aboutsummaryrefslogtreecommitdiff
path: root/core/math/math_erf.odin
blob: b5a4663aecb04c300e855fead18455569200dfb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
package math

// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
// came with this notice. 
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double erf(double x)
// double erfc(double x)
//                           x
//                    2      |\
//     erf(x)  =  ---------  | exp(-t*t)dt
//                 sqrt(pi) \|
//                           0
//
//     erfc(x) =  1-erf(x)
//  Note that
//              erf(-x) = -erf(x)
//              erfc(-x) = 2 - erfc(x)
//
// Method:
//      1. For |x| in [0, 0.84375]
//          erf(x)  = x + x*R(x**2)
//          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
//                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
//         where R = P/Q where P is an odd poly of degree 8 and
//         Q is an odd poly of degree 10.
//                                               -57.90
//                      | R - (erf(x)-x)/x | <= 2
//
//
//         Remark. The formula is derived by noting
//          erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
//         and that
//          2/sqrt(pi) = 1.128379167095512573896158903121545171688
//         is close to one. The interval is chosen because the fix
//         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
//         near 0.6174), and by some experiment, 0.84375 is chosen to
//         guarantee the error is less than one ulp for erf.
//
//      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
//         c = 0.84506291151 rounded to single (24 bits)
//              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
//              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
//                        1+(c+P1(s)/Q1(s))    if x < 0
//              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
//         Remark: here we use the taylor series expansion at x=1.
//              erf(1+s) = erf(1) + s*Poly(s)
//                       = 0.845.. + P1(s)/Q1(s)
//         That is, we use rational approximation to approximate
//                      erf(1+s) - (c = (single)0.84506291151)
//         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
//         where
//              P1(s) = degree 6 poly in s
//              Q1(s) = degree 6 poly in s
//
//      3. For x in [1.25,1/0.35(~2.857143)],
//              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
//              erf(x)  = 1 - erfc(x)
//         where
//              R1(z) = degree 7 poly in z, (z=1/x**2)
//              S1(z) = degree 8 poly in z
//
//      4. For x in [1/0.35,28]
//              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
//                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
//                      = 2.0 - tiny            (if x <= -6)
//              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
//              erf(x)  = sign(x)*(1.0 - tiny)
//         where
//              R2(z) = degree 6 poly in z, (z=1/x**2)
//              S2(z) = degree 7 poly in z
//
//      Note1:
//         To compute exp(-x*x-0.5625+R/S), let s be a single
//         precision number and s := x; then
//              -x*x = -s*s + (s-x)*(s+x)
//              exp(-x*x-0.5626+R/S) =
//                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
//      Note2:
//         Here 4 and 5 make use of the asymptotic series
//                        exp(-x*x)
//              erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
//                        x*sqrt(pi)
//         We use rational approximation to approximate
//              g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
//         Here is the error bound for R1/S1 and R2/S2
//              |R1/S1 - f(x)|  < 2**(-62.57)
//              |R2/S2 - f(x)|  < 2**(-61.52)
//
//      5. For inf > x >= 28
//              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
//              erfc(x) = tiny*tiny (raise underflow) if x > 0
//                      = 2 - tiny if x<0
//
//      7. Special case:
//              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
//              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
//              erfc/erf(NaN) is NaN

erf :: proc{
	erf_f16,
	erf_f16le,
	erf_f16be,
	erf_f32,
	erf_f32le,
	erf_f32be,
	erf_f64,
}

@(require_results) erf_f16   :: proc "contextless" (x: f16)   -> f16   { return f16(erf_f64(f64(x))) }
@(require_results) erf_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erf_f64(f64(x))) }
@(require_results) erf_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erf_f64(f64(x))) }
@(require_results) erf_f32   :: proc "contextless" (x: f32)   -> f32   { return f32(erf_f64(f64(x))) }
@(require_results) erf_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erf_f64(f64(x))) }
@(require_results) erf_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erf_f64(f64(x))) }

@(require_results)
erf_f64 :: proc "contextless" (x: f64) -> f64 {
	erx :: 0h3FEB0AC160000000
	// Coefficients for approximation to  erf in [0, 0.84375]
	efx  :: 0h3FC06EBA8214DB69
	efx8 :: 0h3FF06EBA8214DB69
	pp0  :: 0h3FC06EBA8214DB68
	pp1  :: 0hBFD4CD7D691CB913
	pp2  :: 0hBF9D2A51DBD7194F
	pp3  :: 0hBF77A291236668E4
	pp4  :: 0hBEF8EAD6120016AC
	qq1  :: 0h3FD97779CDDADC09
	qq2  :: 0h3FB0A54C5536CEBA
	qq3  :: 0h3F74D022C4D36B0F
	qq4  :: 0h3F215DC9221C1A10
	qq5  :: 0hBED09C4342A26120
	// Coefficients for approximation to  erf  in [0.84375, 1.25]
	pa0 :: 0hBF6359B8BEF77538
	pa1 :: 0h3FDA8D00AD92B34D
	pa2 :: 0hBFD7D240FBB8C3F1
	pa3 :: 0h3FD45FCA805120E4
	pa4 :: 0hBFBC63983D3E28EC
	pa5 :: 0h3FA22A36599795EB
	pa6 :: 0hBF61BF380A96073F
	qa1 :: 0h3FBB3E6618EEE323
	qa2 :: 0h3FE14AF092EB6F33
	qa3 :: 0h3FB2635CD99FE9A7
	qa4 :: 0h3FC02660E763351F
	qa5 :: 0h3F8BEDC26B51DD1C
	qa6 :: 0h3F888B545735151D
	// Coefficients for approximation to  erfc in [1.25, 1/0.35]
	ra0 :: 0hBF843412600D6435
	ra1 :: 0hBFE63416E4BA7360
	ra2 :: 0hC0251E0441B0E726
	ra3 :: 0hC04F300AE4CBA38D
	ra4 :: 0hC0644CB184282266
	ra5 :: 0hC067135CEBCCABB2
	ra6 :: 0hC054526557E4D2F2
	ra7 :: 0hC023A0EFC69AC25C
	sa1 :: 0h4033A6B9BD707687
	sa2 :: 0h4061350C526AE721
	sa3 :: 0h407B290DD58A1A71
	sa4 :: 0h40842B1921EC2868
	sa5 :: 0h407AD02157700314
	sa6 :: 0h405B28A3EE48AE2C
	sa7 :: 0h401A47EF8E484A93
	sa8 :: 0hBFAEEFF2EE749A62
	// Coefficients for approximation to  erfc in [1/.35, 28]
	rb0 :: 0hBF84341239E86F4A
	rb1 :: 0hBFE993BA70C285DE
	rb2 :: 0hC031C209555F995A
	rb3 :: 0hC064145D43C5ED98
	rb4 :: 0hC083EC881375F228
	rb5 :: 0hC09004616A2E5992
	rb6 :: 0hC07E384E9BDC383F
	sb1 :: 0h403E568B261D5190
	sb2 :: 0h40745CAE221B9F0A
	sb3 :: 0h409802EB189D5118
	sb4 :: 0h40A8FFB7688C246A
	sb5 :: 0h40A3F219CEDF3BE6
	sb6 :: 0h407DA874E79FE763
	sb7 :: 0hC03670E242712D62
	
	
	VERY_TINY :: 0h0080000000000000
	SMALL     :: 1.0 / (1 << 28)        // 2**-28

	// special cases
	switch {
	case is_nan(x):
		return nan_f64()
	case is_inf(x, 1):
		return 1
	case is_inf(x, -1):
		return -1
	}
	x := x
	sign := false
	if x < 0 {
		x = -x
		sign = true
	}
	if x < 0.84375 { // |x| < 0.84375
		temp: f64
		if x < SMALL { // |x| < 2**-28
			if x < VERY_TINY {
				temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
			} else {
				temp = x + efx*x
			}
		} else {
			z := x * x
			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
			y := r / s
			temp = x + x*y
		}
		if sign {
			return -temp
		}
		return temp
	}
	if x < 1.25 { // 0.84375 <= |x| < 1.25
		s := x - 1
		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
		if sign {
			return -erx - P/Q
		}
		return erx + P/Q
	}
	if x >= 6 { // inf > |x| >= 6
		if sign {
			return -1
		}
		return 1
	}
	s := 1 / (x * x)
	R, S: f64
	if x < 1/0.35 { // |x| < 1 / 0.35  ~ 2.857143
		R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
		S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
	} else { // |x| >= 1 / 0.35  ~ 2.857143
		R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
		S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
	}
	z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
	r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
	if sign {
		return r/x - 1
	}
	return 1 - r/x
}


erfc :: proc{
	erfc_f16,
	erfc_f16le,
	erfc_f16be,
	erfc_f32,
	erfc_f32le,
	erfc_f32be,
	erfc_f64,
}

@(require_results) erfc_f16   :: proc "contextless" (x: f16)   -> f16   { return f16(erfc_f64(f64(x))) }
@(require_results) erfc_f16le :: proc "contextless" (x: f16le) -> f16le { return f16le(erfc_f64(f64(x))) }
@(require_results) erfc_f16be :: proc "contextless" (x: f16be) -> f16be { return f16be(erfc_f64(f64(x))) }
@(require_results) erfc_f32   :: proc "contextless" (x: f32)   -> f32   { return f32(erfc_f64(f64(x))) }
@(require_results) erfc_f32le :: proc "contextless" (x: f32le) -> f32le { return f32le(erfc_f64(f64(x))) }
@(require_results) erfc_f32be :: proc "contextless" (x: f32be) -> f32be { return f32be(erfc_f64(f64(x))) }

@(require_results)
erfc_f64 :: proc "contextless" (x: f64) -> f64 {
	erx :: 0h3FEB0AC160000000
	// Coefficients for approximation to  erf in [0, 0.84375]
	efx  :: 0h3FC06EBA8214DB69
	efx8 :: 0h3FF06EBA8214DB69
	pp0  :: 0h3FC06EBA8214DB68
	pp1  :: 0hBFD4CD7D691CB913
	pp2  :: 0hBF9D2A51DBD7194F
	pp3  :: 0hBF77A291236668E4
	pp4  :: 0hBEF8EAD6120016AC
	qq1  :: 0h3FD97779CDDADC09
	qq2  :: 0h3FB0A54C5536CEBA
	qq3  :: 0h3F74D022C4D36B0F
	qq4  :: 0h3F215DC9221C1A10
	qq5  :: 0hBED09C4342A26120
	// Coefficients for approximation to  erf  in [0.84375, 1.25]
	pa0 :: 0hBF6359B8BEF77538
	pa1 :: 0h3FDA8D00AD92B34D
	pa2 :: 0hBFD7D240FBB8C3F1
	pa3 :: 0h3FD45FCA805120E4
	pa4 :: 0hBFBC63983D3E28EC
	pa5 :: 0h3FA22A36599795EB
	pa6 :: 0hBF61BF380A96073F
	qa1 :: 0h3FBB3E6618EEE323
	qa2 :: 0h3FE14AF092EB6F33
	qa3 :: 0h3FB2635CD99FE9A7
	qa4 :: 0h3FC02660E763351F
	qa5 :: 0h3F8BEDC26B51DD1C
	qa6 :: 0h3F888B545735151D
	// Coefficients for approximation to  erfc in [1.25, 1/0.35]
	ra0 :: 0hBF843412600D6435
	ra1 :: 0hBFE63416E4BA7360
	ra2 :: 0hC0251E0441B0E726
	ra3 :: 0hC04F300AE4CBA38D
	ra4 :: 0hC0644CB184282266
	ra5 :: 0hC067135CEBCCABB2
	ra6 :: 0hC054526557E4D2F2
	ra7 :: 0hC023A0EFC69AC25C
	sa1 :: 0h4033A6B9BD707687
	sa2 :: 0h4061350C526AE721
	sa3 :: 0h407B290DD58A1A71
	sa4 :: 0h40842B1921EC2868
	sa5 :: 0h407AD02157700314
	sa6 :: 0h405B28A3EE48AE2C
	sa7 :: 0h401A47EF8E484A93
	sa8 :: 0hBFAEEFF2EE749A62
	// Coefficients for approximation to  erfc in [1/.35, 28]
	rb0 :: 0hBF84341239E86F4A
	rb1 :: 0hBFE993BA70C285DE
	rb2 :: 0hC031C209555F995A
	rb3 :: 0hC064145D43C5ED98
	rb4 :: 0hC083EC881375F228
	rb5 :: 0hC09004616A2E5992
	rb6 :: 0hC07E384E9BDC383F
	sb1 :: 0h403E568B261D5190
	sb2 :: 0h40745CAE221B9F0A
	sb3 :: 0h409802EB189D5118
	sb4 :: 0h40A8FFB7688C246A
	sb5 :: 0h40A3F219CEDF3BE6
	sb6 :: 0h407DA874E79FE763
	sb7 :: 0hC03670E242712D62
	
	TINY :: 1.0 / (1 << 56) // 2**-56
	// special cases
	switch {
	case is_nan(x):
		return nan_f64()
	case is_inf(x, 1):
		return 0
	case is_inf(x, -1):
		return 2
	}
	x := x
	sign := false
	if x < 0 {
		x = -x
		sign = true
	}
	if x < 0.84375 { // |x| < 0.84375
		temp: f64
		if x < TINY { // |x| < 2**-56
			temp = x
		} else {
			z := x * x
			r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
			s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
			y := r / s
			if x < 0.25 { // |x| < 1/4
				temp = x + x*y
			} else {
				temp = 0.5 + (x*y + (x - 0.5))
			}
		}
		if sign {
			return 1 + temp
		}
		return 1 - temp
	}
	if x < 1.25 { // 0.84375 <= |x| < 1.25
		s := x - 1
		P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
		Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
		if sign {
			return 1 + erx + P/Q
		}
		return 1 - erx - P/Q

	}
	if x < 28 { // |x| < 28
		s := 1 / (x * x)
		R, S: f64
		if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
			R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
			S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
		} else { // |x| >= 1 / 0.35 ~ 2.857143
			if sign && x > 6 {
				return 2 // x < -6
			}
			R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
			S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
		}
		z := transmute(f64)(0xffffffff00000000 & transmute(u64)x) // pseudo-single (20-bit) precision x
		r := exp(-z*z-0.5625) * exp((z-x)*(z+x)+R/S)
		if sign {
			return 2 - r/x
		}
		return r / x
	}
	if sign {
		return 2
	}
	return 0
}