1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
package math
import "base:intrinsics"
_ :: intrinsics
@(require_results)
fmuladd_f16 :: proc "contextless" (a, b, c: f16) -> f16 {
when IS_WASM {
return f16(fmuladd_f64(f64(a), f64(b), f64(c)))
} else {
foreign _ {
@(link_name="llvm.fmuladd.f16", require_results)
_fmuladd_f16 :: proc "none" (a, b, c: f16) -> f16 ---
}
return _fmuladd_f16(a, b, c)
}
}
@(require_results)
fmuladd_f32 :: proc "contextless" (a, b, c: f32) -> f32 {
when IS_WASM {
return f32(fmuladd_f64(f64(a), f64(b), f64(c)))
} else {
foreign _ {
@(link_name="llvm.fmuladd.f32", require_results)
_fmuladd_f32 :: proc "none" (a, b, c: f32) -> f32 ---
}
return _fmuladd_f32(a, b, c)
}
}
@(require_results)
fmuladd_f64 :: proc "contextless" (a, b, c: f64) -> f64 {
when IS_WASM {
return #force_inline fmuladd_slow_f64(a, b, c)
} else {
foreign _ {
@(link_name="llvm.fmuladd.f64", require_results)
_fmuladd_f64 :: proc "none" (a, b, c: f64) -> f64 ---
}
return _fmuladd_f64(a, b, c)
}
}
@(require_results)
fmuladd_slow_f64 :: proc "contextless" (x, y, z: f64) -> f64 {
@(require_results)
split :: proc "contextless" (b: u64) -> (sign: u32, exp: i32, mantissa: u64) {
MASK :: 0x7FF
FRAC_MASK :: 1<<52 - 1
sign = u32(b >> 63)
exp = i32(b>>52) & MASK
mantissa = b & FRAC_MASK
if exp == 0 {
shift := uint(intrinsics.count_leading_zeros(mantissa) - 11)
mantissa <<= shift
exp = 1 - i32(shift)
} else {
mantissa |= 1<<52
}
return
}
@(require_results)
mul_u64 :: proc "contextless" (x, y: u64) -> (hi, lo: u64) {
prod_wide := u128(x) * u128(y)
hi, lo = u64(prod_wide>>64), u64(prod_wide)
return
}
@(require_results)
add_u64 :: proc "contextless" (x, y, carry: u64) -> (sum, carry_out: u64) {
tmp_carry, tmp_carry2: bool
sum, tmp_carry = intrinsics.overflow_add(x, y)
sum, tmp_carry2 = intrinsics.overflow_add(sum, carry)
carry_out = u64(tmp_carry | tmp_carry2)
return
}
@(require_results)
sub_u64 :: proc "contextless" (x, y, borrow: u64) -> (diff, borrow_out: u64) {
tmp_borrow, tmp_borrow2: bool
diff, tmp_borrow = intrinsics.overflow_sub(x, y)
diff, tmp_borrow2 = intrinsics.overflow_sub(diff, borrow)
borrow_out = u64(tmp_borrow | tmp_borrow2)
return
}
@(require_results)
nonzero :: proc "contextless" (x: u64) -> u64 {
return 1 if x != 0 else 0
}
@(require_results)
zero :: proc "contextless" (x: u64) -> u64 {
return 1 if x == 0 else 0
}
@(require_results)
shl :: proc "contextless" (u1, u2: u64, n: uint) -> (r1, r2: u64) {
r1 = u1<<n | u2>>(64-n) | u2<<(n-64)
r2 = u2<<n
return
}
@(require_results)
shr :: proc "contextless" (u1, u2: u64, n: uint) -> (r1, r2: u64) {
r2 = u2>>n | u1<<(64-n) | u1>>(n-64)
r1 = u1>>n
return
}
@(require_results)
lz :: proc "contextless" (u1, u2: u64) -> (l: i32) {
l = i32(intrinsics.count_leading_zeros(u1))
if l == 64 {
l += i32(intrinsics.count_leading_zeros(u2))
}
return l
}
@(require_results)
shrcompress :: proc "contextless" (u1, u2: u64, n: uint) -> (r1, r2: u64) {
switch {
case n == 0:
return u1, u2
case n == 64:
return 0, u1 | nonzero(u2)
case n >= 128:
return 0, nonzero(u1 | u2)
case n < 64:
r1, r2 = shr(u1, u2, n)
r2 |= nonzero(u2 & (1<<n - 1))
case n < 128:
r1, r2 = shr(u1, u2, n)
r2 |= nonzero(u1&(1<<(n-64)-1) | u2)
}
return
}
UVINF :: 0x7ff0_0000_0000_0000
BIAS :: 1023
bx, by, bz := transmute(u64)x, transmute(u64)y, transmute(u64)z
switch {
case x == 0, y == 0, z == 0,
bx&UVINF == UVINF, by&UVINF == UVINF:
return x*y + z
}
if bz&UVINF == UVINF {
return z
}
xs, xe, xm := split(bx)
ys, ye, ym := split(by)
zs, ze, zm := split(bz)
pe := xe + ye - BIAS + 1
pm1, pm2 := mul_u64(xm<<10, ym<<11)
zm1, zm2 := zm<<10, u64(0)
ps := xs ~ ys // product sign
is_62_zero := uint((~pm1 >> 62) & 1)
pm1, pm2 = shl(pm1, pm2, is_62_zero)
pe -= i32(is_62_zero)
if pe < ze || pe == ze && pm1 < zm1 {
// Swap addition operands so |p| >= |z|
ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2
}
if ps != zs && pe == ze && pm1 == zm1 && pm2 == zm2 {
return 0
}
zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze))
// Compute resulting significands, normalizing if necessary.
m, c: u64
if ps == zs {
// Adding (pm1:pm2) + (zm1:zm2)
pm2, c = add_u64(pm2, zm2, 0)
pm1, _ = add_u64(pm1, zm1, c)
pe -= i32(~pm1 >> 63)
pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63))
} else {
// Subtracting (pm1:pm2) - (zm1:zm2)
pm2, c = sub_u64(pm2, zm2, 0)
pm1, _ = sub_u64(pm1, zm1, c)
nz := lz(pm1, pm2)
pe -= nz
m, pm2 = shl(pm1, pm2, uint(nz-1))
m |= nonzero(pm2)
}
// Round and break ties to even
if pe > 1022+BIAS || pe == 1022+BIAS && (m+1<<9)>>63 == 1 {
// rounded value overflows exponent range
return transmute(f64)(u64(ps)<<63 | UVINF)
}
if pe < 0 {
n := uint(-pe)
m = m>>n | nonzero(m&(1<<n-1))
pe = 0
}
m = ((m + 1<<9) >> 10) & ~zero((m&(1<<10-1))~1<<9)
pe &= -i32(nonzero(m))
return transmute(f64)(u64(ps)<<63 + u64(pe)<<52 + m)
}
|