1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
// Easing procedures and flux easing used for animations.
package ease
import "core:math"
import "base:intrinsics"
import "core:time"
@(private) PI_2 :: math.PI / 2
// converted to odin from https://github.com/warrenm/AHEasing
// with additional enum based call
// Modeled after the parabola y = x^2
@(require_results)
quadratic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p
}
// Modeled after the parabola y = -x^2 + 2x
@(require_results)
quadratic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return -(p * (p - 2))
}
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
@(require_results)
quadratic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 2 * p * p
} else {
return (-2 * p * p) + (4 * p) - 1
}
}
// Modeled after the cubic y = x^3
@(require_results)
cubic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p
}
// Modeled after the cubic y = (x - 1)^3 + 1
@(require_results)
cubic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f + 1
}
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
@(require_results)
cubic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 4 * p * p * p
} else {
f := (2 * p) - 2
return 0.5 * f * f * f + 1
}
}
// Modeled after the quartic x^4
@(require_results)
quartic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p
}
// Modeled after the quartic y = 1 - (x - 1)^4
@(require_results)
quartic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * (1 - p) + 1
}
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
@(require_results)
quartic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 8 * p * p * p * p
} else {
f := p - 1
return -8 * f * f * f * f + 1
}
}
// Modeled after the quintic y = x^5
@(require_results)
quintic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p * p * p
}
// Modeled after the quintic y = (x - 1)^5 + 1
@(require_results)
quintic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := p - 1
return f * f * f * f * f + 1
}
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
@(require_results)
quintic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 16 * p * p * p * p * p
} else {
f := (2 * p) - 2
return 0.5 * f * f * f * f * f + 1
}
}
// Modeled after quarter-cycle of sine wave
@(require_results)
sine_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin((p - 1) * PI_2) + 1
}
// Modeled after quarter-cycle of sine wave (different phase)
@(require_results)
sine_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(p * PI_2)
}
// Modeled after half sine wave
@(require_results)
sine_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 0.5 * (1 - math.cos(p * math.PI))
}
// Modeled after shifted quadrant IV of unit circle
@(require_results)
circular_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - math.sqrt(1 - (p * p))
}
// Modeled after shifted quadrant II of unit circle
@(require_results)
circular_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sqrt((2 - p) * p)
}
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
@(require_results)
circular_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * (1 - math.sqrt(1 - 4 * (p * p)))
} else {
return 0.5 * (math.sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1)
}
}
// Modeled after the exponential function y = 2^(10(x - 1))
@(require_results)
exponential_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 0.0 ? p : math.pow(2, 10 * (p - 1))
}
// Modeled after the exponential function y = -2^(-10x) + 1
@(require_results)
exponential_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p == 1.0 ? p : 1 - math.pow(2, -10 * p)
}
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
@(require_results)
exponential_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p == 0.0 || p == 1.0 {
return p
}
if p < 0.5 {
return 0.5 * math.pow(2, (20 * p) - 10)
} else {
return -0.5 * math.pow(2, (-20 * p) + 10) + 1
}
}
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
@(require_results)
elastic_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(13 * PI_2 * p) * math.pow(2, 10 * (p - 1))
}
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
@(require_results)
elastic_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return math.sin(-13 * PI_2 * (p + 1)) * math.pow(2, -10 * p) + 1
}
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
@(require_results)
elastic_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * math.sin(13 * PI_2 * (2 * p)) * math.pow(2, 10 * ((2 * p) - 1))
} else {
return 0.5 * (math.sin(-13 * PI_2 * ((2 * p - 1) + 1)) * math.pow(2, -10 * (2 * p - 1)) + 2)
}
}
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
@(require_results)
back_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return p * p * p - p * math.sin(p * math.PI)
}
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
@(require_results)
back_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
f := 1 - p
return 1 - (f * f * f - f * math.sin(f * math.PI))
}
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
@(require_results)
back_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
f := 2 * p
return 0.5 * (f * f * f - f * math.sin(f * math.PI))
} else {
f := (1 - (2*p - 1))
return 0.5 * (1 - (f * f * f - f * math.sin(f * math.PI))) + 0.5
}
}
@(require_results)
bounce_in :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
return 1 - bounce_out(1 - p)
}
@(require_results)
bounce_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 4/11.0 {
return (121 * p * p)/16.0
} else if p < 8/11.0 {
return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0
} else if p < 9/10.0 {
return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0
} else {
return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0
}
}
@(require_results)
bounce_in_out :: proc "contextless" (p: $T) -> T where intrinsics.type_is_float(T) {
if p < 0.5 {
return 0.5 * bounce_in(p*2)
} else {
return 0.5 * bounce_out(p * 2 - 1) + 0.5
}
}
// additional enum variant
Ease :: enum {
Linear,
Quadratic_In,
Quadratic_Out,
Quadratic_In_Out,
Cubic_In,
Cubic_Out,
Cubic_In_Out,
Quartic_In,
Quartic_Out,
Quartic_In_Out,
Quintic_In,
Quintic_Out,
Quintic_In_Out,
Sine_In,
Sine_Out,
Sine_In_Out,
Circular_In,
Circular_Out,
Circular_In_Out,
Exponential_In,
Exponential_Out,
Exponential_In_Out,
Elastic_In,
Elastic_Out,
Elastic_In_Out,
Back_In,
Back_Out,
Back_In_Out,
Bounce_In,
Bounce_Out,
Bounce_In_Out,
}
@(require_results)
ease :: proc "contextless" (type: Ease, p: $T) -> T
where intrinsics.type_is_float(T) {
switch type {
case .Linear: return p
case .Quadratic_In: return quadratic_in(p)
case .Quadratic_Out: return quadratic_out(p)
case .Quadratic_In_Out: return quadratic_in_out(p)
case .Cubic_In: return cubic_in(p)
case .Cubic_Out: return cubic_out(p)
case .Cubic_In_Out: return cubic_in_out(p)
case .Quartic_In: return quartic_in(p)
case .Quartic_Out: return quartic_out(p)
case .Quartic_In_Out: return quartic_in_out(p)
case .Quintic_In: return quintic_in(p)
case .Quintic_Out: return quintic_out(p)
case .Quintic_In_Out: return quintic_in_out(p)
case .Sine_In: return sine_in(p)
case .Sine_Out: return sine_out(p)
case .Sine_In_Out: return sine_in_out(p)
case .Circular_In: return circular_in(p)
case .Circular_Out: return circular_out(p)
case .Circular_In_Out: return circular_in_out(p)
case .Exponential_In: return exponential_in(p)
case .Exponential_Out: return exponential_out(p)
case .Exponential_In_Out: return exponential_in_out(p)
case .Elastic_In: return elastic_in(p)
case .Elastic_Out: return elastic_out(p)
case .Elastic_In_Out: return elastic_in_out(p)
case .Back_In: return back_in(p)
case .Back_Out: return back_out(p)
case .Back_In_Out: return back_in_out(p)
case .Bounce_In: return bounce_in(p)
case .Bounce_Out: return bounce_out(p)
case .Bounce_In_Out: return bounce_in_out(p)
}
// in case type was invalid
return 0
}
Flux_Map :: struct($T: typeid) {
values: map[^T]Flux_Tween(T),
keys_to_be_deleted: [dynamic]^T,
}
Flux_Tween :: struct($T: typeid) {
value: ^T,
start: T,
diff: T,
goal: T,
delay: f64, // in seconds
duration: time.Duration,
progress: f64,
rate: f64,
type: Ease,
inited: bool,
// callbacks, data can be set, will be pushed to callback
data: rawptr, // by default gets set to value input
on_start: proc(flux: ^Flux_Map(T), data: rawptr),
on_update: proc(flux: ^Flux_Map(T), data: rawptr),
on_complete: proc(flux: ^Flux_Map(T), data: rawptr),
}
// init flux map to a float type and a wanted cap
@(require_results)
flux_init :: proc($T: typeid, value_capacity := 8) -> Flux_Map(T) where intrinsics.type_is_float(T) {
return {
values = make(map[^T]Flux_Tween(T), value_capacity),
keys_to_be_deleted = make([dynamic]^T, 0, value_capacity),
}
}
// delete map content
flux_destroy :: proc(flux: Flux_Map($T)) where intrinsics.type_is_float(T) {
delete(flux.values)
delete(flux.keys_to_be_deleted)
}
// clear map content, stops all animations
flux_clear :: proc(flux: ^Flux_Map($T)) where intrinsics.type_is_float(T) {
clear(&flux.values)
}
// append / overwrite existing tween value to parameters
// rest is initialized in flux_tween_init, inside update
// return value can be used to set callbacks
@(require_results)
flux_to :: proc(
flux: ^Flux_Map($T),
value: ^T,
goal: T,
type: Ease = .Quadratic_Out,
duration: time.Duration = time.Second,
delay: f64 = 0,
) -> (tween: ^Flux_Tween(T)) where intrinsics.type_is_float(T) {
if res, ok := &flux.values[value]; ok {
tween = res
} else {
flux.values[value] = {}
tween = &flux.values[value]
}
tween^ = {
value = value,
goal = goal,
duration = duration,
delay = delay,
type = type,
data = value,
}
return
}
// init internal properties
flux_tween_init :: proc(tween: ^Flux_Tween($T), duration: time.Duration) where intrinsics.type_is_float(T) {
tween.inited = true
tween.start = tween.value^
tween.diff = tween.goal - tween.value^
s := time.duration_seconds(duration)
tween.rate = duration > 0 ? 1.0 / s : 0
tween.progress = duration > 0 ? 0 : 1
}
// update all tweens, wait for their delay if one exists
// calls callbacks in all stages, when they're filled
// deletes tween from the map after completion
flux_update :: proc(flux: ^Flux_Map($T), dt: f64) where intrinsics.type_is_float(T) {
clear(&flux.keys_to_be_deleted)
for key, &tween in flux.values {
delay_remainder := f64(0)
// Update delay if necessary.
if tween.delay > 0 {
tween.delay -= dt
if tween.delay < 0 {
// We finished the delay, but in doing so consumed part of this frame's `dt` budget.
// Keep track of it so we can apply it to this tween without affecting others.
delay_remainder = tween.delay
// We're done with this delay.
tween.delay = 0
}
}
// We either had no delay, or the delay has been consumed.
if tween.delay <= 0 {
if !tween.inited {
flux_tween_init(&tween, tween.duration)
if tween.on_start != nil {
tween.on_start(flux, tween.data)
}
}
// If part of the `dt` budget was consumed this frame, then `delay_remainder` will be
// that remainder, a negative value. Adding it to `dt` applies what's left of the `dt`
// to the tween so it advances properly, instead of too much or little.
tween.progress += tween.rate * (dt + delay_remainder)
x := tween.progress >= 1 ? 1 : ease(tween.type, tween.progress)
tween.value^ = tween.start + tween.diff * T(x)
if tween.on_update != nil {
tween.on_update(flux, tween.data)
}
if tween.progress >= 1 {
// append keys to array that will be deleted after the loop
append(&flux.keys_to_be_deleted, key)
if tween.on_complete != nil {
tween.on_complete(flux, tween.data)
}
}
}
}
// loop through keys that should be deleted from the map
if len(flux.keys_to_be_deleted) != 0 {
for key in flux.keys_to_be_deleted {
delete_key(&flux.values, key)
}
}
}
// stop a specific key inside the map
// returns true when it successfully removed the key
@(require_results)
flux_stop :: proc(flux: ^Flux_Map($T), key: ^T) -> bool where intrinsics.type_is_float(T) {
if key in flux.values {
delete_key(&flux.values, key)
return true
}
return false
}
// returns the amount of time left for the tween animation, if the key exists in the map
// returns 0 if the tween doesnt exist on the map
@(require_results)
flux_tween_time_left :: proc(flux: Flux_Map($T), key: ^T) -> f64 {
if tween, ok := flux.values[key]; ok {
return ((1 - tween.progress) * tween.rate) + tween.delay
} else {
return 0
}
}
|