1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
|
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's license.
An arbitrary precision mathematics implementation in Odin.
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
This file contains radix conversions, `string_to_int` (atoi) and `int_to_string` (itoa).
TODO:
- Use Barrett reduction for non-powers-of-two.
- Also look at extracting and splatting several digits at once.
*/
import "base:intrinsics"
/*
This version of `itoa` allocates on behalf of the caller. The caller must free the string.
The radix defaults to 10.
*/
int_itoa_string :: proc(a: ^Int, radix := i8(10), zero_terminate := false, allocator := context.allocator) -> (res: string, err: Error) {
assert_if_nil(a)
context.allocator = allocator
a := a; radix := radix
clear_if_uninitialized(a) or_return
/*
TODO: If we want to write a prefix for some of the radixes, we can oversize the buffer.
Then after the digits are written and the string is reversed
*/
/*
Calculate the size of the buffer we need, and
Exit if calculating the size returned an error.
*/
size := radix_size(a, radix, zero_terminate) or_return
/*
Allocate the buffer we need.
*/
buffer, mem_err := make([]u8, size)
if mem_err != nil {
err = cast(Error)mem_err
return
}
/*
Write the digits out into the buffer.
*/
written: int
written, err = int_itoa_raw(a, radix, buffer, size, zero_terminate)
return string(buffer[:written]), err
}
/*
This version of `itoa` allocates on behalf of the caller. The caller must free the string.
The radix defaults to 10.
*/
int_itoa_cstring :: proc(a: ^Int, radix := i8(10), allocator := context.allocator) -> (res: cstring, err: Error) {
assert_if_nil(a)
context.allocator = allocator
a := a; radix := radix
clear_if_uninitialized(a) or_return
s: string
s, err = int_itoa_string(a, radix, true)
return cstring(raw_data(s)), err
}
/*
A low-level `itoa` using a caller-provided buffer. `itoa_string` and `itoa_cstring` use this.
You can use also use it if you want to pre-allocate a buffer and optionally reuse it.
Use `radix_size` or `radix_size_estimate` to determine a buffer size big enough.
You can pass the output of `radix_size` to `size` if you've previously called it to size
the output buffer. If you haven't, this routine will call it. This way it knows if the buffer
is the appropriate size, and we can write directly in place without a reverse step at the end.
=== === === IMPORTANT === === ===
If you determined the buffer size using `radix_size_estimate`, or have a buffer
that you reuse that you know is large enough, don't pass this size unless you know what you are doing,
because we will always write backwards starting at last byte of the buffer.
Keep in mind that if you set `size` yourself and it's smaller than the buffer,
it'll result in buffer overflows, as we use it to avoid reversing at the end
and having to perform a buffer overflow check each character.
*/
int_itoa_raw :: proc(a: ^Int, radix: i8, buffer: []u8, size := int(-1), zero_terminate := false) -> (written: int, err: Error) {
assert_if_nil(a)
a := a; radix := radix; size := size
clear_if_uninitialized(a) or_return
/*
Radix defaults to 10.
*/
radix = radix if radix > 0 else 10
if radix < 2 || radix > 64 {
return 0, .Invalid_Argument
}
/*
We weren't given a size. Let's compute it.
*/
if size < 0 {
size = radix_size(a, radix, zero_terminate) or_return
}
/*
Early exit if the buffer we were given is too small.
*/
available := len(buffer)
if available < size {
return 0, .Buffer_Overflow
}
/*
Fast path for when `Int` == 0 or the entire `Int` fits in a single radix digit.
*/
z, _ := is_zero(a)
if z || (a.used == 1 && a.digit[0] < DIGIT(radix)) {
if zero_terminate {
available -= 1
buffer[available] = 0
}
available -= 1
buffer[available] = RADIX_TABLE[a.digit[0]]
if n, _ := is_neg(a); n {
available -= 1
buffer[available] = '-'
}
/*
If we overestimated the size, we need to move the buffer left.
*/
written = len(buffer) - available
if written < size {
diff := size - written
intrinsics.mem_copy(&buffer[0], &buffer[diff], written)
}
return written, nil
}
/*
Fast path for when `Int` fits within a `_WORD`.
*/
if a.used == 1 || a.used == 2 {
if zero_terminate {
available -= 1
buffer[available] = 0
}
val := _WORD(a.digit[1]) << _DIGIT_BITS + _WORD(a.digit[0])
for val > 0 {
q := val / _WORD(radix)
available -= 1
buffer[available] = RADIX_TABLE[val - (q * _WORD(radix))]
val = q
}
if n, _ := is_neg(a); n {
available -= 1
buffer[available] = '-'
}
/*
If we overestimated the size, we need to move the buffer left.
*/
written = len(buffer) - available
if written < size {
diff := size - written
intrinsics.mem_copy(&buffer[0], &buffer[diff], written)
}
return written, nil
}
/*
Fast path for radixes that are a power of two.
*/
count := count_bits(a) or_return
if is_power_of_two(int(radix)) {
if zero_terminate {
available -= 1
buffer[available] = 0
}
shift := log(DIGIT(radix), 2) or_return
digit: _WORD
for offset := 0; offset < count; offset += shift {
bits_to_get := int(min(count - offset, shift))
digit, err = int_bitfield_extract(a, offset, bits_to_get)
if err != nil {
return len(buffer) - available, .Invalid_Argument
}
available -= 1
buffer[available] = RADIX_TABLE[digit]
}
if n, _ := is_neg(a); n {
available -= 1
buffer[available] = '-'
}
/*
If we overestimated the size, we need to move the buffer left.
*/
written = len(buffer) - available
if written < size {
diff := size - written
intrinsics.mem_copy(&buffer[0], &buffer[diff], written)
}
return written, nil
}
// NOTE(Jeroen): The new method is faster for an `Int` up to ~32768 bits in size with optimizations.
// At `.None` or `.Minimal`, it appears to always be faster.
// If we optimize `itoa` further, this needs to be evaluated.
itoa_method := _itoa_raw_full
when !MATH_BIG_FORCE_32_BIT && ODIN_OPTIMIZATION_MODE >= .Size {
if count >= 32768 {
itoa_method = _itoa_raw_old
}
}
return itoa_method(a, radix, buffer, zero_terminate)
}
itoa :: proc{int_itoa_string, int_itoa_raw}
int_to_string :: int_itoa_string
int_to_cstring :: int_itoa_cstring
/*
Read a string [ASCII] in a given radix.
*/
int_atoi :: proc(res: ^Int, input: string, radix := i8(10), allocator := context.allocator) -> (err: Error) {
assert_if_nil(res)
input := input
context.allocator = allocator
/*
Make sure the radix is ok.
*/
if radix < 2 || radix > 64 { return .Invalid_Argument }
/*
Set the integer to the default of zero.
*/
internal_zero(res) or_return
/*
We'll interpret an empty string as zero.
*/
if len(input) == 0 {
return nil
}
/*
If the leading digit is a minus set the sign to negative.
Given the above early out, the length should be at least 1.
*/
sign := Sign.Zero_or_Positive
if input[0] == '-' {
input = input[1:]
sign = .Negative
}
/*
Process each digit of the string.
*/
ch: rune
for len(input) > 0 {
/* if the radix <= 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
ch = rune(input[0])
if radix <= 36 && ch >= 'a' && ch <= 'z' {
ch -= 32 // 'a' - 'A'
}
pos := ch - '+'
if RADIX_TABLE_REVERSE_SIZE <= u32(pos) {
break
}
y := RADIX_TABLE_REVERSE[pos]
/* if the char was found in the map
* and is less than the given radix add it
* to the number, otherwise exit the loop.
*/
if y >= u8(radix) {
break
}
internal_mul(res, res, DIGIT(radix)) or_return
internal_add(res, res, DIGIT(y)) or_return
input = input[1:]
}
/*
If an illegal character was found, fail.
*/
if len(input) > 0 && ch != 0 && ch != '\r' && ch != '\n' {
return .Invalid_Argument
}
/*
Set the sign only if res != 0.
*/
if res.used > 0 {
res.sign = sign
}
return internal_clamp(res)
}
atoi :: proc { int_atoi, }
string_to_int :: int_atoi
/*
We size for `string` by default.
*/
radix_size :: proc(a: ^Int, radix: i8, zero_terminate := false, allocator := context.allocator) -> (size: int, err: Error) {
a := a
assert_if_nil(a)
if radix < 2 || radix > 64 { return -1, .Invalid_Argument }
clear_if_uninitialized(a) or_return
if internal_is_zero(a) {
if zero_terminate {
return 2, nil
}
return 1, nil
}
if internal_is_power_of_two(a) {
/*
Calculate `log` on a temporary "copy" with its sign set to positive.
*/
t := &Int{
used = a.used,
sign = .Zero_or_Positive,
digit = a.digit,
}
size = internal_log(t, DIGIT(radix)) or_return
} else {
la, k := &Int{}, &Int{}
defer internal_destroy(la, k)
/* la = floor(log_2(a)) + 1 */
bit_count := internal_count_bits(a)
internal_set(la, bit_count) or_return
/* k = floor(2^29/log_2(radix)) + 1 */
internal_set(k, _log_bases[radix]) or_return
/* n = floor((la * k) / 2^29) + 1 */
internal_mul(k, la, k) or_return
internal_shr(k, k, _RADIX_SIZE_SCALE) or_return
/* The "+1" here is the "+1" in "floor((la * k) / 2^29) + 1" */
/* n = n + 1 + EOS + sign */
size_, _ := internal_get(k, u128)
size = int(size_)
}
/*
log truncates to zero, so we need to add one more, and one for `-` if negative.
*/
size += 2 if a.sign == .Negative else 1
size += 1 if zero_terminate else 0
return size, nil
}
/*
Calculate the size needed for `internal_int_pack`.
See https://gmplib.org/manual/Integer-Import-and-Export.html
*/
internal_int_pack_count :: proc(a: ^Int, $T: typeid, nails := 0) -> (size_needed: int) {
assert(nails >= 0 && nails < (size_of(T) * 8))
bits := internal_count_bits(a)
size := size_of(T)
size_needed = bits / ((size * 8) - nails)
size_needed += 1 if (bits % ((size * 8) - nails)) != 0 else 0
return size_needed
}
/*
Based on gmp's mpz_export.
See https://gmplib.org/manual/Integer-Import-and-Export.html
`buf` is a pre-allocated slice of type `T` "words", which must be an unsigned integer of some description.
Use `internal_int_pack_count(a, T, nails)` to calculate the necessary size.
The library internally uses `DIGIT` as the type, which is u64 or u32 depending on the platform.
You are of course welcome to export to []u8, []u32be, and so forth.
After this you can use `mem.slice_data_cast` to interpret the buffer as bytes if you so choose.
`nails` are the number of top bits the output "word" reserves.
To mimic the internals of this library, this would be 4.
To use the minimum amount of output bytes, set `nails` to 0 and pass a `[]u8`.
IMPORTANT: `pack` serializes the magnitude of an Int, that is, the output is unsigned.
Assumes `a` not to be `nil` and to have been initialized.
*/
internal_int_pack :: proc(a: ^Int, buf: []$T, nails := 0, order := Order.LSB_First) -> (written: int, err: Error)
where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T), size_of(T) <= 16 {
assert(nails >= 0 && nails < (size_of(T) * 8))
type_size := size_of(T)
type_bits := (type_size * 8) - nails
word_count := internal_int_pack_count(a, T, nails)
bit_count := internal_count_bits(a)
if len(buf) < word_count {
return 0, .Buffer_Overflow
}
bit_offset := 0
word_offset := 0
#no_bounds_check for i := 0; i < word_count; i += 1 {
bit_offset = i * type_bits
if order == .MSB_First {
word_offset = word_count - i - 1
} else {
word_offset = i
}
bits_to_get := min(type_bits, bit_count - bit_offset)
W := internal_int_bitfield_extract(a, bit_offset, bits_to_get) or_return
buf[word_offset] = T(W)
}
return word_count, nil
}
internal_int_unpack :: proc(a: ^Int, buf: []$T, nails := 0, order := Order.LSB_First, allocator := context.allocator) -> (err: Error)
where intrinsics.type_is_integer(T), intrinsics.type_is_unsigned(T), size_of(T) <= 16 {
assert(nails >= 0 && nails < (size_of(T) * 8))
context.allocator = allocator
type_size := size_of(T)
type_bits := (type_size * 8) - nails
type_mask := T(1 << uint(type_bits)) - 1
if len(buf) == 0 {
return .Invalid_Argument
}
bit_count := type_bits * len(buf)
digit_count := (bit_count / _DIGIT_BITS) + min(1, bit_count % _DIGIT_BITS)
/*
Pre-size output Int.
*/
internal_grow(a, digit_count) or_return
t := &Int{}
defer internal_destroy(t)
if order == .LSB_First {
for W, i in buf {
internal_set(t, W & type_mask) or_return
internal_shl(t, t, type_bits * i) or_return
internal_add(a, a, t) or_return
}
} else {
for W in buf {
internal_set(t, W & type_mask) or_return
internal_shl(a, a, type_bits) or_return
internal_add(a, a, t) or_return
}
}
return internal_clamp(a)
}
/*
Overestimate the size needed for the bigint to string conversion by a very small amount.
The error is about 10^-8; it will overestimate the result by at most 11 elements for
a number of the size 2^(2^31)-1 which is currently the largest possible in this library.
Some short tests gave no results larger than 5 (plus 2 for sign and EOS).
*/
/*
Table of {0, INT(log_2([1..64])*2^p)+1 } where p is the scale
factor defined in MP_RADIX_SIZE_SCALE and INT() extracts the integer part (truncating).
Good for 32 bit "int". Set MP_RADIX_SIZE_SCALE = 61 and recompute values
for 64 bit "int".
*/
_RADIX_SIZE_SCALE :: 29
@(rodata)
_log_bases := [65]u32{
0, 0, 0x20000001, 0x14309399, 0x10000001,
0xdc81a35, 0xc611924, 0xb660c9e, 0xaaaaaab, 0xa1849cd,
0x9a209a9, 0x94004e1, 0x8ed19c2, 0x8a5ca7d, 0x867a000,
0x830cee3, 0x8000001, 0x7d42d60, 0x7ac8b32, 0x7887847,
0x7677349, 0x749131f, 0x72d0163, 0x712f657, 0x6fab5db,
0x6e40d1b, 0x6ced0d0, 0x6badbde, 0x6a80e3b, 0x6964c19,
0x6857d31, 0x6758c38, 0x6666667, 0x657fb21, 0x64a3b9f,
0x63d1ab4, 0x6308c92, 0x624869e, 0x618ff47, 0x60dedea,
0x6034ab0, 0x5f90e7b, 0x5ef32cb, 0x5e5b1b2, 0x5dc85c3,
0x5d3aa02, 0x5cb19d9, 0x5c2d10f, 0x5bacbbf, 0x5b3064f,
0x5ab7d68, 0x5a42df0, 0x59d1506, 0x5962ffe, 0x58f7c57,
0x588f7bc, 0x582a000, 0x57c7319, 0x5766f1d, 0x5709243,
0x56adad9, 0x565474d, 0x55fd61f, 0x55a85e8, 0x5555556,
}
/*
Characters used in radix conversions.
*/
RADIX_TABLE := "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"
@(rodata)
RADIX_TABLE_REVERSE := [RADIX_TABLE_REVERSE_SIZE]u8{
0x3e, 0xff, 0xff, 0xff, 0x3f, 0x00, 0x01, 0x02, 0x03, 0x04, /* +,-./01234 */
0x05, 0x06, 0x07, 0x08, 0x09, 0xff, 0xff, 0xff, 0xff, 0xff, /* 56789:;<=> */
0xff, 0xff, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, /* ?@ABCDEFGH */
0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, /* IJKLMNOPQR */
0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0xff, 0xff, /* STUVWXYZ[\ */
0xff, 0xff, 0xff, 0xff, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, /* ]^_`abcdef */
0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, /* ghijklmnop */
0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, /* qrstuvwxyz */
}
RADIX_TABLE_REVERSE_SIZE :: 80
/*
Stores a bignum as a ASCII string in a given radix (2..64)
The buffer must be appropriately sized. This routine doesn't check.
*/
_itoa_raw_full :: proc(a: ^Int, radix: i8, buffer: []u8, zero_terminate := false, allocator := context.allocator) -> (written: int, err: Error) {
assert_if_nil(a)
context.allocator = allocator
// Calculate largest radix^n that fits within _DIGIT_BITS
divisor := _WORD(ITOA_DIVISOR)
digit_count := ITOA_COUNT
_radix := DIGIT(radix)
if radix != 10 {
i := _WORD(1)
digit_count = -1
for i < _WORD(1 << _DIGIT_BITS) {
divisor = _WORD(i)
i *= _WORD(radix)
digit_count += 1
}
}
temp := &Int{}
internal_copy(temp, a) or_return
defer internal_destroy(temp)
available := len(buffer)
if zero_terminate {
available -= 1
buffer[available] = 0
}
if a.sign == .Negative {
temp.sign = .Zero_or_Positive
}
q := &Int{}
defer internal_destroy(q)
remainder: DIGIT
for {
internal_grow(q, temp.used) or_return
q.used = temp.used
q.sign = temp.sign
w := _WORD(0)
for ix := temp.used - 1; ix >= 0; ix -= 1 {
t := DIGIT(0)
w = (w << _WORD(_DIGIT_BITS) | _WORD(temp.digit[ix]))
if w >= divisor {
t = DIGIT(w / divisor)
w -= _WORD(t) * divisor
}
q.digit[ix] = t
}
remainder = DIGIT(w)
internal_clamp(q)
q, temp = temp, q
count := digit_count
for available > 0 && count > 0 {
available -= 1
buffer[available] = RADIX_TABLE[remainder % _radix]
remainder /= _radix
count -= 1
}
if temp.used == 0 {
break
}
}
// Remove leading zero if we ended up with one.
if buffer[available] == '0' {
available += 1
}
if a.sign == .Negative {
available -= 1
buffer[available] = '-'
}
/*
If we overestimated the size, we need to move the buffer left.
*/
written = len(buffer) - available
if written < len(buffer) {
diff := len(buffer) - written
intrinsics.mem_copy(&buffer[0], &buffer[diff], written)
}
return written, nil
}
// Old internal digit extraction procedure.
// We're keeping this around as ground truth for the tests.
_itoa_raw_old :: proc(a: ^Int, radix: i8, buffer: []u8, zero_terminate := false, allocator := context.allocator) -> (written: int, err: Error) {
assert_if_nil(a)
context.allocator = allocator
temp := &Int{}
internal_copy(temp, a) or_return
defer internal_destroy(temp)
available := len(buffer)
if zero_terminate {
available -= 1
buffer[available] = 0
}
if a.sign == .Negative {
temp.sign = .Zero_or_Positive
}
remainder: DIGIT
for {
if remainder, err = #force_inline internal_divmod(temp, temp, DIGIT(radix)); err != nil {
return len(buffer) - available, err
}
available -= 1
buffer[available] = RADIX_TABLE[remainder]
if temp.used == 0 {
break
}
}
if a.sign == .Negative {
available -= 1
buffer[available] = '-'
}
/*
If we overestimated the size, we need to move the buffer left.
*/
written = len(buffer) - available
if written < len(buffer) {
diff := len(buffer) - written
intrinsics.mem_copy(&buffer[0], &buffer[diff], written)
}
return written, nil
}
|