aboutsummaryrefslogtreecommitdiff
path: root/core/math/big/example.odin
blob: 4542e9e15032e242f0c518d2074d60ef580679ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//+ignore
package math_big

/*
	Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
	Made available under Odin's BSD-3 license.

	A BigInt implementation in Odin.
	For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
	The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
*/

import "core:fmt"
import "core:mem"

print_configation :: proc() {
	fmt.printf(
`
Configuration:
	_DIGIT_BITS                           %v
	_MIN_DIGIT_COUNT                      %v
	_MAX_DIGIT_COUNT                      %v
	_DEFAULT_DIGIT_COUNT                  %v
	_MAX_COMBA                            %v
	_WARRAY                               %v
Runtime tunable:
	MUL_KARATSUBA_CUTOFF                  %v
	SQR_KARATSUBA_CUTOFF                  %v
	MUL_TOOM_CUTOFF                       %v
	SQR_TOOM_CUTOFF                       %v
	MAX_ITERATIONS_ROOT_N                 %v
	FACTORIAL_MAX_N                       %v
	FACTORIAL_BINARY_SPLIT_CUTOFF         %v
	FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS %v

`, _DIGIT_BITS,
_MIN_DIGIT_COUNT,
_MAX_DIGIT_COUNT,
_DEFAULT_DIGIT_COUNT,
_MAX_COMBA,
_WARRAY,
MUL_KARATSUBA_CUTOFF,
SQR_KARATSUBA_CUTOFF,
MUL_TOOM_CUTOFF,
SQR_TOOM_CUTOFF,
MAX_ITERATIONS_ROOT_N,
FACTORIAL_MAX_N,
FACTORIAL_BINARY_SPLIT_CUTOFF,
FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS,
);

}

print :: proc(name: string, a: ^Int, base := i8(10), print_name := true, newline := true, print_extra_info := false) {
	assert_if_nil(a);

	as, err := itoa(a, base);
	defer delete(as);

	cb := internal_count_bits(a);
	if print_name {
		fmt.printf("%v", name);
	}
	if err != nil {
		fmt.printf("%v (error: %v | %v)", name, err, a);
	}
	fmt.printf("%v", as);
	if print_extra_info {
		fmt.printf(" (base: %v, bits: %v (digits: %v), flags: %v)", base, cb, a.used, a.flags);
	}
	if newline {
		fmt.println();
	}
}

int_to_byte :: proc(v: ^Int) {
	err: Error;
	size: int;
	print("v: ", v);
	fmt.println();

	t := &Int{};
	defer destroy(t);

	if size, err = int_to_bytes_size(v); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b1 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_big(v, b1);
	int_from_bytes_big(t, b1);
	fmt.printf("big: %v | err: %v\n", b1, err);

	int_from_bytes_big(t, b1);
	if internal_cmp_mag(t, v) != 0 {
		print("\tError parsing t: ", t);
	}

	if size, err = int_to_bytes_size(v); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b2 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_big_python(v, b2);
	fmt.printf("big python: %v | err: %v\n", b2, err);

	if err == nil {
		int_from_bytes_big_python(t, b2);
		if internal_cmp_mag(t, v) != 0 {
			print("\tError parsing t: ", t);
		}
	}

	if size, err = int_to_bytes_size(v, true); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b3 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_big(v, b3, true);
	fmt.printf("big signed: %v | err: %v\n", b3, err);

	int_from_bytes_big(t, b3, true);
	if internal_cmp(t, v) != 0 {
		print("\tError parsing t: ", t);
	}

	if size, err = int_to_bytes_size(v, true); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b4 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_big_python(v, b4, true);
	fmt.printf("big signed python: %v | err: %v\n", b4, err);

	int_from_bytes_big_python(t, b4, true);
	if internal_cmp(t, v) != 0 {
		print("\tError parsing t: ", t);
	}
}

int_to_byte_little :: proc(v: ^Int) {
	err: Error;
	size: int;
	print("v: ", v);
	fmt.println();

	t := &Int{};
	defer destroy(t);

	if size, err = int_to_bytes_size(v); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b1 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_little(v, b1);
	fmt.printf("little: %v | err: %v\n", b1, err);

	int_from_bytes_little(t, b1);
	if internal_cmp_mag(t, v) != 0 {
		print("\tError parsing t: ", t);
	}

	if size, err = int_to_bytes_size(v); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b2 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_little_python(v, b2);
	fmt.printf("little python: %v | err: %v\n", b2, err);

	if err == nil {
		int_from_bytes_little_python(t, b2);
		if internal_cmp_mag(t, v) != 0 {
			print("\tError parsing t: ", t);
		}
	}

	if size, err = int_to_bytes_size(v, true); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b3 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_little(v, b3, true);
	fmt.printf("little signed: %v | err: %v\n", b3, err);

	int_from_bytes_little(t, b3, true);
	if internal_cmp(t, v) != 0 {
		print("\tError parsing t: ", t);
	}

	if size, err = int_to_bytes_size(v, true); err != nil {
		fmt.printf("int_to_bytes_size returned: %v\n", err);
		return;
	}
	b4 := make([]u8, size, context.temp_allocator);
	err = int_to_bytes_little_python(v, b4, true);
	fmt.printf("little signed python: %v | err: %v\n", b4, err);

	int_from_bytes_little_python(t, b4, true);
	if internal_cmp(t, v) != 0 {
		print("\tError parsing t: ", t);
	}
}

demo :: proc() {
	a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
	defer destroy(a, b, c, d, e, f);
}

main :: proc() {
	ta := mem.Tracking_Allocator{};
	mem.tracking_allocator_init(&ta, context.allocator);
	context.allocator = mem.tracking_allocator(&ta);

	demo();

	print_configation();

	print_timings();

	if len(ta.allocation_map) > 0 {
		for _, v in ta.allocation_map {
			fmt.printf("Leaked %v bytes @ %v\n", v.size, v.location);
		}
	}
	if len(ta.bad_free_array) > 0 {
		fmt.println("Bad frees:");
		for v in ta.bad_free_array {
			fmt.println(v);
		}
	}
}