
} else {
// Set up ZLIB context and decompress text payload.
buf: bytes.Buffer
zlib_error := zlib.inflate_from_byte_array(rest, &buf)
defer bytes.buffer_destroy(&buf)
if zlib_error != nil {
ok = false; return
}
res.text = strings.clone(bytes.buffer_to_string(&buf))
}
return
case:
// PNG text helper called with an unrecognized chunk type.
ok = false; return
}
}
text_destroy :: proc(text: Text) {
delete(text.keyword)
delete(text.keyword_localized)
delete(text.language)
delete(text.text)
}
iccp :: proc(c: image.PNG_Chunk) -> (res: iCCP, ok: bool) {
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD(ignore = context.temp_allocator == context.allocator)
fields := bytes.split_n(c.data, sep=[]u8{0}, n=3, allocator=context.temp_allocator)
if len(fields[0]) < 1 || len(fields[0]) > 79 {
// Invalid profile name
return
}
if len(fields[1]) != 0 {
// Compression method should be a zero, which the split turned into an empty slice.
return
}
// Set up ZLIB context and decompress iCCP payload
buf: bytes.Buffer
zlib_error := zlib.inflate_from_byte_array(fields[2], &buf)
if zlib_error != nil {
bytes.buffer_destroy(&buf)
return
}
res.name = strings.clone(string(fields[0]))
res.profile = bytes.buffer_to_bytes(&buf)
ok = true
return
}
iccp_destroy :: proc(i: iCCP) {
delete(i.name)
delete(i.profile)
}
srgb :: proc(c: image.PNG_Chunk) -> (res: sRGB, ok: bool) {
if c.header.type != .sRGB || len(c.data) != size_of(sRGB_Rendering_Intent) {
return {}, false
}
res.intent = sRGB_Rendering_Intent(c.data[0])
if res.intent > max(sRGB_Rendering_Intent) {
ok = false; return
}
return res, true
}
plte :: proc(c: image.PNG_Chunk) -> (res: PLTE, ok: bool) {
if c.header.type != .PLTE || c.header.length % 3 != 0 || c.header.length > 768 {
return {}, false
}
plte := mem.slice_data_cast([]image.RGB_Pixel, c.data[:])
for color, i in plte {
res.entries[i] = color
}
res.used = u16(len(plte))
return res, true
}
splt :: proc(c: image.PNG_Chunk) -> (res: sPLT, ok: bool) {
if c.header.type != .sPLT {
return
}
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD(ignore = context.temp_allocator == context.allocator)
fields := bytes.split_n(c.data, sep=[]u8{0}, n=2, allocator=context.temp_allocator)
if len(fields) != 2 {
return
}
res.depth = fields[1][0]
if res.depth != 8 && res.depth != 16 {
return
}
data := fields[1][1:]
count: int
if res.depth == 8 {
if len(data) % 6 != 0 {
return
}
count = len(data) / 6
if count > 256 {
return
}
res.entries = mem.slice_data_cast([][4]u8, data)
} else { // res.depth == 16
if len(data) % 10 != 0 {
return
}
count = len(data) / 10
if count > 256 {
return
}
res.entries = mem.slice_data_cast([][4]u16, data)
}
res.name = strings.clone(string(fields[0]))
res.used = u16(count)
ok = true
return
}
splt_destroy :: proc(s: sPLT) {
delete(s.name)
}
sbit :: proc(c: image.PNG_Chunk) -> (res: [4]u8, ok: bool) {
/*
Returns [4]u8 with the significant bits in each channel.
A channel will contain zero if not applicable to the PNG color type.
*/
if len(c.data) < 1 || len(c.data) > 4 {
ok = false; return
}
ok = true
for i := 0; i < len(c.data); i += 1 {
res[i] = c.data[i]
}
return
}
hist :: proc(c: image.PNG_Chunk) -> (res: hIST, ok: bool) {
if c.header.type != .hIST {
return {}, false
}
if c.header.length & 1 == 1 || c.header.length > 512 {
// The entries are u16be, so the length must be even.
// At most 256 entries must be present
return {}, false
}
ok = true
data := mem.slice_data_cast([]u16be, c.data)
i := 0
for len(data) > 0 {
// HIST entries are u16be, we unpack them to machine format
res.entries[i] = u16(data[0])
i += 1; data = data[1:]
}
res.used = u16(i)
return
}
chrm :: proc(c: image.PNG_Chunk) -> (res: cHRM, ok: bool) {
ok = true
if c.header.length != size_of(cHRM_Raw) {
return {}, false
}
chrm := (^cHRM_Raw)(raw_data(c.data))^
res.w.x = f32(chrm.w.x) / 100_000.0
res.w.y = f32(chrm.w.y) / 100_000.0
res.r.x = f32(chrm.r.x) / 100_000.0
res.r.y = f32(chrm.r.y) / 100_000.0
res.g.x = f32(chrm.g.x) / 100_000.0
res.g.y = f32(chrm.g.y) / 100_000.0
res.b.x = f32(chrm.b.x) / 100_000.0
res.b.y = f32(chrm.b.y) / 100_000.0
return
}
exif :: proc(c: image.PNG_Chunk) -> (res: image.Exif, ok: bool) {
ok = true
if len(c.data) < 4 {
ok = false; return
}
if c.data[0] == 'M' && c.data[1] == 'M' {
res.byte_order = .big_endian
if c.data[2] != 0 || c.data[3] != 42 {
ok = false; return
}
} else if c.data[0] == 'I' && c.data[1] == 'I' {
res.byte_order = .little_endian
if c.data[2] != 42 || c.data[3] != 0 {
ok = false; return
}
} else {
ok = false; return
}
res.data = c.data
return
}
/*
General helper functions
*/
compute_buffer_size :: image.compute_buffer_size
|