1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
TAU :: 6.28318530717958647692528676655900576
PI :: 3.14159265358979323846264338327950288
ONE_OVER_TAU :: 0.636619772367581343075535053490057448
ONE_OVER_PI :: 0.159154943091895335768883763372514362
E :: 2.71828182845904523536
SQRT_TWO :: 1.41421356237309504880168872420969808
SQRT_THREE :: 1.73205080756887729352744634150587236
SQRT_FIVE :: 2.23606797749978969640917366873127623
LOG_TWO :: 0.693147180559945309417232121458176568
LOG_TEN :: 2.30258509299404568401799145468436421
EPSILON :: 1.19209290e-7
τ :: TAU
π :: PI
Vec2 :: type {2}f32
Vec3 :: type {3}f32
Vec4 :: type {4}f32
Mat2 :: type [2]Vec2
Mat3 :: type [3]Vec3
Mat4 :: type [4]Vec4
sqrt32 :: proc(x: f32) -> f32 #foreign "llvm.sqrt.f32"
sqrt64 :: proc(x: f64) -> f64 #foreign "llvm.sqrt.f64"
sin32 :: proc(x: f32) -> f32 #foreign "llvm.sin.f32"
sin64 :: proc(x: f64) -> f64 #foreign "llvm.sin.f64"
cos32 :: proc(x: f32) -> f32 #foreign "llvm.cos.f32"
cos64 :: proc(x: f64) -> f64 #foreign "llvm.cos.f64"
tan32 :: proc(x: f32) -> f32 #inline { return sin32(x)/cos32(x) }
tan64 :: proc(x: f64) -> f64 #inline { return sin64(x)/cos64(x) }
lerp32 :: proc(a, b, t: f32) -> f32 { return a*(1-t) + b*t }
lerp64 :: proc(a, b, t: f64) -> f64 { return a*(1-t) + b*t }
clamp32 :: proc(x, lower, upper: f32) -> f32 { return min(max(x, lower), upper) }
clamp64 :: proc(x, lower, upper: f64) -> f64 { return min(max(x, lower), upper) }
sign32 :: proc(x: f32) -> f32 { if x >= 0 { return +1 } return -1 }
sign64 :: proc(x: f64) -> f64 { if x >= 0 { return +1 } return -1 }
copy_sign32 :: proc(x, y: f32) -> f32 {
ix := x transmute u32
iy := y transmute u32
ix &= 0x7fffffff
ix |= iy & 0x80000000
return ix transmute f32
}
round32 :: proc(x: f32) -> f32 {
if x >= 0 {
return floor32(x + 0.5)
}
return ceil32(x - 0.5)
}
floor32 :: proc(x: f32) -> f32 {
if x >= 0 {
return x as int as f32
}
return (x-0.5) as int as f32
}
ceil32 :: proc(x: f32) -> f32 {
if x < 0 {
return x as int as f32
}
return ((x as int)+1) as f32
}
remainder32 :: proc(x, y: f32) -> f32 {
return x - round32(x/y) * y
}
fmod32 :: proc(x, y: f32) -> f32 {
y = abs(y)
result := remainder32(abs(x), y)
if sign32(result) < 0 {
result += y
}
return copy_sign32(result, x)
}
to_radians :: proc(degrees: f32) -> f32 { return degrees * TAU / 360 }
to_degrees :: proc(radians: f32) -> f32 { return radians * 360 / TAU }
dot2 :: proc(a, b: Vec2) -> f32 { c := a*b; return c.x + c.y }
dot3 :: proc(a, b: Vec3) -> f32 { c := a*b; return c.x + c.y + c.z }
dot4 :: proc(a, b: Vec4) -> f32 { c := a*b; return c.x + c.y + c.z + c.w }
cross3 :: proc(x, y: Vec3) -> Vec3 {
a := swizzle(x, 1, 2, 0) * swizzle(y, 2, 0, 1)
b := swizzle(x, 2, 0, 1) * swizzle(y, 1, 2, 0)
return a - b
}
vec2_mag :: proc(v: Vec2) -> f32 { return sqrt32(dot2(v, v)) }
vec3_mag :: proc(v: Vec3) -> f32 { return sqrt32(dot3(v, v)) }
vec4_mag :: proc(v: Vec4) -> f32 { return sqrt32(dot4(v, v)) }
vec2_norm :: proc(v: Vec2) -> Vec2 { return v / Vec2{vec2_mag(v)} }
vec3_norm :: proc(v: Vec3) -> Vec3 { return v / Vec3{vec3_mag(v)} }
vec4_norm :: proc(v: Vec4) -> Vec4 { return v / Vec4{vec4_mag(v)} }
vec2_norm0 :: proc(v: Vec2) -> Vec2 {
m := vec2_mag(v)
if m == 0 {
return Vec2{0}
}
return v / Vec2{m}
}
vec3_norm0 :: proc(v: Vec3) -> Vec3 {
m := vec3_mag(v)
if m == 0 {
return Vec3{0}
}
return v / Vec3{m}
}
vec4_norm0 :: proc(v: Vec4) -> Vec4 {
m := vec4_mag(v)
if m == 0 {
return Vec4{0}
}
return v / Vec4{m}
}
mat4_identity :: proc() -> Mat4 {
return Mat4{
{1, 0, 0, 0},
{0, 1, 0, 0},
{0, 0, 1, 0},
{0, 0, 0, 1},
}
}
mat4_transpose :: proc(m: Mat4) -> Mat4 {
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
m[i][j], m[j][i] = m[j][i], m[i][j]
}
}
return m
}
mat4_mul :: proc(a, b: Mat4) -> Mat4 {
c: Mat4
for j := 0; j < 4; j++ {
for i := 0; i < 4; i++ {
c[j][i] = a[0][i]*b[j][0]
+ a[1][i]*b[j][1]
+ a[2][i]*b[j][2]
+ a[3][i]*b[j][3]
}
}
return c
}
mat4_mul_vec4 :: proc(m: Mat4, v: Vec4) -> Vec4 {
return Vec4{
m[0][0]*v.x + m[1][0]*v.y + m[2][0]*v.z + m[3][0]*v.w,
m[0][1]*v.x + m[1][1]*v.y + m[2][1]*v.z + m[3][1]*v.w,
m[0][2]*v.x + m[1][2]*v.y + m[2][2]*v.z + m[3][2]*v.w,
m[0][3]*v.x + m[1][3]*v.y + m[2][3]*v.z + m[3][3]*v.w,
}
}
mat4_inverse :: proc(m: Mat4) -> Mat4 {
o: Mat4
sf00 := m[2][2] * m[3][3] - m[3][2] * m[2][3]
sf01 := m[2][1] * m[3][3] - m[3][1] * m[2][3]
sf02 := m[2][1] * m[3][2] - m[3][1] * m[2][2]
sf03 := m[2][0] * m[3][3] - m[3][0] * m[2][3]
sf04 := m[2][0] * m[3][2] - m[3][0] * m[2][2]
sf05 := m[2][0] * m[3][1] - m[3][0] * m[2][1]
sf06 := m[1][2] * m[3][3] - m[3][2] * m[1][3]
sf07 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
sf08 := m[1][1] * m[3][2] - m[3][1] * m[1][2]
sf09 := m[1][0] * m[3][3] - m[3][0] * m[1][3]
sf10 := m[1][0] * m[3][2] - m[3][0] * m[1][2]
sf11 := m[1][1] * m[3][3] - m[3][1] * m[1][3]
sf12 := m[1][0] * m[3][1] - m[3][0] * m[1][1]
sf13 := m[1][2] * m[2][3] - m[2][2] * m[1][3]
sf14 := m[1][1] * m[2][3] - m[2][1] * m[1][3]
sf15 := m[1][1] * m[2][2] - m[2][1] * m[1][2]
sf16 := m[1][0] * m[2][3] - m[2][0] * m[1][3]
sf17 := m[1][0] * m[2][2] - m[2][0] * m[1][2]
sf18 := m[1][0] * m[2][1] - m[2][0] * m[1][1]
o[0][0] = +(m[1][1] * sf00 - m[1][2] * sf01 + m[1][3] * sf02)
o[0][1] = -(m[1][0] * sf00 - m[1][2] * sf03 + m[1][3] * sf04)
o[0][2] = +(m[1][0] * sf01 - m[1][1] * sf03 + m[1][3] * sf05)
o[0][3] = -(m[1][0] * sf02 - m[1][1] * sf04 + m[1][2] * sf05)
o[1][0] = -(m[0][1] * sf00 - m[0][2] * sf01 + m[0][3] * sf02)
o[1][1] = +(m[0][0] * sf00 - m[0][2] * sf03 + m[0][3] * sf04)
o[1][2] = -(m[0][0] * sf01 - m[0][1] * sf03 + m[0][3] * sf05)
o[1][3] = +(m[0][0] * sf02 - m[0][1] * sf04 + m[0][2] * sf05)
o[2][0] = +(m[0][1] * sf06 - m[0][2] * sf07 + m[0][3] * sf08)
o[2][1] = -(m[0][0] * sf06 - m[0][2] * sf09 + m[0][3] * sf10)
o[2][2] = +(m[0][0] * sf11 - m[0][1] * sf09 + m[0][3] * sf12)
o[2][3] = -(m[0][0] * sf08 - m[0][1] * sf10 + m[0][2] * sf12)
o[3][0] = -(m[0][1] * sf13 - m[0][2] * sf14 + m[0][3] * sf15)
o[3][1] = +(m[0][0] * sf13 - m[0][2] * sf16 + m[0][3] * sf17)
o[3][2] = -(m[0][0] * sf14 - m[0][1] * sf16 + m[0][3] * sf18)
o[3][3] = +(m[0][0] * sf15 - m[0][1] * sf17 + m[0][2] * sf18)
ood := 1.0 / (m[0][0] * o[0][0] +
m[0][1] * o[0][1] +
m[0][2] * o[0][2] +
m[0][3] * o[0][3])
o[0][0] *= ood
o[0][1] *= ood
o[0][2] *= ood
o[0][3] *= ood
o[1][0] *= ood
o[1][1] *= ood
o[1][2] *= ood
o[1][3] *= ood
o[2][0] *= ood
o[2][1] *= ood
o[2][2] *= ood
o[2][3] *= ood
o[3][0] *= ood
o[3][1] *= ood
o[3][2] *= ood
o[3][3] *= ood
return o
}
mat4_translate :: proc(v: Vec3) -> Mat4 {
m := mat4_identity()
m[3][0] = v.x
m[3][1] = v.y
m[3][2] = v.z
m[3][3] = 1
return m
}
mat4_rotate :: proc(v: Vec3, angle_radians: f32) -> Mat4 {
c := cos32(angle_radians)
s := sin32(angle_radians)
a := vec3_norm(v)
t := a * Vec3{1-c}
rot := mat4_identity()
rot[0][0] = c + t.x*a.x
rot[0][1] = 0 + t.x*a.y + s*a.z
rot[0][2] = 0 + t.x*a.z - s*a.y
rot[0][3] = 0
rot[1][0] = 0 + t.y*a.x - s*a.z
rot[1][1] = c + t.y*a.y
rot[1][2] = 0 + t.y*a.z + s*a.x
rot[1][3] = 0
rot[2][0] = 0 + t.z*a.x + s*a.y
rot[2][1] = 0 + t.z*a.y - s*a.x
rot[2][2] = c + t.z*a.z
rot[2][3] = 0
return rot
}
mat4_scale :: proc(m: Mat4, v: Vec3) -> Mat4 {
m[0][0] = v.x
m[1][1] = v.y
m[2][2] = v.z
return m
}
mat4_scalef :: proc(m: Mat4, s: f32) -> Mat4 {
m[0][0] = s
m[1][1] = s
m[2][2] = s
return m
}
mat4_look_at :: proc(eye, centre, up: Vec3) -> Mat4 {
f := vec3_norm(centre - eye)
s := vec3_norm(cross3(f, up))
u := cross3(s, f)
m: Mat4
m[0] = Vec4{+s.x, +s.y, +s.z, 0}
m[1] = Vec4{+u.x, +u.y, +u.z, 0}
m[2] = Vec4{-f.x, -f.y, -f.z, 0}
m[3] = Vec4{dot3(s, eye), dot3(u, eye), dot3(f, eye), 1}
return m
}
mat4_perspective :: proc(fovy, aspect, near, far: f32) -> Mat4 {
m: Mat4
tan_half_fovy := tan32(0.5 * fovy)
m[0][0] = 1.0 / (aspect*tan_half_fovy)
m[1][1] = 1.0 / (tan_half_fovy)
m[2][2] = -(far + near) / (far - near)
m[2][3] = -1.0
m[3][2] = -2.0*far*near / (far - near)
return m
}
mat4_ortho3d :: proc(left, right, bottom, top, near, far: f32) -> Mat4 {
m := mat4_identity()
m[0][0] = +2.0 / (right - left)
m[1][1] = +2.0 / (top - bottom)
m[2][2] = -2.0 / (far - near)
m[3][0] = -(right + left) / (right - left)
m[3][1] = -(top + bottom) / (top - bottom)
m[3][2] = -(far + near) / (far - near)
return m
}
F32_DIG :: 6
F32_EPSILON :: 1.192092896e-07
F32_GUARD :: 0
F32_MANT_DIG :: 24
F32_MAX :: 3.402823466e+38
F32_MAX_10_EXP :: 38
F32_MAX_EXP :: 128
F32_MIN :: 1.175494351e-38
F32_MIN_10_EXP :: -37
F32_MIN_EXP :: -125
F32_NORMALIZE :: 0
F32_RADIX :: 2
F32_ROUNDS :: 1
F64_DIG :: 15 // # of decimal digits of precision
F64_EPSILON :: 2.2204460492503131e-016 // smallest such that 1.0+F64_EPSILON != 1.0
F64_MANT_DIG :: 53 // # of bits in mantissa
F64_MAX :: 1.7976931348623158e+308 // max value
F64_MAX_10_EXP :: 308 // max decimal exponent
F64_MAX_EXP :: 1024 // max binary exponent
F64_MIN :: 2.2250738585072014e-308 // min positive value
F64_MIN_10_EXP :: -307 // min decimal exponent
F64_MIN_EXP :: -1021 // min binary exponent
F64_RADIX :: 2 // exponent radix
F64_ROUNDS :: 1 // addition rounding: near
|